Kyungpook Math. J. Volume 18, Number 2 December, 1978

A NOTE ON PURE STATES AND STRICTLY PURE STATES **OF BANACH *-ALGEBRAS**

By Ilbong Jung

1. Introduction

Let A be a Banach *-algebra. In this paper, we consider the following questions which were raised by B.A. Barnes in [1].

Question 1. If α is a pure state of A, then is K_{α} a maximal left ideal of A? Question 2. If α and β are pure states of A and $K_{\alpha} = K_{\beta}$, does $\alpha = \beta$? B.A. Barnes obtained in [1] that the strictly pure state have partial solutions of Question 1 and Question 2. We show in §3 that the pure states have partial solutions of these questions. Also, we consider the similarity of π_{α} in §4.

2. Preliminaries and Notations

Throughout this paper $(A, \|\cdot\|)$ denotes a Banach *-algebra. \mathcal{H} is always a Hilbert space and $\mathscr{B}(\mathscr{H})$ is the algebra of all bounded operators on \mathscr{H} . Let α be a positive functional on A, and let

$$M(\alpha) = \sup\{|\alpha(a)|^2 / \alpha(a^*a) : a \in A, \alpha(a^*a) \neq 0\}.$$

 \mathscr{T} is the set of all positive functionals α on A with the properties $\alpha(a^*) = \overline{\alpha(a)}$ for all $a \in A$ and $M(\alpha) < +\infty$. \mathscr{P}_1 is the set of all $\alpha \in \mathscr{P}$ with $M(\alpha) \leq 1$. For $\alpha \in \mathscr{P}$, K_{α} denotes the left kernel of α . The quotient space A/K_{α} is a pre-Hilbert space in the inner product $(a+K_{\alpha}, b+K_{\alpha}) = \alpha(b^*a)$. Let \mathscr{H}_{α} denotes the Hilbert space which is the completion of this pre-Hilbert space. A *-representation $a \rightarrow A$ $\pi_{\alpha}(a)$ of A on \mathscr{H}_{α} is constructed by $\pi_{\alpha}(a)(b+K_{\alpha})=ab+K_{\alpha}$, for all $a\in A$ and $b \in A$. Then $\pi_{\alpha}(a)$ is a bounded operator on A/K_{α} which extends uniquely to a bounded operator on \mathscr{H}_{α} . $\alpha \in \mathscr{S}$ is a pure state of A if and only if $M(\alpha) = 1$ and π_{α} is irreducible on \mathscr{H}_{α} (4, Theorem 21.34). $\alpha \in \mathscr{F}$ is a strictly pure state of A if α is a pure state of A and $a \longrightarrow \pi_{\alpha}(a)$ is strictly irreducible on \mathscr{H}_{α} . α is a strictly pure state of A if and only if A/K_{α} is complete in the norm $|a+K_{\alpha}|_{2}$ $=\alpha(a^*a)^{\frac{1}{2}}$ if and only if $|\cdot|_2$ and $\|\cdot\|_a$ are equivalent, where $\|\cdot\|_a$ is the quotient norm on A/K_{α} (1, Theorem 2.1). The terminologies in this paper are due to [1] and [4].

196 Ilbong Jung

3. Pure states and their left kernel

In [1], B.A. Barnes proved that if α is a strictly pure state of A, then K_{α} is a modular maximal left ideal of A. Also, he raised an open Question 1 in [1]. Proposition 3.1 is a generized partial solution of this problem.

PROPOSITION 3.1. Let α be a pure state of A. Assume that there exists K > 0

such that for all $a \in A$, $K ||a + K_{\alpha}||_q \le |a + K_{\alpha}|_2$. Then K_{α} is a modular maximal left ideal of A.

PROOF. We define a functional $\tilde{\alpha}$ on A/K_{α} by $\tilde{\alpha}(a+K_{\alpha})=\alpha(a)$. Since $M(\alpha)$ =1, $\|\tilde{\alpha}\|=1$. By Hahn Banach Theorem, $\tilde{\alpha}$ can be extended to a bounded linear functional β on \mathscr{H}_{α} so that $\|\beta\| = \|\widetilde{\alpha}\|$. Let z be an element of \mathscr{H}_{α} such that $\beta(x)$ =(x,z) for all $x \in \mathcal{H}_{\alpha}$, where (\cdot, \cdot) is an inner product in the Hilbert space \mathscr{H}_{α} . Then there exists an sequence $\{a_n\}$ in A such that $\{a_n+K_{\alpha}\}$ converges to z with respect to the Hilbert space norm. Since $\{a_n + K_n\}$ is a $\|\cdot\|_a$ -Cauchy sequence, there exists $v \in A$ such that $\|(a_n - v) + K_{\alpha}\|_{q} \longrightarrow 0$. Hence there exists a sequence $\{k_n\}$ in K_{α} such that $\|(a_n-v)+k_n\|\longrightarrow 0$. Since $\alpha(v^*(a_n-v))=\alpha(v^*(a_n-v))=\alpha(v^*(a_n-v))$ -v + v^*k_n) - $\rightarrow 0$, $|\alpha(v^*v - v^*)| = |\lim(a_n + K_\alpha, v + K_\alpha) - (z, v + K_\alpha)| = 0$. Hence $\alpha(v*v) = \alpha(v)$. i.e. $(v+K_{\alpha}, v+K_{\alpha}) = (v+K_{\alpha}, z)$. Therefore $((v-a_n)+K_{\alpha}, (v-a_n))$ $+K_{\alpha}$ + ($\alpha(a_n^*(v-a_n))$ $\longrightarrow 0$. It is easy that $\alpha(a_n^*(v-a_n)) \longrightarrow 0$. Hence we have $v+K_{\alpha}=z$. Since $\alpha(a)=\alpha(v*a)$ for all $a\in A$, $A(1-v)\subset K_{\alpha}$. Therefore K_{α} is a proper modular left ideal of A. Let K be a maximal left ideal of A such that $K_{\gamma} \subset K$. Put $M = \{b + K_{\alpha} : b \in K\}$. Then M is a proper left modular ideal of A/K_{α} . Let cl(M) be a closure of M in \mathscr{H}_{α} . We claim that cl(M) is a proper π_{α} -invariant subspace of \mathscr{H}_{α} . It is sufficient to show that cl(M) is a proper subspace. For, let M_1 be a closure of M in $(A/K_{\alpha}, \|\cdot\|_{a})$. Since $(A/K_{\alpha}, \|\cdot\|_{a})$ is a Banach algebra, M_1 is proper. By the hypothesis, the identity mapping $(A/K_{\alpha}, |\cdot|_2)$ onto $(A/K_{\alpha}, \|\cdot\|_{a})$ is continuous, so that M_{1} is closed in $(A/K_{\alpha}, |\cdot|_{2})$. Therefore there exists $x \in A/K_{\alpha}$ such that $x \notin M_1$. Let W be an open set in \mathscr{H}_{α} containing x such that $W \cap M_1 = \phi$. M_2 denotes a closure of M_1 in $(\mathscr{H}_{\alpha}, |\cdot|_2)$. Then $W \cap M_2$ $=\phi$. Therefore $cl(M) \cap W = \phi$. Hence cl(M) is proper. Since $cl(M) = (0) = K_{\alpha}$, K $=K_{\alpha}$. Hence K_{α} is a maximal left ideal of A.

PROPOSITION 3.2. Let α be a pure state of A. Assume that there exists K>0 such that for all $a \in A$, $K ||a + K_{\alpha}||_q \le |a + K_{\alpha}|_2$. Suppose that $\{Tz : T \in \mathscr{B}\}$ is a closed

A Note on Pure States and Strictly Pure States of Banach *-Algebras 197 set in \mathscr{H}_{α} for all nonzero $z \in \mathscr{H}_{\alpha}$, where \mathscr{B} is the closure of $\pi_{\alpha}(A)$ in the operator norm. Then $\mathscr{N}(\alpha) = \overline{K_{\alpha} + K_{\alpha}}^{*}$, where $\mathscr{N}(\alpha)$ is the null space of α . PROOF. By Proposition 3.1, K_{α} is a modular left ideal of A. By the hypothesis, \mathscr{B} acts strictly irreducible on \mathscr{H}_{α}^{*} . By the similar method of Proposition 3.1 in [1], we obtain easily that $\mathscr{N}(\alpha) = \overline{K_{\alpha} + K_{\alpha}}^{*}$.

If α is a strictly pure state of A, π_{α} is a strictly irreducible *-representation.

It follows that $\{Tz: T \in \mathscr{B}\} = \mathscr{H}_{\alpha}$. Hence we have

COROLLARY 3.3. (1, Proposition 3.1) Let α be a strictly pure state of A. Then $\mathcal{N}(\alpha) = \overline{K_{\alpha} + K_{\alpha}^{*}}$.

PROPOSITION 3.4. Let α be as Proposition 3.2. Assume that $\beta \in \mathscr{P}$, $M(\beta) = 1$ and $K_{\alpha} = K_{\beta}$. Then $\alpha = \beta$.

PROOF. By the method of (1, Theorem 3.2), we have this proposition.

A strictly pure state α of A satisfies the hypothesis of Proposition 3.2. Hence we have

COROLLARY 3.5. (1, Theorem 3.2) Let α be a strictly pure state of A. Assume that $\beta \in \mathscr{P}$, $M(\beta) = 1$ and $K_{\alpha} = K_{\beta}$. Then $\alpha = \beta$.

REMARK. Proposition 3.4 is a partial solution of Question 2 in §1.

4. Representations which are similar to π_{α}

Let $a \longrightarrow \pi(a)$ be a representation of A on \mathcal{H} . If there exists an isometric

isomorphism of \mathscr{H} onto \mathscr{H}_{α} and an invertible operator $V \in \mathscr{B}(H, H_{\alpha})$ such that for all $a \in A$, $\pi(a) = V^{-1}\pi_{\alpha}(a)V$, then π is said to be similar to a strictly irreducible *-representation π_{α} . We consider the similarity of π_{α} in this section. PROPOSITION 4.1. Let $a \longrightarrow \pi(a)$ be a strictly irreducible representation of Aon \mathscr{H} . Assume that α is a strictly pure state of A, with $K_{\alpha} = K_{\xi}$, where $K_{\xi} = \{a \in A : \pi(a) \xi = 0\}$ for some nonzero $\xi \in \mathscr{H}$. Then π is similar to a strictly irreducible *-representation π_{α} .

PROOF. Since π is strictly irreducible, $\{\pi(a)\xi : a \in A\} = \mathscr{H}$. We define a sesquilinear form $[\cdot, \cdot]$ on $\mathscr{H} \times \mathscr{H}$ by $[\pi(a)\xi, \pi(b)\xi] = \alpha(b^*a)$. Then there exists an invertible operator $U \in \mathscr{B}(\mathscr{H})$ such that $U = U^*$, $U \ge 0$ and $[\phi, \phi] = (U\phi, \phi)$, whenever $\phi, \phi \in \mathscr{H}$. Let $V \in \mathscr{B}(\mathscr{H})$ be a positive and invertible operator such that $V^2 = U$. Then for all $\phi, \phi \in \mathscr{H}$, $[\phi, \phi] = (V\phi, V\phi)$. Let $\phi \in \mathscr{H}$. Then there exists $\phi \in \mathscr{H}$ such that $V = \phi$, and exists $a \in A$ such that $\phi = \pi(a)\xi$. We define an

198 Ilbong Jung

operator T on \mathscr{H} into \mathscr{H}_{α} by $T(\phi) = a + K_{\alpha}$. Since $K_{\xi} = K_{\alpha}$, T is well defined. Let ϕ be an element of \mathscr{H} . Then there exists $a \in A$ such that $\pi(a)\xi = \phi$. Therefore $\|V\phi\|^2 = (V\phi, V\phi) = [\phi, \phi] = [\pi(a)\xi, \pi(a)\xi] = \alpha(a*a) = (|a+K_{\alpha}|_2)^2$ so that $\|V\phi\| = |a+K_{\alpha}|_2$. This proves that T is isometric. Clearly we have that T is isometric isomorphism. Let W = TV. Then $W \in \mathscr{B}(\mathscr{H}, \mathscr{H}_{\alpha})$ and $W^{-1} \in \mathscr{B}(\mathscr{H}_{\alpha}^*$ \mathscr{H}). Since $W\pi(a)\pi(b)\xi = \pi_{\alpha}(a)W\pi(b)\xi$ for all $a, b \in A, \pi(a) = W^{-1}\pi_{\alpha}(a)W$.

Hence π is similar to π_{α} .

Assume that A is a Banach *-algebra with the property that every modular maximal left ideal of A is the left kernel of a strictly pure state of A. By Proposition 4.1 and (2, Proposition 2.3 and 2.4), we have Corollary 4.2, 4.3 and 4.4.

COROLLARY 4.2. Let $a \longrightarrow \pi(a)$ be as Proposition 4.1. Then π is similar to a strictly irreducible *-representation π_{α} , for some strictly pure state α .

COROLLARY 4.3. Let π be a continuous irreducible representation of A into \mathscr{B} (X), where X denotes a Banach space. Assume that there exists $x \in X$ such that the left ideal $K_x = \{a \in A : \pi(a)x = 0\}$ is modular maximal in A. Then π is similar to a strictly irreducible *-representation π_{α} , for some strictly pure state α .

COROLLARY 4.4. Let π be as Corollary 4.3. Assume that $A/ker(\pi)$ contains a minimal left ideal. Then the conclusion of Corollary 4.3 holds.

REMARKS. Combining the above Proposition 4.1 and some results in [2,3],

we have

(1) Let X be a reflexive Banach space. Assume that π is a continuous irreducible representation of a B*-algebra A into 𝔅(X), and that there exists a nonempty subset S of A such that W = {𝔅(π(b)): b∈S} is a nonzero, finite dimensional subspace of X. Then π is similar to π_α, for some pure state α.
(2) Assume that π is continuous irreducible representation of a B*-algebra A on 𝔅. Let γ be as in the statement of (3, Theorem 3). Then γ is irreducible if and only if there exists a pure state α such that π is similar to π_α.
(3) The continuous irreducible representation π of a B*-algebra on 𝔅 is similar to π_α under the hypothesis of (3, Corollary 2), for some pure state α.
(4) Assume that A is a GCR-algebra (see [5]). Let π be a continuous irreducible representation of A on a Banach space X. Then π is similar to a irreducible *-representation π_α, for some pure state α.

A Note on Pure States and Strictly Pure States of Banach *-Algebras 199

(5) Let A be a B^* -algebra and let $A_n = \{a \in A : ||a|| \le n\}$ for all positive integer *n*. Assume that π is a continuous irreducible representation of A into $\mathscr{B}(X)$, where X is a Banach space, and that there exists $x \in X$ such that

$$X = \bigcup_{n=1}^{+\infty}$$
 the weak closue of the set $\pi(A_n)x$ in X

Then π is similar to π_{α} , for some pure state α .

Kyungpook University

REFERENCES

[1] B.A. Barnes, Strictly irreducible *-representations of Banach *-algebra, Trans. Amer. Math. Soc. 70 (1972), 459-469.

- [2] _____, Representation of B*-algebras on Banach spaces, Pacific Jour. of Math.
 50 (1974), 7-18.
- [3] _____, The similarity problem for representations of a B*-algebra, Michigan Math. Jour. 22 (1975), 25-32.
- [4] E. Hewitt and K. Ross, Abstract Harmornic Analysis, Vol.1, Springer-Verlag, Berin, 1963.
- [5] I.Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.