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1. Introduction

"t1 in an (z#+1)-dimensional

2(n+1)

As 1s well known, the unit hypersphere O
complex number space C"'H, which will be identified naturally with R

is ‘a principal circle bundle over a complex projective space CP”, and the:

2n+1

Riemannian structure on CP" is given by 7: S —CP" the natural projection.

of St onto CP" which is defined by the Hopf-fibration [6, 7]. Thus the theory
of submersion 1s one of the most useful tools for studying a complex projective:
space and its submanifold. In this point of view, H.B. Lawson[l], Y.Maeda
[3] and M. Okumura [4] studied real hypersurfaces of a complex projective

space.
On the other hand, K. Yano and M. Kon [9] proved

THEOREM A. Let M be an (m—+1)-dimensional compact orientable aniti-invariant

submanifold with parallel second [fundamental form of gt If the normal

connection of M is flat, then

2
m+1

Using Theorem A, Okumura [6] have proved

where rf+---—l—7' =1.

THEOREM B. Let M be a compact n-dimensional (n>1) anti-invariant submani-

fold of a complex projective space CP” with trivial normal connection. If the
mean curvature vector field of M is parallel with respect to the normal connection:

and salisfies HBUA:HAUB for A,B=1, 2, ««-, n, then :r"l(M) 18 Sl(rl)x---x_
Sl(rn 117> where Sl('rz.) denotes the circle of radius r,. Consequently M is diffeo-
morphic to n-product of circles.

In this paper we also consider a submanifold M of CP” which is a base space:
of a circle bundle M over M, where M is a submanifold of gt

In 2, we state some fundamental formulas for submanifolds of Kgzehleriam:
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manifold and in 3, we recall fundamental equations of a submersion which are
introduced by B.O'Neill [6], K. Yano and S. Ishihara {7]. Then, in 4 we

consider a submanifold M of S**™! which is a circle bundle over a submanifold

M of CP". Here we relate second fundamental tensor of the submanifolds M
and M. The last section 5 is devoted to establish fundamental relations of the
submersion 7 : S ——CP" and 7z : M——M in the case that the submanifold
M is anti-invariant. And we find some necessary conditions for antl-invariant

submanfold M with parallel second fundamental tensor to be a model subspace

.Sl(?'l)x---xsl(rn+1)/~ ,r;—l—----{—riH:l, appeared in Theorem B by using

Theorem A. Manifolds, submanifolds, geometric objects and mappings we

discuss in this paper will be assumed to be differentiable and of class C”. We
use in the present paper systems of indices as follows:

KA, U, v=1,2,+,2n+13 h,7,7,k=1,2, +, 2n,
o, B3,7,0=12,,m+1:abdcd,e=1,2, -, m,
2,9, 2,w=1,2, - 2n—m.
The summation convention will be used with respect to those systems of indices.

2. Submanifolds of Kaehlerian manifolds

Let M be a 2n-dimensional Kaehlerian manifold covered by a system of

coordinate neighborhoods {U : yj } and denote by g;; components of the Hermitian

metric tensor and by qb;: those of the almost complex structure of /. Then we

have
1 .k )
(2.1) gbht;bj = —é},
h ok
(2.2) ‘?5,-(351'3' nk— & jp

and, denoting by V} the operator of covariant differentiation with respect to
8 ji»
At h .
(2.3) Vjc;aﬁz. =0.
Let M be an m-dimensional Riemannian manifold covered by a system of
.coordinate neighborhoods {U : x°} and immersed isometrically in # by the

immersion i : M——M. In the sequel we identify /(M) with M itself and
represent the immersion by

(2.4) ¥ =5 (%),
We put
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(2.5) B =d,y, 8,=3/3x"

-and denote by Ni mutually orthogonal unit normals to M. Then denoting by
g, the fundamental metric tensor of M, we have

_ Rl Bt
0=8:8y8;;
'since the immersion is isometric. Therefore, denoting by V, the operator of

'van der Waerden-Bortolotti covariant differentiation with respect to g, we

.have equations of Gauss and Weingarten for M

(2.6) VB =4 "N,
]_“ J
(2.7 VNI=-4" B,

respectively, where A4, * are the second fundamental tensors with respect to the

7 . y ab . .
mormals N’ and A =A g =A " &g g.p &y being the metric tensor of the

cax
;normal bundle of M given by gxyzN 'iN igﬁ and (gb“) =( gba)"l_

Equations of Gauss, Codazzi and Ricci are respectively

a h pkiia a x 7 x
(2.8) chb _ K!zjz' Bdcbk+Adx Acb _AGIAdb ’
_ h lm
(2.9) 0=K; ByplVy—(V Acb “VcAdb )s
-and
x h k7 avrt
(2- 10) Kd{;y — K 71 Bch NI + (Adez Aiy _Acex AZy)’

d-¢0?
is the curvature tensor of the connection induced in the normal bundle.

We now consider the transforms ¢/B, and ¢;N. of B:; and N ;_ by the struc-

ba ]
where Bfiﬁ“B BJB B Blm - B*B’B; B, B’g Ein szN;gyngh and K.,

iture tensor qbf . Then we can put in each coordinate neighborhood U=UNM

(2.1 ¢! B, -—-g?fib +¢be
7 —
(2.12) ¢ N +¢ y ’
respectively.

Using gaﬁz —qﬁu t;éﬂ ¢> & We have, from

(2.11) and (2.12),
(2.13) by =9,
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where gébx:géfgyx and ¢,,=¢_g,, and
(2.14) Byr=~B.s

<
where qéyx=§85ygzx.

Applying ¢ to (2.11) and (2.12) and using (2.1) and these equations, we cany
easily find

(2.15) b,8; +0, =08,
(2. 16) b.8) +6:8,=0, Bip,+829, =0,
(2.17) 6.9, +0. =048

Differentiating (2.11) and (2.12) covariantly along M and using (2.3) and.
the equations (2.6) and (2.7) of Gauss and Weingarten, we can verify that

(2.18) Vb=A ¢.—A, " .,

x y x __ Af @

(2. 19) Vbéa_Aba QS;_A{;; Q&Z, Vbéi_Abxéc_A:y il"

(2. 20) ngbi — Aﬁay qb: —A::r 9353:'

We now assume that the ambient manifold M is of constant holomorphic:

sectional curvature ¢. Then it 1s well known that its curvature tensor K kﬁh has-

the form

h h h h k ?
(2.21) K, = Z (0,8);=0:8 1+ 0,8~ 0: i — 28,9

Therefore, substituting (2.21) into (2.8), (2.9) and (2.10), we can see that the.
equations of Gauss, Codazzi and Ricci are respectively given by

(2.22) chba = Z (5§gcb —ajgdb+¢:¢cb _éiédb— 2¢dc :) +Angcbx _A::Ad; »

(2.23) VA" =V Ay =18 05~8.00~ 2048,

(2' 24) Kdr:yx =_.fi—(¢:¢¢y—¢:¢dy—2¢dc¢;)+Adex Ajy _Ac; A;y ’

n+1l

3. Submersion 7 : St '——CP" and immersion i : M—CP"

Let S”*1(1) be the hypersphere {(c, -, ¢""||c' |24+ |c*T1)°=1} of radius:
1 in an (z+1)-dimensional space C” tLoof complexes, which will be identified.
naturally with R¥** D The sphere 82"+1(1) will be simply denoted by gontl

Let 7 : S”"*'—CP" be the natural projection of S***!

tive space CP" which is defined by the Hopf fibration. We consider a Riemannian:

onto a complex projec-
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submersion 7 : M——M compatible with the Hopf fibration 7 : s+l __,cp",

where M is a submanifold of codimension p in CP" and M=7" (M) that of

2 1 ol . . - . . . . .
S***, More precisely speaking, = : M——M is a Riemannian submersion with

totally geodesic fibres such that the following diagram is comrnt-iive:
;

M 7 __)SziH-l
7| T,
M——CP"

?

where 7 : M——8"*! and 7 : M——CP" are certain isometric immersions.
Covering gont! by a system of coordinate neighborhoods {U: y"} such that:
7(U)=U are coordinate neighborhoods of CP” with local coordinate (yj), we

represent the projection 7 : setl__cp” by

(3.1) Y =5 ()
and put

. . )

(3.2) El=dy’, 3 =d/dy,

the rank of metric (Ei) being always 2.

Let's denote by &" components of £ the unit Sasakian structure vector in.

2n+1 a

S . Since the unit vector field & is always tangent to the fibre E_l(ﬁ),

P&CP” everywhere, Ei and ? . form a local coframe in Sz”“, where § =g 'é#':
K Ku

and £, denote the Riemannian metric tensor of S#**2. We denote by {Ei', E"'}.
the frame corresponding to this coframe. We then have

(3.3) EE}=0", EI£"=0, £ Ef=0.

We now take coordinate neighborhoods {U : xd} of M such that z(U)=U are
coordinate neighborhoods of M with local coordinates (x°). Let the isometric-
immersions ¢ and 7 be locally expressed by y =y"(x®) and yjz yj(xa) In terms.
of local coordinates x° in U(CM) and (z%) in U(CM) respectively, Then the:
commutativity 7+7=7-7 of the diagram implies

¥ (&) =y (5" &™),
where we expressed the submersion 7z by x“=x%(x") locally, and hence

(3.4) B'E’=E’B,
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Biz@ayf, B'=0d y" and E, =0, .

4 4
For an arbitrary point P&EM we choose unit normal vector fields N‘i to M
.defined in a neighborhood U of P in such a way that {Bj, N i} span the tangent

space of CP" at 7(P). Let P be an arbitrary point of the fibre ?T_I(P) over P,
then the lifts N_‘::N iEj of N i are unit normal vector fields to M defined in

the tubular neighborhood over U because of (3.4). Since EKE,{:O, we can

represent & by

(3.5) & =¢“B,
where & is a local vector field in M. Using (3.4) and (3.5), we find
(3.6) ¢,£7=1, £°E. =0,

where & a=§'ﬁgﬁa and g is the Riemannian metric tensor of M induced from

that of S

int+l Therefore, {E‘;, Ea,} 1s a local coframe in M corresponding to

{Ei, 5 .} in 82"“. Denoting by {E:, &%} the frame corresponding to this coframe,
we have
3.7 E°E®=0", & ES=0,
and consequently
(3.9 E;B!=BLES
with the help of (3.4) and (3.6).
Denoting by {,A ), {7}, {47} and {;%} the Christoffel symbols formed

) K c
with the Riemannian metrics g &iir &Ba and g, respectively, we put

D,E;=9 E}~ { ﬂ’fz} E' + { ; k} Eigh

D#Ej =0,k + {H.RK} By~ {fki} E;Ef‘

and
VoEe=0,80 (g o Bt (s o) EsEe
VB =0,E%+ { ﬁar} £~ b"a} ESES.

Since the metrics g and g, are invariant with respect to the submersions =

and 7 respectively, the van der Waerden-Bortolotti covariant derivatives of
E; Ef and E; E":: are given by
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i _ g4l ,ptAa | B pt
{DMEZ—-kj(E#fZ—I—E#El),

(3I 9) 1 e P
_ JRA 4 R padh
&% 8 18,0 b
) &~ O D b o
VoBS = Eff a8

respectively, where k; :gihkﬁ, B, = g°hn,, h;; being h,, are the structure tensors
induced from the submersions 7 and =z respectively (See Ishibara and Konishi

(2]).

On the other side the equations of Gauss and Weingarten for the immersion

i M——S"t! are given by
~ K K K ¢ A [ 7 K x K
(3.11) VﬁBa_aﬁBﬂr_'—{# Z}BﬁBa {5 Q}Br_Aﬁa N

X LK

~ A X
VNi=a N+ { S BN - No=— 43 B,

and those for the immersion 7 : M——CP”" by

) _ /) 7 ] h_ C 7 _ z {

el ea
: ) _ 7 z' ] h b ] . a )

VbNx—abNx+{f k}B;Nx_rbei_ _Abea’

I’";x and I")  being components of the connections induced on the normal
bundles N(M) and N(M) of M and M respectively, where Agx=AﬁT’ g gﬁ,A :
and 4, * are the second fundamental tensors of M and M with respect to the

unit normals N: and N ;' respectively. Moreover in such a case (3.4) and (3.8)

1imply
V,=E, V.
We now put gﬁﬁ:D”?Z. Then we have by definition of Sasakian structure
(3.13) gdy=—0,+E L, 68=0, 8,8=0, 8,,+8;,=0
and
(3.14) Dﬂgb}{:?la‘:—?‘gﬁ, Dp§”=¢f,:

where quM:gdng:. Denoting by £ the Lie differentiation with respect to the

vector field &, we find

(3.15) £44=0.
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Putting in each U
Al
(3.16) b, =¢,E; Ey
we can see that gaij defines a global tensor field of the same type as that of

¢;, which will be denoted by the same letter, with the help of (3.15), ;fEsz
and ;£°E§=O. Moreover, using (3.9), (38.14) and (3.16), we easily see

which satisfies
(3.18) b, p1 =0,

Differentiating (3.16) covariantly along CP" and using (3.9) and (8.14), we
have

(3.19) ¥ 4,=0,

where V denotes the projection of D. Hence the base space CP" admits a
Kaehlerian structure {gé;., g;} which Is represented by the structure tensor k;

of the submersion 7 : S '——CP" defined by the Hopf-fibration.

, on+1
Let’s denote by K i T

uz and K L ﬁh components of the curvature tensors of (S ;

&;,) and (CP", g ﬁ) respectively. Since the unit sphere gen+t

constant curvature 1, using the equations of co-Gauss, we have
k Ak plb gl b | o B h h
. K,. =K, E;gEjEiE,l_l_kkkji_kjhki—zkkjki
and together with (3.17)
E ok h h h h
Kka' =5kgji'" jgki+¢k¢ji_¢j¢ki“2¢m¢i'

Hence CP" is a Kaehlerian manifold with constant holomorphic sectional curva-
ture 4 (Cf. Ishihara and Konishi [2]). Putting

s .
{qbi- B, = ¢ BI+ 5N,
Iart _ @ pni, 4Yard
éz'Nx“ _¢x3;+¢xN;'
as already shown in section 2, we can easily find the algebraic relations (2. 13)

~(2.17) and the structure equations (2.18)~(2.24) with ¢=4 which will be
very useful.

Now we put in each nerghborhood U of M
(3.21) 05=0s EgES, ¢2=¢°ES, ¢ =¢7E",

1Is a space of

(3.20)
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where, here and in the sequel, we denote the lifts of functions by the same
letters as those the given functions. Then, using (3.4), (3.8),(3.20) and (3.21)
and taking account of N§=N iEj, we obtaln

(3.22) prB" = gL B+ PN,
(3.23) ¢, N.=—3. B, +G. N,

‘Transvecting quﬁ to (3.22) and (8.23) respectively and using (8.13), (3.22) and
«(3.23) in the usual way, we can easily obtaln that

R N
b+ 820=0, ¢°85+875=0,
(3.24) b 0, ~b.b,=—0,
8,£5=0, £76,=0, §,£7=0, £, 47=0,
Poa= "Bopr Pox=Prco Pry™ —Dyar

where we have put gﬁﬁazgﬁggw, gbax:-qf)igyx, ¢5m=¢fgﬁa and géxy:qﬁigzy.

Applying the operator ?T:B’;Dﬁ to (3.22) and (3.23) respectively and making
use of (3.11), (2.14) (3.22) and (8.23), we also find

I ST N, o % I

Vr(bﬁ—éﬁar S & rﬁ+Arx¢)B Arﬁ’ Dy

A~ Lx y X x 7 o~ 1 a7 X ox .y
(3.25)  Veb=Agy 0y~ Ag O V0= Ap Py =450

Vb, =4, 6, A0

Also, applying the operator Vﬁ to (3.5) and taking account of (2.11) and
(8.14), we have

. . A~ _ X a0 . % o af &

(3. 26) Vﬁfﬂ—cﬁg, Aﬁa é' "'Qjﬁr Aﬁxg _éx!
which and «(3.9) and (3.21) imply

(3.27) B, = — I.

Moreover, in such a submanifold M, its Ricci equation is given by

. x XA 7T _ X AT
(3.28) Ko, =45 474, A

ibecause the ambient manifold s+l is g space of constant curvature.
Now we apply the operator Vszgﬁj:Ef?w to (3.4). Then, using (3.11) and



272 Jin Suk Pak
(3.12), we have
Ay,” NIEL+BIEN E.=B,E{(D EDBL+EE A,I N},
from which taking account of (38.92), (8.10) and (3.27),
A, 'NIE®—§°Ble =—¢IBig +(A, "EDN,
or using (3.20),

(3.29) A, "By =A,"ES+ €,
Transvecting (3.29) with E_f, and changing the index 7y with 5, we get
x X 0 0 x %
(3. 30) Ag, =4y, EgE +E§0,+E 95

with the help of (3.21) and (8. 25).
Applying the operator Vﬂ.:EZﬁ, to (3.30), we have

ETV A, =(V A, VEE+A,E(V EDES+A, "EET E;
+E, (V£ )8, +6 4E N, B, +E[(V, 80, +85E V£
from which, substituting (3.10) with kj = — ¢§, (3.25) and (3.26),
b b
Erv'r 50: T (VcAba x) E ﬁE fx - Aba xéc (EﬁE :r_l—EaE;) +¢rﬁE T¢, +¢ra c ¢B
4 x z 0 7 J
+§ gL (Araygﬁy — A o) +$ o E, (Arﬁ ¢; —4p x¢ﬁ) ’
or using (3.21) and (3.29),
~ b b b
3.3 E : VTA ﬁcrx = (VcAba x+¢cb¢:+¢m¢: ) E.SE; o (Aba x¢c +Abcx¢a

—4, yé;) (SﬁE;_l_E;Ea) +2(¢:¢;)$ﬁ6 at
4. Anti-invariant submanifeld of CP”"

If the transformation qu of any vector tangent to M is orthogonal to M, the-

submanifold M is said to be anti-invariant to CP". Then at any point PEM
we have

$(T ,(M)) LT (M),
and consequently
(4.1) B =

in the sense of (3. 20).
In this section we shall consider such a submanifold M of CP” that at any
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point PEM we have ¢(TP(M))_LTP(M). Then we first find from (2.16) and
(3.21)

(4.2) #9, =0,

(4. 3) @;:O
respectively. By means of (3.22) and (4.3) we can see that the submanifold M
2n+1 in the sense of (3.22).

Now we assume that the second fundamental tensor of M is parallel, i.e.,
V.4, “=0 and that the normal bundle N(M) of M is trivial. Then (2.24) with

1S also anti-invariant in S

¢=4 and ¢:=0 Imply
PsPay~BaBoytAse Auy=Aue A3y =0

from which, differentiating covariantly and using (2.19) and V cAbaxzo’ we find
Aoy B Bayt84ca By Aca 884y — B4 8., =0-

Transvecting the above equation with ¢j and using (4.2), we obtain 2(z—1)4,, ’gé;:

=0, which implies

(4. 4 A,°¢7=0
and consequently
(4.5) V$.=0, V,6,=0

with the help of (2.19).
We differentiate (4.2) covariantly along M. Then we have by using (4.5)

INAC
(Vdgéx)éy_’os
from which, trahsvecting with t;zfr: and taking account of (2.17),
Vd¢; T (Vc‘?ﬁi ) ¢f¢; =0.

On the other hand (chﬁi)gijgeﬁ; =0 because of (2.20), (4.2) and (4.4). Hence we
have

(4.6) V4, =0.

THEOREM 1. Let M be an anti-invariant submanifold of a complex projeciive
space CP" and n . M——M the submersion which is compalible with the Hopf-
fibration 82”+1———+CP”. If the second fundamental form of M is parallel and
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the normal conmection is flat, then the second fundamental form of M is also
paralled and, moreover, the normal counnection of M is flat.

PROOF. Under the our assumption, we can easily check that
7eS % _
ECVTAW =0
because of (3.31), (4.1), (4.2) and (4.4). Transvecting the above equation with
Eg gives
~ X __ 7 &5 x
(4.7 VaAﬁa =& & VﬁAm
& T & x

because VrAﬁa ——Vﬁ/-lm =0Q.

On the other hand, differentiating the second equation of (3.26) covariantly
and using (3.26) and (4.3), we obtain

(Ve4,, D¢ =V,

from which, taking account of (3.10) with k:=¢:=0, (3.21) and (4.5), we can
easily find

(4.8) (VA DE =0
Hence, from (4.7) and (4.8), we have

?TAZEI:O.

Next, in order to prove the second assertion we compute directly K By

ponents of the normal connection of M by using (3. 28) and (3.30).

X . X 0 2 % X c
A, Ap =(A,E E\+§ 8,48 6 (A, EGE; +& 8, +6°6,0)
which and (3.21) and (3.24) imply
X .0 2 48 b d X2 b c
Ara' AﬁyzAbe AdyErEﬁ+Abﬂ ¢yET€ﬁ+Ady¢ 3 Eﬁ_l_(qé é $§ Eﬁ_l-(ébéyd)ErEﬁ’
and consequently
b
Ara' ﬁy 5aAry_(AbeAdy_AdeAby+¢b¢yd ¢d¢yb)E rEB
+ (A= 43,0 (B 5= 6 Ep.

* com-

Hence we have
x X - d x b b
Krﬁy _Kbdy 2 Eﬁ+(vb¢y) (Ergﬁ _ErE ﬁ)

if the submanifold is anti-invariant in CP”, which and (4.6) imply our last
assertion. Thus we complete the proof of the theorem.
Combining Theorem A and Theorem B, we have
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THEOREM 2. Let M be a compact orientable anli-invariant submanifold of a

complex prejective space CP" of a real codimension p and w ' M——M the submer-

sion which is compatible with the Hopf-fibration 7 . st __cp”, If the second
fundamental form of M is parallel and the normal connection is flat. then

M=S'(r) X X8 1y 1D/~

2

2n+1—p:1'

where ri-l—---—l—r

Kyungpook University
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Korea
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