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ON A RELATION BETWEEN NORLUND
SUMMABILITY AND LEBESGUE SUMMABILITY

By Z.U. Ahmad and V. K. Parashar

1.1 Let Ye¢ be a given infinite series with the sequence of partial sums {s,},
s =a,+a;+-+a, Let {p,} be a sequence of constants, real or complex such
that
P, =py+py+--+p, 70, P_;=p_;=0

and let us write

(1'1-1) T '—_—ZP s I = P

Then the series Ya, is said to be summable (N,p,) to sum s, if lim ¢, exists

17— O

and i1s equal to s ({3], [9]).
It is to be observed ([2], [5]) that summability (C,a) and harmonic summa-
bility are special cases of (N, p,) summability, when {p } is given by

_/mta-1\ I'(rt+a) _
(1.1.2) 1.="ae1 )= TGiDr@ > @ -D3
-and
p,=1/(n+1) >()
w13 17 (#20)
\P,=1/(1/2)++++(1/(rn+1))~logn, as n—oo,
respectively.

The conditions for the regularity of the method of summability (¥, 2, ) dcfined
by (1.1.1), are:

P
(1.1.4) r}ilg ;ﬂ*_o,
and
{2
(1.1.5) Zolpil =0(P,), as n—>oo,
7=

If p, is real, non-negative, and monotonic non-increasing the conditions of

o0

unless or otherwise stated 3 denotes 3=
0
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regularity (1.1.4) and (1.1.5) are automatically satisfied and the method (N..
p,) is regular and hence harmonic summability is also regular. It is known that

harmonic summability implies (C, «) summability for every a>0.
The series Ya, is said to be summable by Lebesgue method (shortly (R, 1)-

summiable) to sum s, if the sine series

sin #nt )
7

(1.1.6) F(H=32a (

n=1
iIs convergent in some interval —7<¢<t, and if
(1.1.7) tTIR@)—s, as 10, (.

We write A, to denote the #-th harmonic sum of the sequence {s,}.

1.2 We set
(1.2.1) (py+p,x+-- +p, x”—l—---)_lzco—l—cl x++c, (2] <13 co=1)'
From (1.1.1), and (1.2.1), we obtain

n
(1.2.4) e=2.¢, (T —T, {)

p=0

from now onwards we take ¢,=0, so that T;=0.

2.1 Concerning Lebesgue summability Szasz ([6]) has proved the following:
result:

THEOREM A. If Ya, is summable (C,1—a) for some positive <1, and if

ﬂ — ——
(2.1. 1) Zl | S fl =O(n1 Y, as n—ool, then the series Xa, is summable
L=

by Lebesgue method.

Recently Varshney ([8]) has proved an analogous theorem for harmonic:
summability. His result is as follows:

THEOREM B. If a series Xa, is harmonic summable and if

(2.1.2) Zﬂ |H,—H, _,|=0(ogr), as n—oo,

v=1

n
where H =2 (n —y+1)7 S, then 2a, is summable by (R, 1)-method..

v=1

g —

1) S_: is the Cesaro sum of order (—a) of the series Xe,, 1.e.

~ " — Fn
S, =3 A a , where 4 a=( * )
” a

y=0 n—uyv v n



On a Relation between Norlund Summability and Lebesgue Summability 225

The object of this paper is to establish a couple of analogous theorems.
for Norlund summability which covers both the Theorem A and B as special.
cases.

2.2 Our maih theorem is:

THEOREM 1. If Xa, is (N,p,)-summable and, if
n
(2.2.1) g":Ell T,—T,_{1=0)
then Ya, is (R, 1)-summable, provided that p, is non-negative, mnon-increasing:

sequence such that P —co, and

.
222 | d=2¢,=0(F);
(2.2.3) > ¢,=0(F) for n=0:
yv=n+l = 1

o P P,
(2.2.4) 2 Saty=o(5") w213

n {
(2.2.5) P lu —O( Pr):
and
(2.2.6) for a positive integer u and n= [t ™Y, =1t —1)

P,=0(P, P).

Combining Theorem 1 with Lemma 4 below, we also get the following interest--
ing and simple result,

THEOREM 2. Let p, be a positive, non-increasing sequence, such that py=1, P,—oo,.

Put1 is non-decreasing sequence, -and the condition (2.2.4) through (2.2.6) hold..

D,
If Ya is (N,p,)-summable and if (2.2.1) holds, then Xa,is also summable (R, 1)..

2.3 We need the following lemmas for the j)roof of our theorems.

LEMMA 1. If {p,} isa non-negative, non-increasing sequence such that the series-

2P, /v(u+1) converges, thern P,/n—0, as n—roo,
V=pn

PROOF. Since p,=>0 and # p,<<P,, we have
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Pn Pn+1 Pﬂ_npﬂ—f-l Pn_npn

n  n+l = nn+l) = i(n+1) =0
. Pﬂ Pﬂ
Obviously -~ 0. Thus the sequence - 18 bounded and nonincreasing.
. - Pn
Hence, there exists lim =qa, say. Then there exists an integer N such that
OO
P, o
" >a'/2<:a'——§—) for n=N. Hence, we have, for =N,
o P o P V—# co v—n
- V—n . v—n _ _q_
EE'; v(v+1) EU*Z-—z’H L —# z.a(f.H—l)2 2 u‘:':z,, v(v+1) =0
. . . > P
which contradicts our assumption that the series 2° ——_2=" _ converges. Thus
v=n U(U+1)

we see that =0 and hence the result.

LEMMA 2. Let {p } be a non-negative, non-increasing sequence such that

> PU-—-?E —_— Pﬂ
En v(v+1) O(-n ')’

then for n=>1,

o P P
(2.3 1 =D O( m )

PROOF. We have

o P co (PU—PU_”) © P
_ Y = —_ 4 Il LA
En v(v+1) En p(v+1) Eu v(v+1)

— Y Pu—n) 4 E (Pu—-Pu—nl E _ Pu—-—n___
v=n  w(v+1) v=2n+1  w(v41) v=n w(v+1)

)

P N v P
— n 1 _ O ”n
O( )+u§n+l v(v+1) #*uz:n I lp‘u'_l— ( 7

=

({5
P
=o(S1)+o(=m)+0(m. , 3, TG0

& ), by hypothesis, since (z+1) p,<P,.

P

LEMMA 3. Let p, be non-negative non-increasing such that {-;i—”-J is a null

sequence. If Xa, is summable (N, pn), then
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(1) Wn=£ LTy =o( o ):

u=n L 72

n
Q) W,/ =3 W,=o(P.

PROOF. (i) We may assume, without any loss of generality, that T,=0(P ).

By Abel’s transformation and by hypothesis, as m—oo, we have
o T T

— Ty v—=1 _ 1 _
W, En Y u§z p(u+1) E:O( w1
1 m
b BT, D ST, T, )
rle T, n r, T,_;
y=n u(u—l—l) 7 7
u Pn—l
_o(u n v(v+1) )+0( /) )
=o( ” ) ( n—1 ) (by Lemma 2)
=o( » ) by regularity of the method (X, p)
(ii) W, le El vAW +uaW , |
V= V=
" T —
=2_ VY =T, 1) +nW, 4
p=1 L

= Z}(T -T, _ 1)+nW

p=1

=T, +nW, | (since T)=p, a,=0)

=0(P,) -I—o(n I;:_Jrll )

=o(P,),
by hypothesis and (i). Hence the result.

LEMMA 4. ([7], Lemma 2). If {p,} is a positive and non-increasing sequence
such that py=1, P,—oo, and {p, ,/p,} is a non-decreasing sequence then, for n=0,

n
d,= 22 le,|=22¢,=0C/P)).
v=n+1] v=0
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REMARK. The identity

CO n
d=22 |lc,| =20¢,
v=n+1 V=0

i1s obtained by virtue of Kaluza’s result. (see [2], Theorem 22).

LEMMA 5. ([4], Lemma 3). Let Aﬁ O(nt) denote the m-th difference of ¢(nt)

with respect to n. Then we have
(2.3.2) 47 d(nt) =0 " /nP),

where m 1S a non-negative inieger and gé(t):(sinz‘/z‘)P .

LEMMA 6. If p,is such that it satisfies all the conditions of the theorem except
(2.2.3), then the series

Nty sin(#+uv)t

(2- 3. 3) EO C” (ﬂ"l"b’)t ——Su(t) .

s absolutely convergent and for m=0, 1, 2,

(2.3.4) 47 5,0= o( imp_l )

PROOF. Absolute convergence of the series (2. 3. 3) follows from the hypotheses

n=1

since Z ¢, | <oo. To prove (2.3.4) we have by settmg Q(t) = (sm z‘/z‘)

Af S,H=4" {%0 cn¢((n+yjt} = .i‘: 'c,, Af H((n+v)t)

(§:+ > )c i , $(Ca+)D)

n="= n—T+l

= s (z)+s(i)(z), say.
Now, by (2.2.3) and Lemma 5, we have

) B S gm—1
St ()= n_;;ﬂc £, ¢((n+u)t) = 0(?1:%1 ¢4l ICETDR

=0( u::'-ll—l n§+llc |> ( o )

And, on applying Abel’s transformation to the expression in S(?(t),

we obtain
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(1) Z "
SO = z d, 4, 47 G0} +d, £ ((T+2)D

= 53 d, A" g+ ) +d, 47 $((T+)E)

T — m—1
=O< ; }£ (n+v) >+O<P} (ut—l—'r) -)

This completes the proof of lemma 6.

2.4. PROOF OF THEOREM 1. We may assume without any loss of generality
that T, =o(P,), as n—oo. By (1.1.1) and (1.2.4) we have

F(t)zZi}m 7 1sm nt Z c, '(Tu—Ty_l)

v=1

sin nf
_gEICT ~T,_1) ch -

the interchange of order of summations being legitimate, since by the following
considerations the double series is absolutely convergent.

Since, by hypothesis ¢ | <oo, we have
0
St

n=u

Cpey i | <L 3 > le,| =0(1/w),

and hence, as m—mo

=1 y—1) °°u Cn—v Sig,tnt =IO(D% [Tu_uTu-ll
m—1
—omm™ o ) HOD(Z 7(‘»+_17)
m—l P
(u—-lm
=0(1), by Lemmas 1 and 2.
Thus
ED = 531,-1,_ D% 7%, S0
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(2.4.2)

| 00O
Izzlz 2 (Tu'—Tu—ID Su(f)
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= ;1 (Tu —Tu—l)su(‘t)

r OO
=(Z= + =
v=1 v=n-+1
=2+, say.

pv=n-+1

~0( = I(T,~T, I )

v=n-+1

)(Tu_ r,_1)sS,@)

)]

=0[“r}sT U;zjﬂ u(jil) _"‘%T)]
=0[ r;,: (éﬂ u(f-il) + fﬁl'
o[£ —w)=o(3")

=0(1) -i"

Next, we have

= 2 (Wu _':.Wu +‘1) ol Su(t)

p=1

, by (2.2.6) and Lemmas 2 and 6.

=X WS, (0~ W=DS, (O] -1, S,®

= -—- %Wu L [Sv"'l (t) — Su(t)]

where, by Lemma 1, 3(ii) and 6,

Z1.. 1= glywudsu—l(t) |

=1

] S
-El w, Su—l(t,)f”:wrn+1 S5, ()

— i 2 , ' . .I
=33 (> AV (O+4S, DX W,
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=o<£yPu IJ;:T)—I—O( ”1::[’-: -nP”)

pv=1

=o(m‘ };’: )—l—o( ;:’ )

=o(uP#)+o(P#)
=0(1)

. ” 7 P ' ]
since Zl wW = O(El:u ;‘>—0(”"’Pn)= and by applying Abel’s transformation:
Y= L=

m
twice, writing W’m=21 W, and by virtue of Lemmas 1,3(i) and 6, we have:
p,_":

| n
=X (EIW’ n) 428, @®)+4S,®) > WS, W,
—(ﬁP t 1 ”P)—I- —P”
S O\= W, uP, )'H’( nP_ };—31 Y 0( m‘PT>
(by Lemmas 3(ii) and 6)

= a(—”.%jjl)+a( i")+o( 1;“ -)=o(1)

T T

P
and, by Lemmas 1,3(i) and 6, we have #W,_; S,(?) =0o(1) ##:0(1)' Hence

(2.4.3) 3 =0(1).
Therefore, from (2.4.1), (2.4.2) and (2.4.3), we obtain

_ P
IR =0 -_E“—.+o(1). as 1—0.

Consequently,

_ P
lim sup ¢ | F@)|<o(1) £
t—+0 [t

being arbitrary large and O(1) independent of p, we get finally
t_lF(t)—a»O as {—0.
This terminates the proof of theorem 1.

Aligarh Muslim University,
Aligarh, India
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