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NUMERICAL PRINCIPAL AND o-PRINCIPAL
POINTS OF AN OPERATOR

By Phadke S.V. and Thakare N.K.

1. Introduction

Let H be a complex Hilbert space. By an operator on H we mean a continuous

linear transformation on H. As usual, let W(T) denote the closure of the nu-
merical range W(T) of an operator T'. Define H(T) as follows:

HT)=WDN{A: [A =TI},

the members of H(T') are called principal points of an operator 7. This concept
originally due to Hildebrandt [2] was recently used by Shah and Sheth [7] to
characterize normaloid operators. Let P(T") denote the set a(T)N {1 : |2 =w(T)}
where o(T") is the spectrum of T and @(T) is the numerical radius of an
operator T on H. The purpose of this note is to characterize the spectraloid
operators via this set P(T); P(T) will be called the set of numercal principal
points of 7.

In what follows y(7T) denotes the spectral radius, 0p(T), the point spectrum,

«aﬂp(T), the approximate point spectrum of T'; and the definitions of normaloid,
convexold and spectraloid operators are as usual.

In the last section we extend these considerations to p-oid operators the study

of which was recently initiated by Patel and Gupta [6]. The discussion about
it 1s postponed to that very section.

2. Some characterizations

We begin with the characterization of spectraloid operators.
THEOREM 2.1. The set P(T) is nonemptly tf and only if T is spectraloid.

PROOF. Let P(T) be nonempty. Then there exists 4 such that Ac¢(7T) and
|4 =w(T). This means that w(T)=|A<y(T). Since »(T)H)<w(7) always, T
must be spectraloid.

Conversely, let T be spectraloid that is #(T)=w(T). There exists 4 in ¢(T)
such that »(T)=|4|. Hence A€c(T) and |A|=w(T); thus we have ASP(T) and
we are through.



202 Plradke S.V. and Thakare N. K.

The f{ollowing result shows under what conditions on operator 7, one has
P(T)=0(T).

THEOREM 2.2. If T is unitary or a scalar multiple of a unitary operator, then
P(T)=a(T).

PROOF. If T'=2U, U being unitary, z being scalar, then
P(TH=PGU)=c(UN{A: |A| =w(U)}
=g(zUYN{A: |Al=z]} =c(D)
=og(T).

It is also observed that the hypothesis of the preceding theorem implies that
P(T _1): (P(T)] ~!. As the inverse of an invertible spectraloid operator need:
not be spectraloid, it may well happen that P(T_l) may not equal [P(T)]'“l.
Hence let us ask:

1) If P(T)=0(T), does it follow that T is a scalar multiple of a unitary
operator?

11) If P(T‘l)z [P(T)]_l, where T is invertible spectraloid, does it follow
that T 1s a scalar multiple of a unitary operator?

We answer these questions under rather restrictive assumptions in the fol-
lowing:

THEOREM 2.3. Let T be an operator on H such that P(T)=g(T) lies on the
unit circle. Then T is unitary if 1) P(T'"l)z [P(T)]"1 or 11) T salisfies the
growth condition G, i.e. |(T—2I) <A, oI ™" for all &o(T).

PROOF. (i) Clearly P(T) is nonempty and thus T is spectraloid. Also P(T_l)*
= [(P(T)]"‘l: which implies that T is spectraloid. Now 1=7(T)=w(T) and 1
zr(T_l)zw(T_l). Thus W(Til)CL\, the unit disc of the complex plane. By
applying the result due to Stampfli [8] we arrive at the desired conclusion.

(ii) Clearly P(T) is nonempty and hence T is spectraloid. Now #(7T") =1 implies.
that w(T)=1. Since T satisfies the growth condition Gl, I\Tﬂllliil. Hence

w(T~H<1. Again by applying the result due to Stampfli [8] we are through.
3. Additional results

It is noted that if T is a scalar multiple of the identity then P(T+AI)=P(T)
+A, A scalar. Now let us ask: What one can say about the converse? In order

to answer this we need the following two lemmas.
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LEMMA 3.1, If T is convexoid operator with o(T) a singleton set, then T is a
scalar multiple of the identity.

PROOF. If o(T)={u}, then W(T)={u} and we are through.

LEMMA 3.2. For a spectraloid operator T, if P(T+AI)=P(T)+A for every
scalar A, then T is convexoid.

PROOF. The hypothesis implies that P(T'+ A7) is nonempty for every scalar
A. Hence T'+ ATl is spectraloid which in view of the result due to Furuta [1]
implies that T is convexoid.

We now prove the main result of this section.

THEOREM 3.3. For a spectraloid operator T on H if P(T+AID)=P(T)+A for
every scalar A, then T is a scalar multiple of the identity.

PROCF. In view of Lemmas 3.1 and 3.2, it suffices to show that o(7) is

singleton. Firstly we prove that P(T) is singleton set. That P(T) is nonempty
is obvious as T is spectraloid. Let 4,, L,EP(T) with 4;5#41,. Then for any

scalar 4, A4,+4 and A,+2 are in P(T)+A=P(T+4I). This implies that
|2, + A =w(T+A)=|A,+A] (D

If scalar 4, is not on the perpendicular bisector of the line segment joining
A, and 4, then |1,—24,152[4,—4,] which contradicts (1) for 2= — A, Hence P(T)
must be singleton set. Let P(T)={u,}. Now we shall prove that o(T)={u,}.
If possible, let u#u,&0(T). Since uEP(T), |pu| <w(T). Select a scalar 4 such
that

lu—=21> [py— A (2)

Now pu,—AEP(T)~A=P(T—AI) which implies that |g,—A|=w(p_AI). Since
p—Ai€o(T—AI), it follows that |[pu—AI|<w(T—AI). Hence |pu—A|<|p,—Al
which is a contradiction to (2). Hence o(T) must be singleton set and in fact
a(T)={u,y}. |

4. o-Principal points of an operator

Let C,(0>0) be the class of all operators with unitary p-dilation in the sense
of [4] ;: let R(T)=0(TO)N{A: |2 =w ﬂ(T)}. where w p(T) is the operator radius of

7 defined as
7, 1Q(T)=i1:1f {or . >0, a_lTGCp}
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(See Holbrook [3], Patel [5], Patel-Gupta [6]). The members of R(T), will
be called p-principal points of an operator T.

An operator T is called p-oid if wp(T)“——?'(T). On the lines of our previous
discussion we obtain.

‘THEOREM 4.1. The set R(T) is nonempty if and only if T is p-0id

PROOF. Let T be p-oid. Then wp(T)=r(T) and hence for some A€So(T), |A|
=r(T)=w ﬂ(T). This means that A&R(T) and thus R(T") is nonempty. Ccnverse-
ly let R(T) be nonempty. Take A€ER(T). Then A&o(T) with Al = (T).
Hence wp(T): A <#(T)=lim wa(T)Swp(T). Hence wp(T)zr(T) which mecns

o — OO

that T 1s p-oid.
We also have an analogue of theorem 2.3. For that we need to recail the

following concept. T is called an operator of class M p(pzl) if wp[(T-zI )_1]

— e ;(T)) : equivalently if (T—z[)_1 1s p-oid for all z&a(T).

THEOREM 4.2. Let T be anr operator on H suck that R(T)=0(T) (Assume 0>>1)
lies on the unit circle. Then T is uniiary if 1) R(T_1)=(R(T))_1, or (i1) 715
an operalor of class M; 0==1.

PROOF. Clearly R(T) is nonempty and hence T is p-oid. (1) R(T'_l): [R(TY]
implies that 77" is p-oid. Now w (T)=7(T)=1 and w, (T~ )=7(T~ ") =1 which
1mplies that TECp and T &C o Hence T is unitary in view of the Corollary
4 of [9].

(i) As w (T)=r(T)=1 we have that TEC, Also since TEM;, (T—zI)" 'is
0-oid for all z&&o(T). In particular, for z=0, T“1 1s 0-oid. Hence wg(T_l)

:r(T_l)-—-l imply that T &C;. Hence T is unitary in view of the Corollary
4 of [9].

Here is an analogue of the result stated in Section 3, the proof of which is
straight forward.

THEOREM 4.3. If T is a scalar multiple of the identity then R(T+11)=R(T)
+A, A scalar.
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