ON SOME TYPES OF AFFINE MOTIONS IN AFFINELY CONNECTED GENERALISED 2-RECURRENT SPACES-III

Kyungpook Math. J. Volume 18, Number 2 December, 1978

÷ •

By Kamalakant Sharma

1. Introduction

We consider a non-flat affinely connected generalised 2-recurrent space AG $\{2K_N\}$ with symmetric connection Γ^i_{jk} , curvature tensor $B^i_{jkl}(=-B^i_{jlk})$ and with β_k and a_{mn} as its respective vector and tensor of recurrence. Then

(1)
$$\nabla_n \nabla_m B^i_{jkl} = a_{mn} B^i_{jkl} + \beta_n \nabla_m B^i_{jkl}$$

where ∇ denotes covariant differentiation with respect to Γ_{jk}^{i} . Further, let the space admit an infinitesmall co-ordinate transformation. (1') $\bar{x}^{i} = x^{i} + \bar{\xi}^{i}(x) \delta t$ [δt being infinitesimal constant] satisfying the condition

(2)
$$\mathscr{L}\Gamma^{i}_{jk} = \nabla_{k}\nabla_{j}\xi^{i} + B^{i}_{jkl}\xi^{l} = 0,$$

where \mathcal{L} denotes Lie-derivative with respect to the above transformation.

Such transformations are called affine motions.

It is known [1] that the following relations hold in an $AG\{2K_N\}$ admitting affine motions:

(3)
$$C \cdot \nabla_{m} B^{i}_{jkl} + (\nabla_{m} C - C\beta_{m} - \xi^{t} a_{tm}) B^{i}_{jkl} = \nabla_{m} \xi_{t} \cdot \nabla_{t} B^{i}_{jkl}$$
(4)
$$\xi^{t} \nabla_{t} B^{i}_{jkl} = C B^{i}_{jkl}, \text{ where } C = f^{mn} A_{mn} \text{ and } A_{mn} = a_{mn} - a_{nm}.$$
(5)
$$\mathcal{L}^{2} B^{i}_{jkl} = 0 = \xi^{t} \nabla_{t} B^{i}_{jkl} - B^{t}_{jkl} \nabla_{t} \xi^{i} + B^{i}_{tkl} \nabla_{j} \xi^{t} + B^{i}_{jll} \nabla_{k} \xi^{t} + B^{i}_{jkl} \nabla_{l} \xi^{t}$$

(6)
$$\pounds c = \xi^m \nabla_m c = 0.$$

In an earlier paper [2] affine motions generated by a bi-recurrent vector field have been studied in an $AG\{2K_N\}$. The object of the present paper is to obtain further results on such affine motions generated by a bi-recurrent vector field.

2. Affine motions corresponding to a bi-recurrent vector field

We consider an affine motion generated by a bi-recurrent vector field ξ^i

a skew-symmetric tensor it follows from (2) and (7) that

(8)
$$\xi^{j} \nabla_{j} \xi^{t} = \xi^{j} B_{jmn}^{t} f^{mn} = f^{mn} (-B_{mnj}^{t} + B_{nmj}^{t}) \xi^{j} = f^{mn} [(\nabla_{n} \nabla_{m} - \nabla_{n} \nabla_{m}) \xi^{t}]$$

= $f^{mn} (S_{mn} - S_{nm}) \xi^{t} = F \xi^{t}$ where $F = f^{mn} (S_{mn} - S_{nm}).$

From (1'), (2) and (7) it follows that

(9)
$$S_{jk}\bar{\xi}^{i} + B_{jkl}^{i}\bar{\xi}^{l} = 0.$$

Multiplying (9) by ξ^k and summing over k, using $B_{ikl}^i \xi^k \xi^l = 0$, we get

$$S_{jk}\xi^{R} = 0.$$

Also, putting i = k, and summing over k in (9) and using (10) we obtain $B_{it}\xi^t = 0.$ (11)

Further, we know that $B_{kl}^{h} = -B_{kl} + B_{lk}$. Hence the contraction on *i* and *j* in (2) yield $\nabla_k \alpha = (B_{kl} - B_{lk}) \xi^l$ where $\alpha \stackrel{\text{def}}{=} \nabla_t \xi^t$, whence from (11) we get

(12)
$$\nabla_k \alpha = -B_{tk} \xi^t.$$

Operating $\nabla_l \nabla_j$ on (12) we get

$$\nabla_l \nabla_j \nabla_k \alpha = -\nabla_l \xi^t \cdot \nabla_j B_{tk} - \nabla_l B_{tk} \cdot \nabla_j \xi^t - \xi^t (\beta_l \nabla_j B_{tk} + a_{jl} B_{tk}) - S_{jl} \cdot B_{tk} \xi^t.$$

Making a commutator on j and 1, from the last formula, we get,

$$B_{jkl}^t \cdot \nabla_t \alpha = (A_{lj} + S_{lj} - S_{jl}) B_{tk} \xi^t - \xi^t (\beta_l \nabla_j B_{tk} - \beta_j \nabla_l B_{tk}).$$

Multiplying this by ξ' and summing over 1, using (9) and $\xi' \nabla_t \alpha = 0$ we obtain

$$[(A_{lj}+S_{lj}-S_{jl})\xi^{l}] B_{tk}\xi^{t} = \xi^{t}\xi^{l}(\beta_{l}\nabla_{j}B_{tk}-\beta_{j}\nabla_{l}B_{tk}).$$

Using (4) it follows from the above equation that,

(13)
$$[A_{ij}+S_{ij}-S_{jl}]\xi'+C\beta_{j}]B_{tk}\xi^{t}=d\xi'\nabla_{j}B_{tk} \text{ where } d=\xi'\beta_{t}.$$

Let us suppose that d=0, i.e. the vector of recurrence β_t of the space is

pseudo-orthogonal to the vector ξ^{t} generating the motion. Hence, from (13) it follows that we have the following two cases:

Case I.
$$B_{ik}\xi^{t}=0$$
.
Case I. $(A_{lj}+S_{lj}-S_{jl})\xi^{l}+C\beta_{j}=0$.
Case I. In this case we have not only $\nabla_{k}\alpha = \nabla_{k}\nabla_{l}\xi^{t} = -B_{lkl}^{t}\xi^{l} = (B_{kl}-B_{lk})\xi^{l}=0$.

.

On some Types of Affine Motions in Affinely Connected Generalised 2-Recurrent Spaces-III

303

but also,

get

(14)
$$S_{jk}\xi^{k} = S_{jk}\xi^{j} = 0.$$

Using the formula [3], (2.6)

(15)
$$A_{mt}B_{jkl}^{t} = a_{lt}B_{mkj}^{t} - a_{kt}B_{mlj}^{t} - a_{lj}B_{mk} + a_{kj}B_{ml} - A_{kl}A_{mj} + \beta_{k}\nabla_{l}A_{jm} - \beta_{l}\nabla_{k}A_{jm}.$$

Multiplying(15) by ξ^{m} and writing $A_{mt}\xi^{m} = \eta_{t}$, we get
(16) $\eta_{t}B_{jkl}^{t} = (S_{kj} - S_{jk})a_{lt}\xi^{t} + (S_{jl} - S_{lj})a_{kl}\xi^{t} - A_{kl}\eta_{j} + \xi^{m}(\beta_{k}\nabla_{l}A_{jm} - \beta_{l}\nabla_{k}A_{jm}).$
Multiplying (16) by ξ^{l} and using $\eta_{t}B_{jkl}^{t}\xi^{l} = -\eta_{t}\nabla_{k}\nabla_{j}\xi^{j} = -\eta_{t}S_{ik}\xi^{t} = 0$
($\therefore \eta_{t}\xi^{t} = 0$) and (15), we get
(17) $\eta_{j}\eta_{k} = (S_{jk} - S_{kj})a_{lt}\xi^{l}\xi^{t} - \beta_{k}\xi^{m}\xi^{t}\nabla_{l}A_{jm}.$
Also, we know that [[3], (2, 1)]
(18) $A_{mn}B_{jkl}^{i} = B_{tmn}^{i}B_{jkl}^{t} - B_{jmn}^{t}B_{tkl}^{i} + B_{kmn}^{t}B_{jlt}^{i} - B_{lmn}^{t}B_{jkl}^{i} + \beta_{m}\nabla_{n}B_{jkl}^{i} - \beta_{n}\nabla_{m}B_{jkl}^{i}.$
First operating ∇_{p} on (18) and then transvecting with $\xi^{p}\xi^{n}$, we get
(19) $\xi^{p} \cdot {}^{n}\nabla_{p}A_{mn} = C\eta_{m} + \beta_{m}a_{pn}\xi^{p}\xi^{n} + C\xi^{p}\nabla_{p}\beta_{m} - 2C^{2}\beta_{m}.$

(20)
$$\eta_j(\eta_k + C\beta_k) = (S_{jk} - S_{kj} - \beta_j\beta_k)a_{ll}\xi^l\xi^l + 2C^2\beta_j\beta_k - C\beta_k\xi^p\nabla_p\beta_j$$
.
Interchanging j and k and subtracting the resulting equation from it, we

$$C(\eta_j\beta_k - \eta_k\beta_j) = 2(S_{jk} - S_{kj})a_{ll}\xi^l\xi^l + C\xi^p(\beta_j\nabla_p\beta_k - \beta_k\nabla_p\beta_j).$$

Multiplying this equation by f^{jk} and summing over j and k, we get $0=2F a_{ll}\xi^{l}\xi^{t}$.

Since $F \neq 0$, we obtain, therefore,

$$a_{lt}\xi^{l}\xi^{t}=0.$$

Transvecting equation (3) with ξ^m and using (4), (6), (8) and d=0, we obtain

 $[C \cdot (C - F) - \xi^{i} \xi^{m} a_{tm}] B_{jkl}^{i} = 0$ which reduces in view of (21) to $C \cdot (C - F) \cdot B_{jkl}^{i} = 0$. But since $C \neq 0$, $C \neq F$ and $B_{jkl}^{i} \xi^{j} \neq 0$, the last relation is an impossible one.

304 Kamalakant Sharma

Hence, we deduce the following theorems:

THEOREM 1. If in an $AG\{2K_N\}$ the vector of recurrence of the space is pseudo-

orthogonal to the vector ξ^{t} generating an affine motion of the bi-recurrent from: given by $\nabla_{k} \nabla_{j} \xi^{i} = S_{jk} \xi^{i} (S_{jk} \neq a_{jk})$ then $B_{ik} \xi^{t} \neq 0$.

THEOREM 2. If an $AG\{2K_N\}$ admit an affine motion generated by a bi-recurrent vector field ξ^t and $B_{tk}\xi^t = 0$, then the vector ξ^t cannot be pseudo-orthogonal" to the vector of recurrence of the space. Case II. In this case by virtue of (10), we have $\eta_i + S_{li} \xi' + C \beta_i = 0.$ (22)Since $S_{il}\xi^j = \nabla_l \nabla_j \xi^j = \nabla_l \alpha$, the last formula can be written as $\eta_j + \nabla_j \alpha + C\beta_j = 0$ which reduces by virtue of (12) to $\eta_l - B_{il}\xi' + C\beta_l = 0.$ (23)Therefore, it follows from (22) and (23) that (24) $(B_{il} + S_{il})\xi^{j} = 0.$ Differentiating (24) covariantly twice, we have $\xi^{m}(\nabla_{n}\nabla_{k}S_{ml}+a_{kn}B_{ml}+\beta_{n}\nabla_{k}B_{ml})+\nabla_{n}(B_{ml}+S_{ml})\cdot\nabla_{k}\xi^{m}$ $+(B_{ml}+S_{ml})S_{kn}\xi^{m}+\nabla_{n}\xi^{m}\cdot\nabla_{k}(B_{ml}+S_{ml})=0.$ Making a commutator on n and k and using(24) we find $A_{bn}B_{ml}\xi^{m} + \xi^{m}(\beta_{n}\nabla_{b}B_{ml} - \beta_{b}\nabla_{n}B_{ml}) - B_{lbn}^{t}S_{ml}\xi^{m} - S_{ll}(-B_{bnm}^{t} + B_{nbm}^{t})\xi^{m} = 0.$ Using (2) this reuces to $A_{kn}B_{ml}\xi^{m} + \xi^{m}(\beta_{n}\nabla_{k}B_{ml} - \beta_{k}\nabla_{n}B_{ml}) - B_{lkn}^{t}S_{mt}\xi^{m} - S_{kn}S_{ll}\xi^{t} + S_{nk}S_{ll}\xi^{t} = 0.$ Using (24) in the last equaton, we get $(A_{kn} + S_{kn} - S_{nk})(\eta_{l} + C\beta_{l}) + B_{lkn}^{t}(\eta_{t} + C\beta_{l}) + \xi^{m}(\beta_{n}\nabla_{k}B_{ml} - \beta_{k}\nabla_{n}B_{ml}) = 0.$ Multiplying this by ξ^k and summing over k, using d=0, $\eta_t \xi^t=0$ and $B_{lbn}^{t}\xi^{k} = S_{ln}\xi^{t}, \text{ we get, } [(A_{bn} + S_{bn} - S_{nk})\xi^{k}](\eta_{l} + C\beta_{l}) + C\beta_{n}B_{ml}\xi^{m} = 0,$ which reduces by virtue of (23) to $[(A_{kn}+S_{kn}-S_{nk})\xi^k+C\beta_n](\eta_l+C\beta_l)=0.$ Since in this case $B_{tb}\xi^t \neq 0$ it follows from (23) and (12) that $\eta_l + C\beta_l \neq 0$. Contracting i and l in (5) we obtain

$$0 = \mathcal{L}B_{ib} = CB_{ib} + B_{ib} \nabla_i \xi^t + B_{ib} \nabla_b \xi^t.$$

$jR = jR = jR = iR + jS = jI + R^{-1}$

On some Types of Affine Motions in Affinely Connected 305 Generalised 2-Recurrent Spaces-III

Operating ∇_l to the last formula and using $B_{jt} \nabla_l \nabla_k \xi^t = B_{jt} \cdot S_{kl} \xi^t = 0$ obtained from (7) and (17) we get

$$B_{jk} \cdot \nabla_l C + C \cdot \nabla_l B_{jk} + \nabla_l B_{tk} \cdot \nabla_j \xi^t + S_{jl} \cdot B_{tk} \xi^t + \nabla_l B_{jl} \cdot \nabla_k \xi^t = 0.$$

Using (12) it follows from the above equation that

$$B_{jk} \cdot \nabla_l C + C \cdot \nabla_l B_{jk} + \nabla_l B_{tk} \cdot \nabla_j \xi^t + \nabla_l B_{jt} \cdot \nabla_k \xi^t - S_{jl} \cdot \nabla_k \alpha = 0.$$

Operation of ∇_m on the last formula and use of this formula and

$$a_{lm} \mathcal{L} B_{jk} = 0$$
 yield

$$B_{jk} \cdot \nabla_m \nabla_l C + \nabla_m B_{jk} \cdot \nabla_l C + \nabla_m C \cdot \nabla_l B_{jk} + S_{jm} \hat{\xi}^t \nabla_l B_{tk} + S_{km} \hat{\xi}^t \nabla_l B_{jt} \\ - \nabla_m S_{jl} \cdot \nabla_k \alpha - S_{jl} \cdot \nabla_m \nabla_k \alpha + \beta_m S_{jl} \cdot \nabla_k \alpha - \beta_m B_{jk} \cdot \nabla_l C = 0.$$

Multiplying this equation by ξ' and using (4), (6), (10), (11), (12), we get $(\xi^{l} \nabla_{m} \nabla_{l} C + C \cdot \nabla_{m} C) B_{jk} = (CS_{jm} + \xi^{l} \nabla_{m} S_{jl}) \cdot \nabla_{k} \alpha.$

Since $\nabla_m \mathscr{L}C = \nabla_m (\xi^l \nabla_l C) = \xi^l \nabla_m \nabla_l C + \nabla_l C \cdot \nabla_m \xi^l = 0$ the above equation reduces to

(25)
$$(C \cdot \nabla_m C - \nabla_l C \cdot \nabla_m \xi^l) B_{jk} = (CS_{jm} + \xi^l \nabla_m S_{jl}) \cdot \nabla_k \alpha.$$

If possible, let

(26)
$$C \cdot \nabla_m C - \nabla_l C \cdot \nabla_m \xi^l = 0.$$

Then from (25) we get $CS_{im} + \xi' \nabla_m S_{jl} = 0$.

Making use of (10) this can be expressed as $CS_{jm} = S_{jl} \cdot \nabla_m \xi^l$ which reduces on transvection with $\hat{\xi}^{j}$ to

(27)
$$C \cdot \nabla_m \alpha = \nabla_t \alpha \cdot \nabla_m \xi^t.$$

Multiplying (27) by a scalar function $C(\neq 0)$ and differentiating the last relation. covariantly, using $C\nabla_t \alpha \cdot \nabla_p \nabla_m \xi^t = CS_{mp} \xi^t \nabla_t \alpha = 0$, we get

(28)
$$2C \cdot \nabla_p C \cdot \nabla_m \alpha + C^2 \nabla_p \nabla_m \alpha = C \cdot \nabla_p \nabla_t \alpha \cdot \nabla_m \xi^t + C \cdot \nabla_p C \cdot \nabla_t \alpha \cdot \nabla_m \xi^t.$$

Contracting (28) with ξ^m and using (6), (8), we get

(29)
$$C^{2}\hat{\xi}^{m}\nabla_{p}\nabla_{m}\alpha = C \cdot F \cdot \hat{\xi}^{t}\nabla_{p}\nabla_{t}\alpha \quad [\because F \cdot \nabla_{p}C \cdot \hat{\xi}t\nabla t\alpha = 0];$$

on the other hand

$$\xi^{t} \nabla_{\alpha} \nabla_{\alpha} \alpha = \nabla_{\alpha} (\xi^{t} \nabla_{\alpha}^{\alpha}) - \nabla_{\alpha} \alpha \cdot \nabla_{\alpha} \xi^{t} = -\nabla_{\alpha} \cdot \nabla_{\alpha} \xi^{t};$$

m't' m's't' t' m's't' m's' t' m's'

306 Kamalakant Sharma

whence (29) reduces to $C \cdot (C-F) \cdot \nabla_m \alpha \cdot \nabla_p \hat{\xi}^m = 0$. But in general $C \neq 0$, $C \neq F$, therefore, $\nabla_m \alpha \cdot \nabla_p \hat{\xi}^m = 0$. Using this into (27) we have $C \cdot \nabla_p \alpha = 0$. Since $C \neq 0$, we obtain, therefore, $\nabla_p \alpha = 0$ or $B_{tk} \hat{\xi}^t = 0$ (by (12)) which contradicts our assumption that $B_{tk} \hat{\xi}^t \neq 0$. So, $C \cdot \nabla_m C - \nabla_i C \cdot \nabla_m \hat{\xi}^d \neq 0$; whence, from (25) we can express the Ricei-tensor B_{jk} as (30) $B_{jk} = \lambda_j \cdot \nabla_k \alpha$.

Thus, we have the following theorem:

THEOREM 3. If in an $AG\{2K_N\}$ the vector of recurrence β_i is pseudo-orthogonal to the vector ξ^t generating an affine motion of bi-recurrent form given by $\nabla_k \nabla_j \xi^i$ $=S_{jk} \xi^i (S_{jk} \neq a_{jk})$ then the Ricci-tensor B_{jk} can be resolved as $\lambda_j \cdot \nabla_k \alpha$ where $\alpha = \nabla_t \xi^t$ with the use of a covariant vector λ_j , provided $(A_{mn} + S_{mn} - S_{nm})\xi^m + C\beta_n = 0$.

3. Some consequences

If $\beta_n = 0$, the space $AG\{2K_N\}$ becomes a bi-recurrent space. In this case d is automatically zero. Hence, theorems (1) and (2) of Takano and Imai [4] become particular cases of our theorems (1) and (3).

Acknowledgement In conclusion, I acknowledge my grateful thanks to prof. M. C. Chaki for suggesting the problem and for his help and guidance in the preparation of this paper.

> C/O prof. M. C. Chaki 27 Shashibhusan De street Calcutta, India

REFERENCES

- [1] K.Sharma, On some types of affine motions in affinely connected generalised 2-recurrent spaces, To appear.
- [2] K. Sharma, On some types of affine motions in affinely connected generalised 2recurrent spaces II, to appear.
- [3] K. Sharma, On affinely connected generalised 2-recurrent spaces Π , to appear. [4] K. Takano and T. Imai, On some types of affine motions in bi-recurrent spaces Π ,

Tensor N.S. 23 (1972), 309-313.