ON A FUNDAMENTAL THEOREM FOR EXPECTATION

By Kong-Ming Chong

It is a fundamental fact in probability theory that the abstract integral of a random variable with respect to a probability measure can be expressed as a Lebesgue Stieltjes integral on the real line [1, Proposition a, p. 166]. This result has an analogue for random vectors which assume values in the real n-dimensional Euclidean space R^{n} [1, p. 169]. In this note, via the notion of equidistributivity, we give a unified approach to these results, showing that these two results, one seemingly more general than the other, are in fact equivalent.

In what follows, inequalities between n-vectors in R^{n} are defined componentwise.

For any probability space (Ω, α, P), we denote by $M(\Omega, \alpha, P)$ the collection of all real valued finite random variables on (Ω, α, P). If $n \geq 1$ is an integer, let $M^{n}(\Omega, \propto, P)$ denote the Cartesian product of $M(\Omega, \propto, P)$ with itself n times. Let $\left(\Omega^{\prime}, O \varkappa^{\prime}, P^{\prime}\right)$ be another probability space. Two random vectors $\underset{\sim}{X} \in M^{n}(\Omega$, $\sigma, P)$ and $\underset{\sim}{Y} \in M^{n}\left(\Omega^{\prime}, \iota^{\prime}, P^{\prime}\right)$ are said to be equidistributed (written $\underset{\sim}{X} \sim \underset{\sim}{Y}$) with respect to the probability measures P and P^{\prime} whenever they have the same joint distribution functions, i. e.,

$$
\begin{equation*}
P[\{\omega: \underset{\sim}{X}(\omega) \leq \underset{\sim}{x}\}]=P^{\prime}[\{\omega: \underset{\sim}{Y}(\omega) \leq \underset{\sim}{x}\}] \tag{1}
\end{equation*}
$$

for all n-vectors $\underset{\sim}{x} \in R^{n}$.
It is well known [1, p. 166 and p.169] that any given random vector $\underset{\sim}{X} \in M^{n}$ $(\Omega, O 九, P)$ induces on its range space a corresponding probability space $\left(R^{n}, \mathscr{B}^{n}\right.$, $P_{\underline{X}}$), where \mathscr{B}^{n} denotes the σ-field of all the n-dimensional Borel subsets of R^{n}, and $P_{X}: \mathscr{B}^{n} \rightarrow[0,1]$ (called the probability distribution of $\underset{\sim}{X}[1, \mathrm{p} .166]$) is the probability measure defined by

$$
\begin{equation*}
P_{\underline{X}}[B]=P[\underset{\sim}{X} \in B] \tag{2}
\end{equation*}
$$

for all $B \in \mathscr{B}^{n}$.
THEOREM 1. Two random vectors $\underset{\sim}{X} \in M^{n}(\Omega, o r, P)$ and $\underset{\sim}{Y} \in M^{n}\left(\Omega^{\prime}, O Z^{\prime}, P^{\prime}\right)$ are equidistributed if and only if

$$
\begin{equation*}
P[\underset{\sim}{X} \in B]=P^{\prime}[\underset{\sim}{Y} \in B] \tag{3}
\end{equation*}
$$

for all n-dimensional Borel subsets $B \subset R^{n}$, i.e., if and only if thoy induce the same probability distributions on R^{n}.

Proof. Clearly, the condition is sufficient.
Conversely, assume that $\underset{\sim}{X} \sim \underset{\sim}{Y}$. Let \mathscr{E} denote the collection of all finite disjoint unions of sets of the form $[\underset{\sim}{a}, \underset{\sim}{b})=\left\{\underset{\sim}{x} \in R^{n}: \underset{\sim}{a} \leq \underset{\sim}{x}<\underset{\sim}{b}\right\}$, where $\underset{\sim}{a}, \underset{\sim}{b} \in R^{n}, \underset{\sim}{a}<\underset{\sim}{b}$. Then it is easy to see that \mathscr{C} is a field (that is, closed under finite unions and complementation) and that it generates the Borel σ-field \mathscr{G}^{n} of R^{n}. Let $P_{\underline{X}}$ and $P_{\underset{\sim}{Y}}$ be the probability distributions of $\underset{\sim}{X}$ and $\underset{\sim}{Y}$ respectively, which are defined as in (2). Since $\underset{\sim}{X}$ and $\underset{\sim}{Y}$ are equidistributed, it is not hard to see that $P_{\underset{X}{X}}$ and $P_{\underset{\sim}{Y}}$ agree on sets of the form $\left[\underset{\sim}{a}, \underset{\sim}{b}\right.$), where $\underset{\sim}{a} \underset{\sim}{b} \in R^{n}, \underset{\sim}{a}<\underset{\sim}{b}$, and hence on all the sets in \mathscr{C}, by the additivity property of measures. Thus, by the extension theorem for measures [1, Theorem A, p. 87], we conclude that $P_{\underline{X}}$ and $P_{\underset{\sim}{Y}}$ agree on all the Borel sets in \mathscr{B}^{n}, i. e., condition (2) holds.

COROLLARY 2. If $\underset{\sim}{X} \in M^{n}(\Omega, o r, P)$ and $\underset{\sim}{Y} \in M^{n}\left(\Omega^{\prime}, o \iota^{\prime}, P^{\prime}\right)$ are equidistributed, then
(4)

$$
f(\underset{\sim}{X}) \sim f(\underset{\sim}{Y})
$$

for all Borel measurable functions $f: R^{n} \rightarrow R^{m}$ where m is any natural number not necessarily distinct from n.
PROOF. Let $B \subset R^{m}$ be an m-dimensional Borel set. Then $f^{-1}(B) \subset R^{n}$ is an n-dimensional Borel set, and so

$$
P\left[\underset{\sim}{X} \in f^{-1}(B)\right]=P^{\prime}\left[\underset{\sim}{Y} \in f^{-1}(B)\right] \text { or } P[f(\underset{\sim}{X}) \in B]=P^{\prime}[f(\underset{\sim}{Y}) \in B] .
$$

Hence $f(\underset{\sim}{X}) \sim f(\underset{\sim}{Y})$, by Theorem 1 .
COROLLARY 3. Let $\underset{\sim}{X} \in M^{n}(\Omega, o x, P)$ be any random variable and let $I: R^{n} \rightarrow R^{n}$ be the identity map of R^{n}. Then

$$
\begin{equation*}
\underset{\sim}{X} \sim I \tag{5}
\end{equation*}
$$

whenever R^{n} is provided with the probability (distribution) $P_{\underset{X}{X}}$ (of $\underset{\sim}{X}$) on its Borel σ-field \mathscr{B}^{n}.

Thus, if $f: R^{n} \rightarrow R^{m}$ is any Borel measurable function, then

$$
\begin{equation*}
f(\underset{\sim}{X}) \sim f \tag{6}
\end{equation*}
$$

with respect to the probability measures P and P_{X}.
PROOF. The assertion (5) is an immediate consequence of Theorem 1 and the
definition of $P_{\underline{X}}$, i.e., (3) and (2). With (5), the assertion (6) then follows directly from Corollary 2.

THEOREM 4. If $X \in M(\Omega, o 兀, P)$ and $Y \in M\left(\Omega^{\prime}, o \chi^{\prime}, P^{\prime}\right)$ are random variables which are equidistributed, then $E[X]=E[Y]$ in the sense that both sides may be infinite and that if either side is finite, so is the other and they are equal.

PROOF. Since it is clear from Corollary 2 that $X \sim Y$ implies both $X^{+} \sim Y^{+}$ and $X^{-} \sim Y^{-}$, where $X^{+}=X \vee 0$ and $X^{-}=(-X)^{+}$, we need only prove the assertion for nonnegative random variables X and Y such that $X \sim Y$.

Suppose $X \geq 0, Y \geq 0$ and $X \sim Y$. Then X and Y can be approximated respectively by an increasing sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ and $\left\{Y_{n}\right\}_{n=1}^{\infty}$ of elementary functions defined by

$$
X_{n}=\sum_{k=1}^{\infty} \frac{k}{2^{n}} I_{\left\{\frac{k}{2^{n}}<X \leq \frac{k+1}{2^{n}}\right\}}
$$

and similarly for $Y_{n}, n=1,2,3, \cdots$. But Theorem 1 implies that $P\left[\frac{k}{2^{n}}<X \leq\right.$ $\left.\frac{k+1}{2^{n}}\right]=P^{\prime}\left[\frac{k}{2^{n}}<Y \leq \frac{k+1}{2^{n}}\right]$ for all $k, n=1,2,3, \cdots$, and so $E\left[X_{n}\right]=E\left[Y_{n}\right]$. By the monotone convergence theorem, we therefore infer that $E[X]=E[Y]$.

COROLLARY 5. If $X \in M(\Omega, \circ, P)$ is any given random variable and if $f: R \rightarrow R$ is any Borel measurable function, then

$$
\begin{equation*}
E[f(X)]=\int_{R} f d P_{X}=\int_{-\infty}^{\infty} f(x) d F_{X}(x) \tag{7}
\end{equation*}
$$

where $F_{X}: R \rightarrow[0,1]$ is the distribution function of X, i.e., $F_{X}(x)=P[X \leq x]$, $x \in R$.

PROOF. The left-hand equality of (7) follows immediately from Corollary 3 and Theorem 4.

The right-hand equality of (7) is a consequence of the fact that P_{X} is the Lebesgue Stieltjes measure on R generated by F_{X} [1, p.167].

COROLLARY 6. If $\underset{\sim}{X} \in M^{n}(\Omega, o x, P)$ is a random vector and if $f: R^{n} \rightarrow R$ is any Borel measurable function, then

$$
\begin{equation*}
E[f(\underset{\sim}{X})]=\int_{R^{n}} f d P_{\underline{X}}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}, \cdots, x_{n}\right) d F_{\underline{X}}\left(x_{1}, x_{2}, \cdots, x_{n}\right) . \tag{8}
\end{equation*}
$$

PROOF. This follows as in Corollary 5 on noting that $P_{\underline{X}}$ is the Lebesgue Stieltjes measure on R^{n} generated by $F_{\underline{X}}[1$, p. 168].

REMARK. Theorem 4 and Corollary 5 are in fact equivalent, since Corollary 5 can be established on its own as in [1, Proposition a, p. 166] and Theorem 4 can then be derived as a particular case. In this way, Corollary 6 can be regarded as a particular case (and hence an equivalent form) of Corollary 5.

University of Malaya, Kuala Lumpur 22-11, Malaysia.

REFERENCE

[1] Loéve, M. Probability Theory, 2nd edition, Princeton, N.J., D.Van Nostrand Co., (1963).

