ANTI-INVARIANT SUBMANIFOLDS OF REAL CODIMENSION OF A COMPLEX PROJECTIVE SPACE

By Jin Suk Pak

1. Introduction

As is well known, the unit hypersphere $S^{2 n+1}$ in an ($n+1$)-dimensional complex number space C^{n+1}, which will be identified naturally with $R^{2(n+1)}$, is a principal circle bundle over a complex projective space $C P^{n}$, and the Riemannian structure on $C P^{n}$ is given by $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$ the natural projection of $S^{2 n+1}$ onto $C P^{n}$ which is defined by the Hopf-fibration [6,7]. Thus the theory of submersion is one of the most useful tools for studying a complex projective space and its submanifold. In this point of view, H.B. Lawson[1], Y. Maeda: [3] and M. Okumura [4] studied real hypersurfaces of a complex projective space.

On the other hand, K. Yano and M. Kon [9] proved
THEOREM A. Let M be an ($m+1$)-dimensional compact orientable anti-invariant submanifold with parallel second fundamental form of $S^{2 n+1}$. If the normal' connection of M is flat, then

$$
M=S^{1}\left(r_{1}\right) \times \cdots \times S^{1}\left(r_{m+1}\right) \text { in an } S^{2 m+1} \text { in } S^{2 n+1}
$$

where $r_{1}^{2}+\cdots+r_{m+1}^{2}=1$.
Using Theorem A, Okumura [6] have proved
THEOREM B. Let M be a compact n-dimensional ($n>1$) anti-invariant submanifold of a complex projective space $C P^{n}$ with trivial normal connection. If the mean curvature vector field of M is parallel with respect to the normal connection: and satisfies $H_{B} U_{A}=H_{A} U_{B}$ for $A, B=1,2, \cdots, n$, then $\pi^{-1}(M)$ is $S^{1}\left(r_{1}\right) \times \cdots \times$ $S^{1}\left(r_{n+1}\right)$, where $S^{1}\left(r_{i}\right)$ denotes the circle of radius r_{i}. Consequently M is diffeomorphic to n-product of circles.
In this paper we also consider a submanifold M of $C P^{n}$ which is a base space of a circle bundle \bar{M} over M, where \bar{M} is a submanifold of $S^{2 n+1}$.
In 2, we state some fundamental formulas for submanifolds of Kaehlerian
manifold and in 3, we recall fundamental equations of a submersion which are introduced by B. O'Neill [6], K. Yano and S. Ishihara [7]. Then, in 4 we consider a submanifold \bar{M} of $S^{2 n+1}$ which is a circle bundle over a submanifold M of $C P^{n}$. Here we relate second fundamental tensor of the submanifolds \bar{M} and M. The last section 5 is devoted to establish fundamental relations of the submersion $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$ and $\pi: \bar{M} \longrightarrow M$ in the case that the submanifold M is anti-invariant. And we find some necessary conditions for anti-invariant submanfold M with parallel second fundamental tensor to be a model subspace $S^{1}\left(r_{1}\right) \times \cdots \times S^{1}\left(r_{n+1}\right) / \sim, r_{2}^{1}+\cdots+r_{n+1}^{2}=1$, appeared in Theorem B by using Theorem A. Manifolds, submanifolds, geometric objects and mappings we discuss in this paper will be assumed to be differentiable and of class C^{∞}. We use in the present paper systems of indices as follows:

$$
\begin{gathered}
\kappa, \lambda, \mu, \nu=1,2, \cdots, 2 n+1 ; h, i, j, k=1,2, \cdots, 2 n, \\
\alpha, \beta, \gamma, \delta=1,2, \cdots, m+1 ; a, b, c, d, e=1,2, \cdots, m, \\
x, y, z, w=1,2, \cdots, 2 n-m .
\end{gathered}
$$

The summation convention will be used with respect to those systems of indices.

2. Submanifolds of Kaehlerian manifolds

Let \tilde{M} be a $2 n$-dimensional Kaehlerian manifold covered by a system of coordinate neighborhoods $\left\{\tilde{U}: y^{j}\right\}$ and denote by $g_{j i}$ components of the Hermitian metric tensor and by ϕ_{j}^{i} those of the almost complex structure of \tilde{M}. Then we have

$$
\begin{align*}
& \phi_{h}^{i} \phi_{j}^{h}=-\delta_{j}^{i}, \tag{2.1}\\
& \phi_{j}^{h} \phi_{i}^{k} g_{h k}=g_{j i} \tag{2.2}
\end{align*}
$$

and, denoting by $\tilde{\nabla}_{j}$ the operator of covariant differentiation with respect to .$g_{j i}$,

$$
\begin{equation*}
\tilde{\nabla}_{j} \phi_{i}^{h}=0 . \tag{2.3}
\end{equation*}
$$

Let M be an m-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{a}\right\}$ and immersed isometrically in \tilde{M} by the immersion $i: M \longrightarrow \tilde{M}$. In the sequel we identify $i(M)$ with M itself and represent the immersion by

$$
\begin{equation*}
y^{j}=y^{j}\left(x^{a}\right) . \tag{2.4}
\end{equation*}
$$

We put

$$
\begin{equation*}
B_{b}^{j}=\partial_{b} y^{j}, \quad \partial_{b}=\partial / \partial x^{b} \tag{2.5}
\end{equation*}
$$

and denote by N_{x}^{h} mutually orthogonal unit normals to M. Then denoting by .$g_{c b}$ the fundamental metric tensor of M, we have

$$
g_{c b}=B_{c}^{j} B_{b}^{i} g_{j i}
$$

since the immersion is isometric. Therefore, denoting by ∇_{b} the operator of van der Waerden-Bortolotti covariant differentiation with respect to $g_{c b}$, we have equations of Gauss and Weingarten for M

$$
\begin{gather*}
\nabla_{c} B_{b}^{j}=A_{c b}^{x} N_{x}^{j}, \tag{2.6}\\
\nabla_{c} N_{x}^{j}=-A_{c x}^{b} B_{b}^{j}, \tag{2.7}
\end{gather*}
$$

respectively, where $A_{c b}{ }^{x}$ are the second fundamental tensors with respect to the normals N_{x}^{j} and $A_{c x}^{b}=A_{c a x} g^{a b}=A_{c a}^{y} g^{a b} g_{x y}, g_{x y}$ being the metric tensor of the normal bundle of M given by $g_{x y}=N_{x}^{j} N_{y}^{i} g_{j i}$ and $\left(g^{b a}\right)=\left(g_{b a}\right)^{-1}$.

Equations of Gauss, Codazzi and Ricci are respectively

$$
\begin{equation*}
K_{d c b}^{a}=K_{k j i}{ }^{h} B_{d c b h}^{k j i a}+A_{d x}^{a} A_{c b}^{x}-A_{c x}^{a} A_{d b}^{x}, \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
0=K_{k j i}{ }^{h} B_{d c b}^{k j i} N_{h}^{x}-\left(\nabla_{d} A_{c b}^{x}-\nabla_{c} A_{d b}{ }^{x}\right), \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{d c y}{ }^{x}=K_{k j i}{ }^{h} B_{d c}^{k j} N_{y}^{i} N_{h}^{x}+\left(A_{d e}^{x} A_{c y}^{e}-A_{c e}^{x} A_{d y}^{e}\right), \tag{2.10}
\end{equation*}
$$

where $B_{d c b h}^{k j i a}=B_{d}^{k} B_{c}^{j} B_{b}^{i} B_{h}^{a}, B_{d c b}^{k j i}=B_{d}^{k} B_{c}^{j} B_{b}^{i}, B_{h}^{a}=B_{b}^{j} g^{b a} g_{j h}, N_{h}^{x}=N_{y}^{j} g^{y x} g_{j h}$ and $K_{d c y}{ }^{x}$ is the curvature tensor of the connection induced in the normal bundle.
We now consider the transforms $\phi_{i}^{j} B_{b}^{i}$ and $\phi_{i}^{j} N_{x}^{i}$ of B_{b}^{i} and N_{x}^{i} by the structure tensor ϕ_{i}^{j}. Then we can put in each coordinate neighborhood $U=\tilde{U} \cap M$

$$
\begin{equation*}
\phi_{i}^{j} B_{b}^{i}=\phi_{b}^{a} B_{a}^{j}+\phi_{b}^{x} N_{x}^{j} \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{i}^{j} N_{x}^{i}=-\phi_{x}^{a} B_{a}^{j}+\phi_{x}^{y} N_{y}^{j} \tag{2.12}
\end{equation*}
$$

respectively.
Using $\phi_{j i}=-\phi_{i j}, \phi_{j i}=\phi_{j}^{h} g_{h i}$, we have, from
(2.11) and (2.12),
(2.13)

$$
\phi_{b x}=\phi_{x b}
$$

where $\phi_{b x}=\phi_{b}^{y} g_{y x}$ and $\phi_{x b}=\phi_{x}^{a} g_{a b}$ and

$$
\begin{equation*}
\phi_{y x}=-\phi_{x y} \tag{2.14}
\end{equation*}
$$

where $\phi_{y x}=\phi_{y}^{z} g_{z x}$.
Applying ϕ to (2.11) and (2.12) and using (2.1) and these equations, we cans easily find

$$
\begin{align*}
& \phi_{a}^{b} \phi_{\dot{c}}^{c}+\delta_{a}^{c}=\phi_{a}^{x} \phi_{x}^{c}, \tag{2.15}\\
& \phi_{a}^{b} \phi_{b}^{y}+\phi_{a}^{x} \phi_{x}^{y}=0, \phi_{x}^{a} \phi_{a}^{b}+\phi_{x}^{y} \phi_{y}^{b}=0, \tag{2.16}\\
& \phi_{x}^{z} \phi_{z}^{y}+\delta_{x}^{y}=\phi_{x}^{a} \phi_{a}^{y} . \tag{2.17}
\end{align*}
$$

Differentiating (2.11) and (2.12) covariantly along M and using (2.3) and the equations (2.6) and (2.7) of Gauss and Weingarten, we can verify that

$$
\begin{equation*}
\nabla_{b} \phi_{a}^{c}=A_{b x}^{c} \phi_{a}^{x}-A_{b a}{ }^{x} \phi_{x}^{c} \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{b} \phi_{a}^{x}=A_{b a}^{y} \phi_{y}^{x}-A_{b c}^{x} \phi_{a}^{c}, \nabla_{b} \phi_{x}^{a}=A_{b x}^{c} \phi_{c}^{a}-A_{b y}^{a} \phi_{x^{x}}^{y} \tag{2.19}
\end{equation*}
$$

We now assume that the ambient manifold \tilde{M} is of constant holomorphicsectional curvature c. Then it is well known that its curvature tensor $K_{k j i}{ }^{h}$ has. the form

$$
\begin{equation*}
K_{k j i}^{h}=\frac{c}{4}\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}+\phi_{k}^{h} \phi_{j i}-\phi_{j}^{h} \phi_{k i}-2 \phi_{k j} \phi_{i}^{h}\right) . \tag{2.21}
\end{equation*}
$$

Therefore, substituting (2.21) into (2.8), (2.9) and (2.10), we can see that the equations of Gauss, Codazzi and Ricci are respectively given by
(2.22) $\quad K_{d c b}^{a}=\frac{c}{4}\left(\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}+\phi_{d}^{a} \phi_{c b}-\phi_{c}^{a} \phi_{d b}-2 \phi_{d c} \phi_{b}^{a}\right)+A_{d x}^{a} A_{c b}{ }^{x}-A_{c x}^{a} A_{d b}{ }^{x}$.
(2.23) $\nabla_{d} A_{c b}^{x}-\nabla_{c} A_{d b}^{x}=\frac{c}{4}\left(\phi_{d}^{x} \phi_{c b}-\phi_{c}^{x} \phi_{d b}-2 \phi_{d c} \phi_{b}^{x}\right)$,
(2.24) $K_{d c y}{ }^{x}=\frac{c}{4}\left(\phi_{d}^{x} \phi_{c y}-\phi_{c}^{x} \phi_{d y}-2 \phi_{d c} \phi_{y}^{x}\right)+A_{d e}{ }^{x} A_{c y}^{e}-A_{c e}^{x} A_{d y}^{e}$.

3. Submersion $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$ and immersion $i: M \longrightarrow C P^{n}$

Let $S^{2 n+1}(1)$ be the hypersphere $\left\{\left(c^{1}, \cdots, c^{n+1}\right)\left|\left|c^{1}\right|^{2}+\cdots+\left|c^{n+1}\right|^{2}=1\right\}\right.$ of radius; 1 in an ($n+1$)-dimensional space C^{n+1} of complexes, which will be identified. naturally with $R^{2(n+1)}$. The sphere $S^{2 n+1}(1)$ will be simply denoted by $S^{2 n+1}$.
Let $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$ be the natural projection of $S^{2 n+1}$ onto a complex projective space $C P^{n}$ which is defined by the Hopf fibration. We consider a Riemannian,
submersion $\pi: \bar{M} \longrightarrow M$ compatible with the Hopf fibration $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$, where M is a submanifold of codimension p in $C P^{n}$ and $\bar{M}=\tilde{\pi}^{-1}(M)$ that of $S^{2 n+1}$. More precisely speaking, $\pi: \bar{M} \longrightarrow M$ is a Riemannian submersion with totally geodesic fibres such that the following diagram is commentrive:

where $\tilde{i}: \bar{M} \longrightarrow S^{2 n+1}$ and $i: M \longrightarrow C P^{n}$ are certain isometric immersions.
Covering $S^{2 n+1}$ by a system of coordinate neighborhoods $\left\{\hat{U} ; y^{\kappa}\right\}$ such that: $\tilde{\pi}(\hat{U})=\tilde{U}$ are coordinate neighborhoods of $C P^{n}$ with local coordinate $\left(y^{j}\right)$, we represent the projection $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$ by

$$
\begin{equation*}
y^{j}=y^{j}\left(y^{k}\right) \tag{3.1}
\end{equation*}
$$

and put

$$
\begin{equation*}
E_{\kappa}^{j}=\partial_{\kappa} y^{j}, \partial_{\kappa}=\partial / \partial y^{\kappa}, \tag{3.2}
\end{equation*}
$$

the rank of metric (E_{κ}^{j}) being always $2 n$.
Let's denote by $\tilde{\xi}^{\kappa}$ components of $\tilde{\xi}$ the unit Sasakian structure vector in $S^{2 n+1}$. Since the unit vector field $\tilde{\xi}$ is always tangent to the fibre $\tilde{\pi}^{-1}(\widetilde{P})$, $\tilde{P} \in C P^{n}$ everywhere, E_{κ}^{j} and $\tilde{\xi}_{\kappa}$ form a local coframe in $S^{2 n+1}$, where $\tilde{\xi}_{\kappa}=g_{\kappa \mu} \tilde{\xi}^{\mu}$ and $g_{\kappa \mu}$ denote the Riemannian metric tensor of $S^{2 n+1}$. We denote by $\left\{E_{\kappa^{\prime}}^{j} \tilde{\xi}^{\kappa}\right\}$ the frame corresponding to this coframe. We then have

$$
\begin{equation*}
E_{\kappa}^{i} E_{j}^{\kappa}=\delta_{j}^{i}, E_{\kappa}^{j \tilde{\xi}^{\kappa}}=0, \dot{\xi}_{\kappa} E_{i}^{\kappa}=0 \tag{3.3}
\end{equation*}
$$

We now take coordinate neighborhoods $\left\{\bar{U} ; x^{d}\right\}$ of M such that $\pi(\bar{U})=U$ are coordinate neighborhoods of M with local coordinates $\left(x^{a}\right)$. Let the isometric immersions i and i be locally expressed by $y^{k}=y^{k}\left(x^{\alpha}\right)$ and $y^{j}=y^{j}\left(x^{a}\right)$ in terms of local coordinates x^{α} in $\bar{U}(\subset \bar{M})$ and $\left(x^{a}\right)$ in $U(\subset M)$ respectively. Then the commutativity $\tilde{\pi} \cdot \tilde{i}=i \cdot \pi$ of the diagram implies

$$
y^{j}\left(x^{a}\left(x^{\alpha}\right)\right)=y^{j}\left(y^{\kappa}\left(x^{\alpha}\right)\right)
$$

where we expressed the submersion π by $x^{a}=x^{a}\left(x^{\alpha}\right)$ locally, and hence

$$
\begin{equation*}
B_{a}^{j} E_{\alpha}^{a}=E_{\kappa}^{j} B_{\alpha}^{\kappa} \tag{3.4}
\end{equation*}
$$

$B_{a}^{j}=\partial_{a} y^{j}, B_{\alpha}^{\kappa}=\partial_{\alpha} y^{\kappa}$ and $E_{\alpha}^{a}=\partial_{\alpha} x^{a}$.
For an arbitrary point $P \in M$ we choose unit normal vector fields N_{x}^{j} to M defined in a neighborhood U of P in such a way that $\left\{B_{a}^{j}, N_{x}^{j}\right\}$ span the tangent space of $C P^{n}$ at $i(P)$. Let \bar{P} be an arbitrary point of the fibre $\pi^{-1}(P)$ over P, then the lifts $N_{x}^{\kappa}=N_{x}^{j} E_{j}^{\kappa}$ of N_{x}^{j} are unit normal vector fields to \bar{M} defined in the tubular neighborhood over U because of (3.4). Since $\tilde{\xi}^{\kappa} E_{\kappa}^{j}=0$, we can represent $\tilde{\xi}$ by

$$
\begin{equation*}
\tilde{\xi}^{\kappa}=\xi^{\alpha} B_{\alpha}^{\kappa} \tag{3.5}
\end{equation*}
$$

where ξ^{α} is a local vector field in \bar{M}. Using (3.4) and (3.5), we find

$$
\begin{equation*}
\xi_{\alpha} \xi^{\alpha}=1, \xi^{\alpha} E_{\alpha}^{a}=0, \tag{3.6}
\end{equation*}
$$

where $\xi_{\alpha}=\xi^{\beta} g_{\beta \alpha}$ and $g_{\beta \alpha}$ is the Riemannian metric tensor of \bar{M} induced from that of $S^{2 n+1}$. Therefore, $\left\{E_{\alpha}^{a}, \xi_{\alpha}\right\}$ is a local coframe in \bar{M} corresponding to $\left\{E_{k}^{j}, \tilde{\xi}_{k}\right\}$ in $S^{2 n+1}$. Denoting by $\left\{E_{a}^{\alpha}, \xi^{\alpha}\right\}$ the frame corresponding to this coframe, we have

$$
\begin{equation*}
E_{\alpha}^{b} E_{a}^{\alpha}=\delta_{a}^{b}, \xi_{\alpha} E_{b}^{\alpha}=0, \tag{3.7}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
E_{j}^{\kappa} B_{b}^{j}=B_{\alpha}^{\kappa} E_{b}^{\alpha} \tag{3.8}
\end{equation*}
$$

with the help of (3.4) and (3.6).
Denoting by $\left\{\begin{array}{c}\lambda \\ \mu\end{array}\right\rangle,\left\{\begin{array}{c}i \\ i\end{array}\right\},\left\{\begin{array}{c}\alpha \\ \beta\end{array}\right\}$ and $\left\{\begin{array}{c}a \\ b \\ b\end{array}\right\}$ the Christoffel symbols formed with the Riemannian metrics $g_{\mu \lambda}, g_{j i}, g_{\beta \alpha}$ and $g_{b a}$ respectively, we put

$$
\begin{aligned}
& D_{\mu} E_{\lambda}^{i}=\partial_{\mu} E_{\lambda}^{i}-\left\{\begin{array}{c}
\kappa \\
\mu
\end{array}\right\} E_{\kappa}^{i}+\left\{\begin{array}{c}
i \\
j \\
h
\end{array}\right\} E_{\mu}^{j} E_{\lambda}^{h},
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{\nabla}_{\beta} E_{\alpha}^{a}=\partial_{\beta} E_{\alpha}^{a}-\left\{\begin{array}{c}
\gamma \\
\beta
\end{array}\right\} E_{r}^{a}+\left\{\begin{array}{c}
a \\
b \\
c
\end{array}\right\} E_{\beta}^{b} E_{\alpha}^{c}, \\
& \tilde{\nabla}_{\beta} E_{a}^{\alpha}=\partial_{\beta} E_{a}^{\alpha}+\left\{\begin{array}{c}
\alpha \\
\beta
\end{array}\right\} E_{a}^{\gamma}-\left\{\begin{array}{c}
c \\
b
\end{array}\right\}
\end{aligned}
$$

Since the metrics $g_{\lambda \mu}$ and $g_{\alpha \beta}$ are invariant with respect to the submersions $\tilde{\pi}$ and π respectively, the van der Waerden-Bortolotti covariant derivatives of $E_{\lambda}^{i}, E_{i}^{\lambda}$ and $E_{\alpha^{\prime}}^{\alpha}, E_{a}^{\alpha}$ are given by

$$
\begin{align*}
& \left\{\begin{array}{l}
D_{\mu} E_{\lambda}^{i}=h_{j}^{i}\left(E_{\mu}^{i} \tilde{\xi}_{\lambda}+\tilde{\xi}_{\mu} E_{\lambda}^{i}\right), \\
D_{\mu} E_{i}^{\lambda}=h_{j i} E_{\mu}^{j} \tilde{\xi}^{\lambda}-h_{i}^{j} \tilde{\xi}_{\mu} E_{i}^{\lambda},
\end{array}\right. \tag{3.9}\\
& \left\{\begin{array}{l}
\widetilde{\nabla}_{\beta} E_{\alpha}^{a}=h_{b}^{a}\left(E_{\beta}^{b} \xi_{\alpha}+\tilde{\xi}_{\beta} E_{\alpha}^{b}\right), \\
\tilde{\nabla}_{\beta} E_{a}^{\alpha}=h_{b a} E_{\beta}^{b} \xi_{\alpha}-h_{a}^{b} \xi_{\beta} E_{b}^{\alpha}
\end{array}\right. \tag{3.10}
\end{align*}
$$

respectively, where $h_{j}^{i}=g^{i h} h_{j i}, h_{b}^{a}=g^{a c} h_{b c}, h_{j i}$ being $h_{b a}$ are the structure tensors induced from the submersions $\tilde{\pi}$ and π respectively (See Ishihara and Konishi [2]).
On the other side the equations of Gauss and Weingarten for the immersion $\bar{i}: \bar{M} \longrightarrow S^{2 n+1}$ are given by

$$
\begin{align*}
& \tilde{\nabla}_{\beta} B_{\alpha}^{\kappa}=\partial_{\beta} B_{\alpha}^{\kappa}+\left\{\begin{array}{c}
\kappa \\
\mu
\end{array}\right\} B_{\beta}^{\mu} B_{\alpha}^{\lambda}-\left\{\begin{array}{c}
\gamma \\
\beta_{\alpha}
\end{array}\right\} B_{r}^{\kappa}=A_{\beta \alpha}^{x} N_{x}^{\kappa} \tag{3.11}\\
& \widetilde{\nabla}_{\beta^{\prime}} N_{x}^{\kappa}=\partial_{\beta} N_{x}^{\kappa}+\left\{\begin{array}{c}
\kappa \\
\mu \lambda
\end{array}\right\} B_{\beta}^{\mu} N_{x}^{\lambda}-\Gamma_{\beta x}^{y} N_{y}^{\kappa}=-A_{\beta x}^{\alpha} B_{\alpha^{\prime}}^{\kappa}
\end{align*}
$$

and those for the immersion $i: M \longrightarrow C P^{n}$ by

$$
\left.\begin{array}{l}
\nabla_{b} B_{a}^{i}=\partial_{b} B_{a}^{i}+\left\{\begin{array}{c}
i \\
j
\end{array}\right\} B_{b}^{j} B_{a}^{h}-\left\{\begin{array}{c}
c \\
b
\end{array}\right\}
\end{array}\right\} B_{c}^{i}=A_{b a}^{x} N_{x}^{i}, ~\left(\begin{array}{l}
i \\
\nabla_{b} N_{x}^{i}=\partial_{b} N_{x}^{i}+\left\{\begin{array}{l}
i \\
j
\end{array}\right\} B_{b}^{j} N_{x}^{h}-\Gamma_{b x}^{y} N_{y}^{j}=-A_{b x}^{a} B_{a}^{i}, \tag{3.12}
\end{array}\right.
$$

$\Gamma_{\beta x}^{y}$ and $\Gamma_{b x}^{y}$ being components of the connections induced on the normal bundles $N(\bar{M})$ and $N(M)$ of \bar{M} and M respectively, where $A_{\beta x}^{\alpha}=A_{\beta r}{ }^{y} g^{\alpha \gamma} g_{y x} A_{\beta \alpha}{ }^{x}$ and $A_{b a}{ }^{x}$ are the second fundamental tensors of \bar{M} and M with respect to the unit normals N_{x}^{κ} and N_{x}^{j} respectively. Moreover in such a case (3.4) and (3.8) imply

$$
\nabla_{b}=E_{b}^{\alpha} \tilde{\nabla}_{\alpha} .
$$

We now put $\phi_{\mu}^{\lambda}=D_{\mu} \tilde{\xi}^{\lambda}$. Then we have by definition of Sasakian structure

$$
\begin{equation*}
\phi_{\mu}^{\lambda} \phi_{\kappa}^{\mu}=-\delta_{\kappa}^{\lambda}+\tilde{\xi}_{\kappa} \tilde{\xi}^{\lambda}, \phi_{\mu}^{\lambda} \tilde{\xi}^{\mu}=0, \phi_{\mu} \tilde{\xi}^{\mu}=0, \phi_{\mu \lambda}+\phi_{\lambda \mu}=0 \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\mu} \phi_{\lambda}^{\kappa}=\tilde{\xi}_{\lambda} \delta_{\mu}^{\kappa}-\tilde{\xi}^{\kappa} g_{\mu \lambda}, \quad D_{\mu} \tilde{\xi}^{\kappa}=\phi_{\mu}^{\kappa}, \tag{3.14}
\end{equation*}
$$

where $\phi_{\mu \lambda}=g_{\kappa \lambda} \phi_{\mu}^{\kappa}$. Denoting by \mathcal{E} the Lie differentiation with respect to the vector field $\tilde{\xi}$, we find

$$
\begin{equation*}
\AA \phi_{\mu}^{\lambda}=0 . \tag{3.15}
\end{equation*}
$$

Putting in each U

$$
\begin{equation*}
\phi_{j}^{i}=\phi_{\mu}^{\lambda} E_{j}^{\mu} E_{\lambda}^{i}, \tag{3.16}
\end{equation*}
$$

we can see that ϕ_{j}^{i} defines a global tensor field of the same type as that of ϕ_{j}^{i}, which will be denoted by the same letter, with the help of (3.15), $£ E_{j}^{\mu}=0$ and $£ E_{\lambda}^{i}=0$. Moreover, using (3.9), (3.14) and (3.16), we easily see

$$
\begin{equation*}
\phi_{j}^{i}=-h_{j}^{i}, \tag{3.17}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\phi_{j}^{i} \phi_{h}^{j}=-\delta_{k^{\prime}}^{i} \tag{3.18}
\end{equation*}
$$

Differentiating (3.16) covariantly along $C P^{n}$ and using (3.9) and (3.14), we have

$$
\begin{equation*}
\tilde{\nabla}_{j} \phi_{h}^{i}=0, \tag{3.19}
\end{equation*}
$$

where $\tilde{\nabla}$ denotes the projection of D. Hence the base space $C P^{n}$ admits a Kaehlerian structure $\left\{\phi_{j}^{i}, g_{j i}\right\}$ which is represented by the structure tensor h_{j}^{i} of the submersion $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$ defined by the Hopf-fibration.

Let's denote by $K_{\kappa \mu \nu \nu}{ }^{\lambda}$ and $K_{k j i}{ }^{h}$ components of the curvature tensors of ($S^{2 n+1}$, $g_{\lambda \mu}$) and $\left(C P^{n}, g_{j i}\right)$ respectively. Since the unit sphere $S^{2 n+1}$ is a space of constant curvature 1, using the equations of co-Gauss, we have

$$
K_{k j i}^{h}=K_{\kappa \mu \nu}{ }^{\lambda} E_{k}^{\kappa} E_{j}^{\mu} E_{i}^{\nu} E_{\lambda}^{h}+h_{k}^{h} h_{j i}-h_{j}^{h} h_{k i}-2 h_{k j} h_{i}^{h}
$$

and together with (3.17)

$$
K_{k j i}^{h}=\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}+\phi_{k}^{h} \phi_{j i}-\phi_{j}^{h} \phi_{k i}-2 \phi_{k j} \phi_{i}^{h} .
$$

Hence $C P^{n}$ is a Kaehlerian manifold with constant holomorphic sectional curvature 4 (Cf. Ishihara and Konishi [2]). Putting

$$
\left\{\begin{array}{l}
\phi_{i}^{j} B_{b}^{i}=\phi_{a}^{b} B_{a}^{j}+\phi_{b}^{x} N_{x}^{j} \tag{3.20}\\
\phi_{i}^{j} N_{x}^{i}=-\phi_{x}^{a} B_{a}^{j}+\phi_{x}^{y} N_{y}^{j}
\end{array}\right.
$$

as already shown in section 2 , we can easily find the algebraic relations (2.13) $\sim(2.17)$ and the structure equations (2.18) $\sim(2.24)$ with $c=4$ which will be very useful.
Now we put in each nerghborhood \bar{U} of \bar{M}

$$
\begin{equation*}
\phi_{\beta}^{\alpha}=\phi_{b}^{a} E_{\beta}^{b} E_{a}^{\alpha}, \phi_{x}^{\alpha}=\phi_{x}^{a} E_{a}^{\alpha}, \phi_{\alpha}^{x}=\phi_{a}^{x} E_{\alpha}^{a} \tag{3.21}
\end{equation*}
$$

'where, here and in the sequel, we denote the lifts of functions by the same letters as those the given functions. Then, using (3.4), (3.8), (3.20) and (3.21) and taking account of $N_{x}^{\kappa}=N_{x}^{j} E_{j}^{\kappa}$, we obtain

$$
\begin{equation*}
\phi_{\mu}^{\kappa} B_{\alpha}^{\mu}=\phi_{\alpha}^{\beta} B_{\beta}^{\kappa}+\phi_{\alpha}^{x} N_{x}^{\kappa} \tag{3.22}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{\mu}^{\kappa} N_{x}^{\mu}=-\phi_{x}^{\alpha} B_{\alpha}^{\kappa}+\phi_{x}^{y} N_{y}^{\kappa} . \tag{3.23}
\end{equation*}
$$

Transvecting ϕ_{k}^{λ} to (3.22) and (3.23) respectively and using (3.13), (3.22) and (3.23) in the usual way, we can easily obtain that

$$
\begin{gather*}
\phi_{\alpha}^{\gamma} \phi_{\gamma}^{\beta}-\phi_{\alpha}^{x} \phi_{x}^{\beta}-\xi_{\alpha} \xi^{\beta}=-\delta_{\alpha}^{\beta}, \\
\phi_{\alpha}^{\beta} \phi_{\beta}^{x}+\phi_{\alpha}^{y} \phi_{y}^{x}=0, \phi_{x}^{\beta} \phi_{\beta}^{\alpha}+\phi_{x}^{y} \phi_{y}^{\alpha}=0, \\
\phi_{x}^{z} \phi_{z}^{y}-\phi_{x}^{\alpha} \phi_{\alpha}^{y}=-\delta_{x}^{y}, \tag{3.24}\\
\phi_{\alpha}^{\beta} \xi_{\beta}=0, \xi^{\alpha} \phi_{\alpha}^{\beta}=0, \phi_{\alpha}^{x} \xi^{\alpha}=0, \xi_{\alpha} \phi_{x}^{\alpha}=0, \\
\phi_{\beta \alpha}=-\phi_{\alpha \beta}, \phi_{\alpha x}=\phi_{x \alpha}, \phi_{x y}=-\phi_{y x},
\end{gather*}
$$

where we have put $\phi_{\beta \alpha}=\phi_{\beta}^{\gamma} g_{\alpha \gamma}, \phi_{\alpha x}=\phi_{\alpha}^{y} g_{y x}, \phi_{x \alpha}=\phi_{x}^{\beta} g_{\beta \alpha}$ and $\phi_{x y}=\phi_{x}^{z} g_{z y}$.
Applying the operator $\tilde{\nabla}_{r}=B_{\gamma}^{\kappa} D_{\kappa}$ to (3.22) and (3.23) respectively and making use of (3.11), (3.14) (3.22) and (3.23), we also find

$$
\tilde{\nabla}_{\gamma} \phi_{\beta}^{\alpha}=\xi_{\beta} \delta_{\gamma}^{\alpha}-\xi^{\alpha} g_{\gamma \beta}+A_{\gamma \phi}^{\alpha} \phi_{\beta}^{x}-A_{\gamma \beta}{ }^{x} \phi_{x}^{\alpha},
$$

$$
\begin{align*}
& \tilde{\nabla}_{\beta} \phi_{\alpha}^{x}=A_{\beta \alpha}^{y}{ }^{y} \phi_{y}^{x}-A_{\beta r}{ }^{x} \phi_{\alpha}^{\gamma}, \quad \tilde{\nabla}_{\beta} \phi_{x}^{\alpha}=A_{\beta x}^{\gamma} \phi_{r}^{\alpha}-A_{\beta y}^{\alpha} \phi_{x}^{y}, \tag{3.25}\\
& \tilde{\nabla}_{\beta} \phi_{x}^{y}=A_{\beta \alpha}^{y} \phi_{x}^{\alpha}-A_{\beta x}^{\alpha} \phi_{\alpha}^{y} .
\end{align*}
$$

Also, applying the operator $\tilde{\nabla}_{\beta}$ to (3.5) and taking account of (2.11) and (3.14), we have

$$
\begin{equation*}
\tilde{\nabla}_{\beta} \xi^{\alpha}=\phi_{\beta}^{\alpha}, \quad A_{\beta \alpha}^{x} \xi^{\alpha}=\phi_{\beta}^{x}, \quad A_{\beta x}^{\alpha} \xi^{\beta}=\phi_{x}^{\alpha}, \tag{3.26}
\end{equation*}
$$

which and (3.9) and (3.21) imply

$$
\begin{equation*}
\phi_{b}^{a}=-h_{b}^{a} . \tag{3.27}
\end{equation*}
$$

Moreover, in such a submanifold M, its Ricci equation is given by

$$
\begin{equation*}
K_{\beta \alpha y}{ }^{x}=A_{\beta r}{ }^{x} A_{\alpha y}^{r}-A_{\alpha r}{ }^{x} A_{\beta y}^{\gamma} \tag{3.28}
\end{equation*}
$$

because the ambient manifold $S^{2 n+1}$ is a space of constant curvature.
Now we apply the operator $\nabla_{b}=B_{b}^{j} \tilde{\nabla}_{j}=E_{b}^{\alpha} \widetilde{\nabla}_{\alpha}$ to (3.4). Then, using (3.11) and
(3.12), we have

$$
A_{b a}^{x} N_{x}^{j} E_{\alpha}^{a}+B_{a}^{j} E_{b}^{\beta} \widetilde{\nabla}_{\beta} E_{\alpha}^{a}=B_{b}^{i} E_{i}^{\mu}\left(D_{\mu} E_{\kappa}^{j}\right) B_{\alpha}^{\kappa}+E_{\kappa}^{j} E_{b}^{\beta} A_{\beta \alpha}^{x} N_{x^{\prime}}^{\kappa}
$$

from which taking account of (3.9), (3.10) and (3.27),

$$
A_{b a}{ }^{x} N_{x}^{j} E_{\alpha}^{a}-\phi_{b}^{a} B_{a}^{j} \xi_{\alpha}=-\phi_{i}^{j} B_{b}^{i} \xi_{\alpha}+\left(A_{\beta \alpha}{ }^{x} E_{b}^{\beta}\right) N_{x}^{j}
$$

or using (3.20),

$$
\begin{equation*}
A_{\beta \alpha}{ }^{x} E_{b}^{\beta}=A_{b a}{ }^{x} E_{\alpha}^{a}+\phi_{b}^{x} \xi_{\alpha} \tag{3.29}
\end{equation*}
$$

Transvecting (3.29) with E_{γ}^{b} and changing the index γ with β, we get

$$
\begin{equation*}
A_{\beta \alpha}^{x}=A_{b a}^{x} E_{\beta}^{b} E_{\alpha}^{a}+\xi_{\beta} \phi_{\alpha}^{x}+\xi_{\alpha} \phi_{\beta}^{x} \tag{3.30}
\end{equation*}
$$

with the help of (3.21) and (3.26).
Applying the operator $\nabla_{c}=E_{c}^{\gamma} \tilde{\nabla}_{\gamma}$ to (3.30), we have

$$
\begin{aligned}
E_{c}^{\gamma} \tilde{\nabla}_{\gamma} A_{\beta \alpha}{ }^{x}= & \left(\nabla_{c} A_{b a}^{x}\right) E_{\beta}^{b} E_{\alpha}^{a}+A_{b a}^{x} E_{c}^{\gamma}\left(\tilde{\nabla}_{\gamma} E_{\beta}^{b}\right) E_{\alpha}^{a}+A_{b a}^{x} E_{\beta}^{b} E_{c}^{\gamma} \tilde{\nabla}_{\gamma} E_{\alpha}^{a} \\
& +E_{c}^{\gamma}\left(\tilde{\nabla}_{\gamma} \xi_{\beta}\right) \phi_{\alpha}^{x}+\xi_{\beta} E_{c}^{\gamma} \tilde{\nabla}_{\gamma} \phi_{\alpha}^{x}+E_{c}^{\gamma}\left(\tilde{\nabla}_{\gamma} \phi_{\beta}^{x}\right) \xi_{\alpha}+\phi_{\beta}^{x} E_{c}^{\gamma} \tilde{\nabla}_{\gamma} \xi_{\alpha}
\end{aligned}
$$

from which, substituting (3.10) with $h_{b}^{a}=-\phi_{b}^{a}$, (3.25) and (3.26),

$$
\begin{aligned}
E_{c}^{\gamma} \widetilde{\nabla}_{\gamma} A_{\beta \alpha}^{x} & =\left(\nabla_{c} A_{b a}^{x}\right) E_{\beta}^{b} E_{\alpha}^{a}-A_{b a}^{x} \phi_{c}^{b}\left(\xi_{\beta} E_{\alpha}^{a}+\xi_{\alpha} E_{\beta}^{a}\right)+\phi_{\gamma \beta} E_{c}^{\gamma} \phi_{\alpha}^{x}+\phi_{\gamma \alpha} E_{c}^{\gamma} \phi_{\beta}^{x} \\
& +\xi_{\beta} E_{c}^{\gamma}\left(A_{\gamma \alpha}^{y} \phi_{y}^{x}-A_{\gamma \delta}^{x} \phi_{\alpha}^{\delta}\right)+\xi_{\alpha} E_{c}^{\gamma}\left(A_{\gamma \beta}^{y} \phi_{y}^{x}-A_{\gamma \delta}^{x} \phi_{\beta}^{\delta}\right)
\end{aligned}
$$

or using (3.21) and (3.29),
(3.31) $\quad E_{c}^{\gamma} \widetilde{\nabla}_{\gamma} A_{\beta \alpha}^{x}=\left(\nabla_{c} A_{b a}^{x}+\phi_{c b} \phi_{a}^{x}+\phi_{c a} \phi_{b}^{x}\right) E_{\beta}^{b} E_{\alpha}^{a}-\left(A_{b a}^{x} \phi_{c}^{b}+A_{b c}{ }^{x} \phi_{a}^{b}\right.$

$$
\left.-A_{c a}^{y} \phi_{y}^{z}\right)\left(\xi_{\beta} E_{\alpha}^{a}+E_{\beta}^{a} \xi_{\alpha}\right)+2\left(\phi_{c}^{y} \phi_{y}^{x}\right) \xi_{\beta} \xi_{\alpha}
$$

4. Anti-invariant submanifold of $C P^{n}$

If the transformation ϕ_{j}^{i} of any vector tangent to M is orthogonal to M, the submanifold M is said to be anti-invariant to $C P^{n}$. Then at any point $P \in M$. we have

$$
\phi\left(T_{p}(M)\right) \perp T_{p}(M)
$$

and consequently

$$
\begin{equation*}
\phi_{b}^{a}=0 \tag{4.1}
\end{equation*}
$$

in the sense of (3.20).
In this section we shall consider such a submanifold M of $C P^{n}$ that at any point $P \in M$ we have $\phi\left(T_{p}(M)\right) \perp T_{p}(M)$. Then we first find from (2.16) and (3.21)

$$
\begin{gather*}
\phi_{x}^{y} \phi_{y}^{b}=0, \tag{4.2}\\
\phi_{\beta}^{\alpha}=0 \tag{4.3}
\end{gather*}
$$

respectively. By means of (3.22) and (4.3) we can see that the submanifold \bar{M} is also anti-invariant in $S^{2 n+1}$ in the sense of (3.22).

Now we assume that the second fundamental tensor of M is parallel, i.e., $\nabla_{c} A_{b a}{ }^{x}=0$ and that the normal bundle $N(M)$ of M is trivial. Then (2.24) with: $c=4$ and $\phi_{b}^{a}=0$ imply

$$
\phi_{b}^{x} \phi_{a y}-\phi_{a}^{x} \phi_{b y}+A_{b e}{ }^{x} A_{a y}^{e}-A_{a e}^{x} A_{b y}^{e}=0,
$$

from which, differentiating covariantly and using (2.19) and $\nabla_{c} A_{b a}{ }^{x}=0$, we find

$$
A_{c b}^{z} \phi_{z}^{x} \phi_{a y}+\phi_{b}^{x} A_{c a}^{z} \phi_{z y}-A_{c a}{ }^{z} \phi_{z}^{x} \phi_{b y}-\phi_{a}^{x} A_{c b}^{z} \phi_{z y}=0
$$

Transvecting the above equation with ϕ_{x}^{a} and using (4.2), we obtain $2(n-1) A_{c b}{ }^{5} \phi_{t}^{\prime \prime}$ $=0$, which implies

$$
\begin{equation*}
A_{c b}^{x} \phi_{x}^{y}=0 \tag{4.4}
\end{equation*}
$$

and consequently

$$
\text { (4.5) } \quad \nabla_{b} \phi_{a}^{x}=0, \nabla_{b} \phi_{x}^{a}=0
$$

with the help of (2.19).
We differentiate (4.2) covariantly along M. Then we have by using (4.5)

$$
\left(\nabla_{d} \phi_{x}^{y}\right) \phi_{y}^{c}=0
$$

from which, transvecting with ϕ_{c}^{z} and taking account of (2.17),

$$
\nabla_{d} \phi_{x}^{2}+\left(\nabla_{c} \phi_{x}^{y}\right) \phi_{y}^{w} \phi_{w}^{z}=0
$$

On the other hand $\left(\nabla_{c} \phi_{x}^{y}\right) \phi_{y}^{w} \phi_{w}^{z}=0$ because of (2.20), (4.2) and (4.4). Hence we have

$$
\begin{equation*}
\nabla_{d} \phi_{x}^{y}=0 \tag{4.6}
\end{equation*}
$$

THEOREM 1. Let M be an anti-invariant submanifold of a complex projective space $C P^{n}$ and $\pi: \bar{M} \longrightarrow M$ the submersion which is compatible with the Hopffibration $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$. If the second fundamental form of M is parallel and
the normal connection is flat, then the second fundamental form of \bar{M} is also paralled and, moreover, the normal connection of \bar{M} is flat.

PROOF. Under the our assumption, we can easily check that

$$
E_{c}^{\gamma} \widetilde{\nabla}_{r} A_{\beta \alpha}{ }^{x}=0
$$

because of (3.31), (4.1), (4.2) and (4.4). Transvecting the above equation with E_{δ}^{c} gives

$$
\begin{equation*}
\tilde{\nabla}_{\delta} A_{\beta \alpha}^{x}=\xi_{\delta} \xi^{\gamma} \tilde{\nabla}_{\beta} A_{\gamma \alpha}^{x} \tag{4.7}
\end{equation*}
$$

because $\tilde{\nabla}_{\gamma} A_{\beta \alpha}{ }^{x}-\tilde{\nabla}_{\beta} A_{\gamma \alpha}{ }^{x}=0$.
On the other hand, differentiating the second equation of (3.26) covariantly and using (3.26) and (4.3), we obtain

$$
\left(\tilde{\nabla}_{\beta} A_{\alpha \gamma}{ }^{x}\right) \xi^{r}=\tilde{\nabla}_{\beta} \phi_{\alpha}^{x}
$$

from which, taking account of (3.10) with $h_{c}^{a}=\phi_{c}^{a}=0$, (3.21) and (4.5), we can easily find

$$
\begin{equation*}
\left(\widetilde{\nabla}_{\beta} A_{\alpha \gamma}{ }^{x}\right) \xi^{r}=0 \tag{4.8}
\end{equation*}
$$

Hence, from (4.7) and (4.8), we have

$$
\tilde{\nabla}_{r} A_{\beta \alpha}^{x}=0 .
$$

Next, in order to prove the second assertion we compute directly $K_{\gamma \beta y}{ }^{x}$ components of the normal connection of \bar{M} by using (3.28) and (3.30).

$$
A_{\gamma \alpha}{ }^{x} A_{\beta y}^{\alpha}=\left(A_{b a}{ }^{x} E_{\gamma}^{b} E_{\alpha}^{a}+\xi_{\gamma} \phi_{\alpha}^{x}+\xi_{\alpha} \phi_{\gamma}^{x}\right)\left(A_{d y}^{c} E_{\beta}^{\alpha} E_{c}^{\alpha}+\xi_{\beta} \phi_{y}^{\alpha}+\xi^{\alpha} \phi_{y \beta}\right),
$$

which and (3.21) and (3.24) imply

$$
A_{\gamma \alpha}^{x} A_{\beta y}^{\alpha}=A_{b e}^{x} A_{d y}^{e} E_{\gamma}^{b} E_{\beta}^{d}+A_{b a}^{x} \phi_{y}^{a} E_{\gamma}^{b} \xi_{\beta}+A_{d y}^{c} \phi^{x} \xi_{\gamma} E_{\beta}^{d}+\left(\phi_{\alpha}^{x} \phi_{y}^{\alpha}\right) \xi_{r} \xi_{\beta}+\left(\phi_{b}^{x} \phi_{y d}\right) E_{\gamma}^{b} E_{\beta}^{d},
$$

and consequently

$$
\begin{aligned}
A_{\gamma \alpha}^{x} A_{\beta y}^{\alpha}-A_{\beta \alpha}^{x} A_{\gamma y}^{\alpha}= & \left(A_{b e}^{x} A_{d y}^{e}-A_{d e}^{x} A_{b y}^{e}+\phi_{b}^{x} \phi_{y d}-\phi_{d}^{x} \phi_{y b}\right) E_{\gamma}^{b} E_{\beta}^{d} \\
& +\left(A_{b a}^{x} \phi_{y}^{a}-A_{b y}^{a} \phi_{a}^{x}\right)\left(E_{\gamma}^{b} \xi_{\beta}-\xi_{\gamma} E_{\beta}^{b}\right) .
\end{aligned}
$$

Hence we have

$$
K_{\gamma \beta y}{ }^{x}=K_{b d y}{ }^{x} E^{-\lambda} E_{\beta}^{d}+\left(\nabla_{b} \phi_{y}^{x}\right)\left(E_{\gamma}^{b} \xi_{\beta}-\xi_{\gamma} E_{\beta}^{b}\right)
$$

if the submanifold is anti-invariant in $C P^{n}$, which and (4.6) imply our last assertion. Thus we complete the proof of the theorem.

Combining Theorem A and Theorem B, we have

THEOREM 2. Let M be a compact orientable anti-invariant submanifold of a complex projective space $C P^{n}$ of a real codimension p and $\pi: \bar{M} \longrightarrow M$ the submersion which is compatible with the Hopf-fibration $\tilde{\pi}: S^{2 n+1} \longrightarrow C P^{n}$. If the second fundamental form of M is parallel and the normal connection is flat. then

$$
M=S^{1}\left(r_{1}\right) \times \cdots \times S^{1}\left(r_{2 n+1-p}\right) / \sim,
$$

where $r_{1}^{2}+\cdots+r_{2 n+1-p}^{2}=1$.
Kyungpook University
Taegu. 635
Korea

REFERENCES

[1] H. B. Lawson Jr, Rigidity theorems in rank 1 symmetric spaces, J. of Diff. Geo., 4(1970), 349—359.
[2] Ishihara, S. and M. Konishi, Differential geometry of fibred spaces, Publication of study group of geometry, vol.8, Tokyo, 1973.
[3] Maeda, Y., On real hypersurfaces of a complex projective space, J. of the Math. Soc. of Japan, 28(1976), 415-603.
[4] Okumura, M., On some real hypersurfaces of complex projective space, Transactions of AMS., 212(1975), 355-364.
[5] \qquad , Submanifolds of real codimension of a complex projective space, Atti della Academia Nazionale dei Lincei, 58(1975), 543-555.
[6] \qquad , Anti-invariant submanifold with trivial normal connection in $S^{2 n+1}$ and $C P^{n}$, J. Korean Math. Soc. Vol. 14, No.1, 1977, 65-70.
[7] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13(1966), 459-469.
[8] Yano, K. and S. Ishihara, Fibred spaces with invariant Riemannian metric, Kōdai Math. Sem. Rep., 19(1967), 317-360.
[9] Yano, K. and M. Kon, Anti-invariant submanifolds, Marcel Dekker Inc., 1976.

