Kyungpook Math. J. Volume 18, Number 2 December, 1978

ON A FUNDAMENTAL THEOREM FOR EXPECTATION

By Kong-Ming Chong

It is a fundamental fact in probability theory that the abstract integral of a random variable with respect to a probability measure can be expressed as a Lebesgue Stieltjes integral on the real line [1, Proposition a, p. 166]. This result has an analogue for random vectors which assume values in the real *n*-dimensional Euclidean space R^n [1, p. 169]. In this note, via the notion of equidistributivity, we give a unified approach to these results, showing that these two results, one seemingly more general than the other, are in fact equivalent. In what follows, inequalities between *n*-vectors in R^n are defined componentwise.

For any probability space (Ω, \mathcal{A}, P) , we denote by $M(\Omega, \mathcal{A}, P)$ the collection of all real valued finite random variables on (Ω, \mathcal{A}, P) . If $n \ge 1$ is an integer, let $M^{n}(\Omega, \mathcal{O}, P)$ denote the Cartesian product of $M(\Omega, \mathcal{O}, P)$ with itself *n* times. Let $(\Omega', \mathcal{O}', P')$ be another probability space. Two random vectors $X \in M''(\Omega, \Omega)$

 (Ω, P) and $Y \in M^n(\Omega', \Omega', P')$ are said to be *equidistributed* (written $X \sim Y$) with respect to the probability measures P and P' whenever they have the same joint distribution functions, i.e.,

 $P[\{\omega: X(\omega) \leq x\}] = P'[\{\omega: Y(\omega) \leq x\}]$ (1)

for all *n*-vectors $x \in \mathbb{R}^n$.

It is well known [1, p. 166 and p. 169] that any given random vector $X \in M^n$ (Ω, \mathcal{O}, P) induces on its range space a corresponding probability space $(R^n, \mathscr{B}^n, \mathscr{B})$ P_X), where \mathscr{B}^n denotes the σ -field of all the *n*-dimensional Borel subsets of R^n , and $P_X: \mathscr{B}^n \to [0,1]$ (called the *probability distribution of* X = [1, p. 166]) is the probability measure defined by

 $P_X[B] = P[X \in B]$ (2)

for all $B \in \mathscr{B}^n$.

THEOREM 1. Two random vectors $X \in M^n(\Omega, \mathcal{O}, P)$ and $Y \in M^n(\Omega', \mathcal{O}', P')$ are equidistributed if and only if

308 Kong-Ming Chong

for all n-dimensional Borel subsets $B \subset \mathbb{R}^n$, i.e., if and only if they induce the same probability distributions on Rⁿ.

PROOF. Clearly, the condition is sufficient. Conversely, assume that $X \sim Y$. Let \mathscr{C} denote the collection of all finite

disjoint unions of sets of the form $[\underline{a}, \underline{b}] = \{\underline{x} \in \mathbb{R}^n : \underline{a} \leq \underline{x} \leq \underline{b}\}$, where $\underline{a}, \underline{b} \in \mathbb{R}^n, \underline{a} \leq \underline{b}$. Then it is easy to see that \mathscr{C} is a field (that is, closed under finite unions and complementation) and that it generates the Borel σ -field \mathscr{B}^n of \mathbb{R}^n . Let P_X and P_Y be the probability distributions of X and Y respectively, which are defined as in (2). Since X and Y are equidistributed, it is not hard to see that P_X and P_Y agree on sets of the form $[\underline{a}, \underline{b}]$, where $\underline{a}, \underline{b} \in \mathbb{R}^n$, $\underline{a} < \underline{b}$, and hence on all the sets in *C*, by the additivity property of measures. Thus, by the extension theorem for measures [1, Theorem A, p. 87], we conclude that P_X and P_Y agree on all the Borel sets in \mathscr{B}^n , i.e., condition (2) holds.

COROLLARY 2. If $X \in M^n(\Omega, \mathcal{O}, P)$ and $Y \in M^n(\Omega', \mathcal{O}', P')$ are equidistributed, then

$$(4) f(\underline{X}) \sim f(\underline{Y})$$

for all Borel measurable functions $f: R^n \rightarrow R^m$ where m is any natural number not necessarily distinct from n.

PROOF. Let $B \subset R^m$ be an *m*-dimensional Borel set. Then $f^{-1}(B) \subset R^n$ is an *n*-dimensional Borel set, and so

 $P[X \in f^{-1}(B)] = P'[Y \in f^{-1}(B)] \text{ or } P[f(X) \in B] = P'[f(Y) \in B].$ Hence $f(X) \sim f(Y)$, by Theorem 1.

COROLLARY 3. Let $X \in M^n(\Omega, \mathcal{O}, P)$ be any random variable and let $I : \mathbb{R}^n \to \mathbb{R}^n$ be the identity map of Rⁿ. Then

 $X \sim I$ (5)

whenever R^n is provided with the probability (distribution) P_X (of X) on its Borel σ -field \mathscr{B}^n .

Thus, if $f: R^n \rightarrow R^m$ is any Borel measurable function, then

 $f(X) \sim f$ (6)

with respect to the probability measures P and P_X . PROOF. The assertion (5) is an immediate consequence of Theorem 1 and the

On a Fundamental Theorem for Expectation 309

definition of $P_{\underline{X}}$, i.e., (3) and (2). With (5), the assertion (6) then follows directly from Corollary 2.

THEOREM 4. If $X \in M(\Omega, \Omega, P)$ and $Y \in M(\Omega', \Omega', P')$ are random variables which are equidistributed, then E[X] = E[Y] in the sense that both sides may be infinite and that if either side is finite, so is the other and they are equal. PROOF. Since it is clear from Corollary 2 that $X \sim Y$ implies both $X^+ \sim Y^+$

and $X^- \sim Y^-$, where $X^+ = X \lor 0$ and $X^- = (-X)^+$, we need only prove the assertion for nonnegative random variables X and Y such that $X \sim Y$.

Suppose $X \ge 0$, $Y \ge 0$ and $X \sim Y$. Then X and Y can be approximated respectively by an increasing sequence $\{X_n\}_{n=1}^{\infty}$ and $\{Y_n\}_{n=1}^{\infty}$ of elementary functions defined by

$$X_{n} = \sum_{k=1}^{\infty} \frac{k}{2^{n}} I_{\left\{\frac{k}{2^{n}} < X \le \frac{k+1}{2^{n}}\right\}}$$

and similarly for Y_n , $n=1,2,3,\cdots$. But Theorem 1 implies that $P\left[\frac{k}{2^n} < X \le \frac{k+1}{2^n}\right] = P'\left[\frac{k}{2^n} < Y \le \frac{k+1}{2^n}\right]$ for all $k, n=1,2,3,\cdots$, and so $E[X_n] = E[Y_n]$. By the monotone convergence theorem, we therefore infer that E[X] = E[Y].

COROLLARY 5. If $X \in M(\Omega, \alpha, P)$ is any given random variable and if $f : R \rightarrow R$ is any Borel measurable function, then

$$= \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty}$$

(7)
$$E[f(X)] = \int_{R} f \, dP_{X} = \int_{-\infty} f(x) \, dF_{X}(x)$$

where $F_X : R \to [0,1]$ is the distribution function of X, i.e., $F_X(x) = P[X \le x]$, $x \in R$.

PROOF. The left-hand equality of (7) follows immediately from Corollary 3 and Theorem 4.

The right-hand equality of (7) is a consequence of the fact that P_X is the Lebesgue Stieltjes measure on R generated by F_X [1, p.167].

COROLLARY 6. If $X \in M^n(\Omega, \mathcal{O}, P)$ is a random vector and if $f: \mathbb{R}^n \to \mathbb{R}$ is any Borel measurable function, then

(8)
$$E[f(\underline{X})] = \int_{R^n} f \, dP_{\underline{X}} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \cdots, x_n) \, dF_{\underline{X}}(x_1, x_2, \cdots, x_n).$$

PROOF. This follows as in Corollary 5 on noting that $P_{\underline{X}}$ is the Lebesgue Stieltjes measure on R^n generated by $F_{\underline{X}}$ [1, p.168].

310 Kong-Ming Chong

REMARK. Theorem 4 and Corollary 5 are in fact equivalent, since Corollary 5 can be established on its own as in [1, Proposition a, p. 166] and Theorem 4 can then be derived as a particular case. In this way, Corollary 6 can be regarded as a particular case (and hence an equivalent form) of Corollary 5.

University of Malaya,

Kuala Lumpur 22-11, Malaysia.

REFERENCE

[1] Loéve, M. Probability Theory, 2nd edition, Princeton, N.J., D.Van Nostrand Co., (1963).