1. 서언(序言)

우리나라의 축산업은 최근 10년간 놀라운 발전을 거듭하여 왔다. 국민소득의 1,000% 증가는 앞으로 축산물의 가공품 수익성 평가를 가져올 것이며 우리 축산인들의 역할이 중대하다 하겠다. 아울러 사료공업도 패질(量的) 점심(質的)으로 많은 발전을 하여야 할 것이다.

앞서 언급한 영국인과 사료기계주입에 관하여 상담(商談)을 나누어 그것이 있었던 사례화된 영국 일간지 한장을 보여 주었다. 영국의 그 유명한 '변' 공주가 준공테이프를 묶는 사진으로 미루어보아 최신 최대의 사료공장이라 그의 실명을 수구할 수 있었다. 공장의 능력은 일산 300톤 비용은 놀라운 (?) 250만불로서 한화로 12여 5천만원정도밖에 안되는 것이었다. 한국에는 이미 이과 같은 사료공장이 몇개 있으며 앞으로 수십개가 신진될 예정이라 하였나니 그는 매우 늘라는 것이었다.

필자는 여기서 한국의 사료공업의 규모 면에서 세계수준이라는 자부심을 가질 수 있었다. 그러나 사료의 품질과 생산시설과는 다른 요인이 더 작용한다.

한국의 사료과학과 기술, 배합사료의 품질이 선진국과 같은 대열에 섰음때 우리는 비로소 축산업진국 대열에 합류할 수 있는 것이라 하는데 생각이 미치지 못한 우울해 지지 않음을 알 수 없었다.

정부에서나 양축가들이나 모두 보다 우수한 배합사료를 생산하기를 원하고 있다.
그러나 수년전부터 행정당국의 사료가격
상단가시와 사료품질을 개선시키기 위해
여러 차례의 사료 성분항만 도노개정이 있었는
데도 1970년대 초반 보다도 덜 우수한 사료
가 생산되고 있다고 양축가들은 많은 광의
를 하고 있고 또한 사실인 것이 현실이다.

(표 1) 배합사료의 성분량한도 (양계사료부분)

<table>
<thead>
<tr>
<th></th>
<th>조 단백</th>
<th>조지방</th>
<th>Ca</th>
<th>P</th>
<th>조성유</th>
<th>조화분</th>
<th>ME (1 kg중)</th>
</tr>
</thead>
<tbody>
<tr>
<td>어린병아리 (6주이하)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>19</td>
<td>3</td>
<td>0.7</td>
<td>0.5</td>
<td>6</td>
<td>8</td>
<td>2,800</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>19</td>
<td>2.0</td>
<td>0.7</td>
<td>0.55</td>
<td>6</td>
<td>8</td>
<td>2,700</td>
</tr>
<tr>
<td>중봉아리 (7주 - 12주)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>16</td>
<td>3</td>
<td>0.7</td>
<td>0.5</td>
<td>6</td>
<td>9</td>
<td>2,700</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>15.5</td>
<td>2.0</td>
<td>0.7</td>
<td>0.55</td>
<td>6</td>
<td>9</td>
<td>2,700</td>
</tr>
<tr>
<td>큰봉아리 (13주 - 초상)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>12</td>
<td>3</td>
<td>0.4</td>
<td>0.4</td>
<td>75</td>
<td>9</td>
<td>2,760</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>14.5</td>
<td>2.0</td>
<td>0.45</td>
<td>0.40</td>
<td>8.0</td>
<td>9</td>
<td>2,500</td>
</tr>
<tr>
<td>산란초기 (초산 - 20주)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>15</td>
<td>3</td>
<td>2.5</td>
<td>0.5</td>
<td>6</td>
<td>13</td>
<td>2,700</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>15</td>
<td>2.0</td>
<td>2.5</td>
<td>0.55</td>
<td>6</td>
<td>13</td>
<td>2,600</td>
</tr>
<tr>
<td>산란중기 (21 - 35주)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>14.5</td>
<td>3</td>
<td>2.5</td>
<td>0.5</td>
<td>7</td>
<td>13</td>
<td>2,600</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산란말기 (35주이상)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>14</td>
<td>3</td>
<td>2.5</td>
<td>0.5</td>
<td>7</td>
<td>13</td>
<td>2,500</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>육계전기 (4 주이하)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>19</td>
<td>3</td>
<td>0.7</td>
<td>0.5</td>
<td>6</td>
<td>8</td>
<td>2,800</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>19</td>
<td>2.0</td>
<td>0.7</td>
<td>0.55</td>
<td>6</td>
<td>8</td>
<td>2,700</td>
</tr>
<tr>
<td>육계후기 (4 주이상)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>17</td>
<td>3</td>
<td>0.7</td>
<td>0.5</td>
<td>5.5</td>
<td>8</td>
<td>3,000</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(후기1)</td>
<td>(후기2)</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>일본</td>
<td>15</td>
<td>2</td>
<td>0.70</td>
<td>0.45</td>
<td>5.5</td>
<td>9</td>
<td>2,900</td>
</tr>
<tr>
<td>중계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재</td>
<td>15.5</td>
<td>3</td>
<td>2.5</td>
<td>0.5</td>
<td>7</td>
<td>13</td>
<td>2,600</td>
</tr>
<tr>
<td>총전</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>난영중계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>15.0</td>
<td>2.5</td>
<td>2.5</td>
<td>0.55</td>
<td>8</td>
<td>13</td>
<td>2,600</td>
</tr>
<tr>
<td>육영중계육성용</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>15.5</td>
<td>2.0</td>
<td>0.75</td>
<td>0.55</td>
<td>8</td>
<td>9</td>
<td>2,700</td>
</tr>
<tr>
<td>육영중계육성용</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>13.5</td>
<td>2.0</td>
<td>0.75</td>
<td>0.50</td>
<td>10</td>
<td>0</td>
<td>2,500</td>
</tr>
<tr>
<td>육영중계육성용</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>15.0</td>
<td>2.5</td>
<td>2.6</td>
<td>0.55</td>
<td>9.0</td>
<td>13</td>
<td>2,500</td>
</tr>
</tbody>
</table>
배합사료 공장은 수없이 많은데 그 품질의 특색은 찾기 어렵고 대동소이하다고 양계업자들은 말한다.
우수한 품종의 탐을 구입 사용하여도 그 생산성은 많이 떨어지고 있다고 분명하다.
사료공장 측에서는 또한 품계가 많아서 무糍부가 되는 일주이다.

2. 현재의 공정규격

우리나라는 배합사료의 공정규격을 농수산부에서 각계의 자문을 구하여 고시하며, 배합사료 공장은 이 규격에 맞추어 제품을 생산하고 있다.
특히 표 1에서 보는 바와 같이 금년부터는 종전보다 진범하여 조직, 항양, 전 및 대아에대치(M. E) 가소화양분총량(T. D. N.)을 새로 표기하고 있다.
원칙적으로 이렇게 자세한 사항을 표기하여 양축가에게 알려지는 것은 매우 바람직한 일이다. 그리고 이 수준은 상당히 높은 것이다.
그러나 여기서 몇 가지 상식적으로 지적할 문제점이 있다.
전산기술이 있어서 우수한 복서가 모두 타 스타일이 같은 것은 아니다. 접근점이 장기적인 선수가 있는가 하면, 신체적인 장점을 살려 아웃복성을 하는 사람이 세계 챔피언이 되기도 한다. 결과는 갈지만 과정은 같은 것이 아니다.
마찬가지로 사료의 성분, 영양할량 농여기간 및 방법도 나 다르고 각 종계장이 나 양축가에게 요구하는 사료프로그램이 아주 갱지는 않다. 이런 식학(碩學)이 그 수준을 결정 발표하여도 반드시 이의를 제기할 소지는 낭다 있다. 즉 미국의 N. R. C 사양표준 일본사양표준 스콧트 박사(美)의 사양전장량, 모리도 보사(日)의 사양표준등이 모두 다른 것이다. 이들 기관이나 학자들은 모두 권위 있고 훈훈한으로 세계적으로 많이 이용되고 있으나 각기 사양전, 품품, 시험조건 등의 상이하므로 차이가 있는 것이다. 한수의 징계 폐쇄적으로 정답이 하나가 아니고 여러개가 될 수 있다는 편법한 상식이 너무 무시되며는 안 된다고 생각한다.

한국에는 아직 사양표준이 제정되어 있지 않다. 사양표준은 중앙 국내 원료사료의성분성분성도에 대응되고 있지 않는 상태이다.
양적으로 국제수준에 도달하고 있는 한국사료공업이 허술한 기초와에 등장하게 건립될 가능성이 있다면 이는 위험한 일이며, 기초가 허술한 가운데 국내 배합사료의 품질수준이 외건(수지상) 외국 보다 앞선다고 판단하는 것은 차마히 허구가 될 수 있는 것이다. 신학협동이 빠지 이루어져서 우수한 과학기술에 사료공업이 저질 수 있어야 하겠고 품질에 대한 연구없이 완전채택하는데 치달는 것은 바람직하지 못하다고 하겠다.

3. 일본의 사료공정규격의 비교

가까운 일본은 한국에서 눈에 띄는 많은 참고 자료를 수는 나라이다. 현실적으로
불법 위기는 자금면에서나 기술면에서나 뒤를 막고 있기 때문에 일본의 사료공정구격이 한국의 사료성분량 안고고시에 많은 영향을 주고 있음을 부인할 필요는 없다는 것이다.

현재 사료성분량안도는 일본과 비교하여 불법 어느 범위에 큰 범위 산란조기육계전기, 후기가 모두 ME가 100Kcal/kg 측 높다. 일본보다 품질이 우수한 사료가 생산되기를 바라는 소망의 결과일지도 모름. 충분한 이론적인 근거에 작성되었을지라도 모의는 하지 못하고, 경질을 단체에 맡겨 적극적으로 특부하게 된다. 다음에서 설명하였지만 일체로 육수수의 가격은 안정기금 및 품질성격화 과정으로 일본보다 매우 비싸형평이다. 금년도의 육수수 가격은 일본보다 평균 품당 20W (10,000원) 정도 고가로 구입한 것이 되었는데, 제일 간단히 에너지원인 육수수를 일본보다 15% 이상 비싸게 구매해야 한다. 큰 구매정렬이 없는 일본과 판매가격이 같거나 저렴할 때 더 우수한 사료의 생산은 어려울 것이라고 본다.

일본의 사료성분규격은 한국이 산란재의 경우 종류 포함해서 4 종분에 일본은 5종으로 특사료제가 엄격을 두고 있는것 같는데, 이는 그 나라의 필요에 의하여 충분한 과학적인 근거가 가지고 성과를 얻으려는 노력의 일환으로 보여진다.

또한 금년부터 육계후기 II (완성면) 사료의 품질로 인하여 그 뒤에 발표된 백합사료의 첨가사료 사용 제한 조치에서 육계육자들은 충하 1주일간 급여같 사료가 없어 지는 모순이 나타났다. 선진국의 경우 미국에서는 공해를 일으켜 육계완성용 사료를 휴약사료로 하여 도살 5일 ~ 1주일전부터 급여하고 있으나 현실적으로 필요한 사료품목을 없애버린 결과가 되었다. 일부 사료공장의 악용(悪用) 때문이었는지 모르나 적어 잡으려고 초기상한 태우는 우(乳)를 밑에서로는 안된다고 본다.

4. 백합사료의 계절대환용 적용 권장

주지하는 바와 같이 한국의 사료성분량안도에 있어 산란계의 경우 3단계로 구분되어 있어 과레의 기별사양법(Phase Feeding) 이론이 도입되어 있다. 그러나 그 신규식이 최근 사양관리 이론에 어긋나고 있다는 점에 유의할 필요가 있다고 본다. 같은 산란철기라도 여름과 겨울에 급여하는 사료의 성분은 달라야 한다. 그 기본적인 이유가 단순하다. 여름에는 체온을 유지하는 에너지 요구는 줄어드는 대신 체조감각 감소로 하루에 필요한 양의 단백질을 섭취하기 위하여는 사료내의 단백질 및 비타민 무기물등의 함량을 높혀 주어야 한다.

(표 2) 백색테그혼종 산란계의 환경온도 및 산란기에는 있어 별량수준에 적합한 단백질함량

<table>
<thead>
<tr>
<th>EH에너지 kcal/kg</th>
<th>단백질요구량</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>산란조기 및 중기</td>
</tr>
<tr>
<td></td>
<td>볼, 가을, 여름</td>
</tr>
<tr>
<td>2.640</td>
<td>15.0</td>
</tr>
<tr>
<td>2.750</td>
<td>15.7</td>
</tr>
<tr>
<td>2.860</td>
<td>16.3</td>
</tr>
<tr>
<td>2.970</td>
<td>17.0</td>
</tr>
<tr>
<td>3.080</td>
<td>17.7</td>
</tr>
</tbody>
</table>

※ 산란조기 - 초상부터 42주까지까지 1일 요구단백질은 17g 기준
영양도비율: 볼 가을 297.7kcal/수, 여름 265 kcal/수
어름 300 kcal/수 (일평균 30만마리 기준）
자료: Feedstuff 1978, 6
표 2에서 보는 바와 같이 1978년도 미국의 사료에 의하면 사료의 에너지는 동일한 경우 여름사료는 보통 매년 10~15%의 단백질 수준을 증가시켜야 한다고 한다.

이 표가 신빙성이 있다고 볼 때 우리나라의 산란초기 사료는 조단백질 15%이상 M.E. 2700Kcal이상으로 표와 같은 여름용 사료를 제조하려면 최소한도 조단백질이 17%이상인 사료를 제조하여야 하는 문제점에 부딪히게 된다. 이는 현실적으로 불가능하며 ME2350Kcal의 사료나 조단백질 17%의 사료를 제조하여야 하는바 이로 공정규격을 위반하거나 원가상승으로 인한 저가 생산배근에 불가능한 것이다.

〈표 3〉 에너지함량에 따른 육계사료의 요구단백질수준

<table>
<thead>
<tr>
<th>대사에너지(M.E)</th>
<th>요구단백질수준%</th>
</tr>
</thead>
<tbody>
<tr>
<td>우계전기(0~6주)</td>
<td></td>
</tr>
<tr>
<td>2,750</td>
<td>20.8</td>
</tr>
<tr>
<td>2,860</td>
<td>21.7</td>
</tr>
<tr>
<td>2,970</td>
<td>22.5</td>
</tr>
<tr>
<td>3,080</td>
<td>23.3</td>
</tr>
<tr>
<td>3,190</td>
<td>24.2</td>
</tr>
<tr>
<td>3,300</td>
<td>25.0</td>
</tr>
<tr>
<td>우계후기(6주~출하)</td>
<td></td>
</tr>
<tr>
<td>2,860</td>
<td>19.0</td>
</tr>
<tr>
<td>2,970</td>
<td>20.0</td>
</tr>
<tr>
<td>3,080</td>
<td>20.5</td>
</tr>
<tr>
<td>3,190</td>
<td>21.2</td>
</tr>
<tr>
<td>3,300</td>
<td>22.0</td>
</tr>
<tr>
<td>3,410</td>
<td>22.7</td>
</tr>
</tbody>
</table>

이와 유사하게 육계사육에서도 이런 문제가 나온다. 필자는 과년 복중출하 목표로 약간의 육계를 사육하였는데 작년 여름과는 달리 유해없는 총량의 정마로 큰 곤육을 겪었으며 총중미달로 출하가 10일이라도 지연되어 매우 당황하였다.

남씨가 다수 닭이 병아리의 섭음은 거의 직설으로 급강하하고, 성장속도는 지연되었으며 사료효율도 나빠진 수밖에 없었다. 여름 사료는 농도가 질거나 캔트사료등으로 단시간내에 1티영양요구량을 섭취할 수 있어야 한다는 것을 절감한 한해였다.

도입우수 육용종 조생추의 경우 육계사료의 품질기준은 표 3과 유사하여야 하지 않을것은 너무. 무신 근거사료가 있는 것은 아니다. 미국에서 육종별 종계및 실용추는 표와 유사한 수준의 사료를 규정했을 가능성이 많기 때문이다.

국내의 육계사료는 조단백질 19%이상 ME 2,800Kcal이상으로서 표 3을 보며 조단백질 21.7%, ME2860Kcal의 기준을 적용하여야 하나 현실적으로 19%와 21.7%간에는 가격적으로 맞추수가 없는 것이 다.

후기사료의 경우 한국기준인 ME3,000Kcal에 적합한 사료의 조단백질 함량은 20%이나 한국의 기준은 17%로서 거기에 미치게 된다.

물론 일본의 경우는 의외로 조단백수준이 낮아 15%선에 머물고 있지만 미국에서 공연히 단백사료 자원을 남비할리도 없는 것 같아 사료효율 저하로 국가적인 손실이 일어나고 있는 것은 아니지 걱정이 된다. 이런 문제는 학계에서 해결 확인하여 주겠지마는 필자의 소견으로는 일본이나 미국 모두가 종합적인 사양시험으로 결정된 것은 확실히로 축산물의 시장가격 및 사료원료의 가격이, 사료공장 마다의 기술적인 전해차이등에 의하여 이 범위안에서는
어느 수준의 사료든지 일의대로 생산하는 것이 좋지 않을까 사료된다.

실제 필자나가 사람이 사료 중 육체적 6주까지 단백질 23% ME3,000cal 사료를 투여한 단백질 20% ME3,000cal 사료를 완전히 53일만에 2.2~2.3kg의 성장 중에 도달하여 사료효율이 2.0이하로 줄어
함으로서 다른 값싼 육체사료에 비하여 높은 이익을 올려볼 경험이 있다. 축산업자
업장에서는 계란 1개당 체중 1kg당 소요
되는 사료비가 문제이기 때문에 kg당 사료가격이 높고 낮은 문제에 대치하지 않음을 실
제로 경험하였다.

또한 육체사료의 급여기간도 전기 0~4주 후기 4주 이상으로 되어 있는 바 시
장가격이나 방어리의 품종간의 능력차이
로 인하여 이 급여기간이 절대적일 수는 없으리라고 본다.

수임계의 사료공장에서 같은 성분보증
표를 부착시키고 같은 성분 급여 계획을
강요시키는 것은 일방, 각 회사의 연구의
욕을 저하시키고 사료기술자들의 실망이
접점 쏟아지며, 양축가에 대한 기술지도
보급, 경제성의 향상에 대한 연구보다는
사세확장시책으로 오로지 판매조절의 완화
로 일정으로 경쟁하게 되고 있는 것이다.
외국의 경우 하루가 다르게 발견하는 가축

영양학의 최신정보를 입수하며도 활용할
길이 없다면 무대 없는 연구 배우와 무엇이
다른 것인가?

연구하는 기술자는 점점 줄어 들고, 사
료 사무원의 낭비되며 국가적인 차원에서도
손실이다. 배합사료---우수한 배합비용
적분, 원료 선택은 수 많은 요소--가격,
기후, 품종, 원료 종류에 따라 정답이 하
나가 아니라 수없이 많을 수 있다는 가능
성의 한 예로서 들여보았다.

5. 우리나라의 배합사료 가격

사료의 적정가격과 배합사료의 판매가
격은 일관 상관없이 없는 것처럼 보인다.

그러나 소율 금값으로 살 수는 없는 것
처럼 국제수준의 고영양사료 (고영양사료)
를 제조하도록 고심하였으나 당연히 적자생산을 하는 것을 용납할 사료제조 회
사는 없을 것이다.

(표 4) 일본과 한국의 평균 배합사료 가격비교

<table>
<thead>
<tr>
<th>년도</th>
<th>한국</th>
<th>일본</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>54,591</td>
<td>70,975</td>
</tr>
<tr>
<td>1974</td>
<td>59,950</td>
<td>105,415</td>
</tr>
<tr>
<td>1975</td>
<td>78,293</td>
<td>99,266</td>
</tr>
<tr>
<td>1976</td>
<td>89,213</td>
<td>105,066</td>
</tr>
</tbody>
</table>

자료: 설립조사, 1977 단위: 원

(표 5) 일본과 한국의 배합사료 종류별 가격

<table>
<thead>
<tr>
<th></th>
<th>어린병아리</th>
<th>중병아리</th>
<th>큰병아리</th>
<th>산란계</th>
<th>육체적</th>
<th>사육용</th>
<th>비육용</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>119.70</td>
<td>109.87</td>
<td>86.03</td>
<td>101.03</td>
<td>122.85</td>
<td>85.13</td>
<td>85.69</td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>162 (64.8%)</td>
<td>147.25</td>
<td>132.25</td>
<td>140.25</td>
<td>170.25</td>
<td>129.25</td>
<td>122.50</td>
<td>78%2월한개</td>
</tr>
</tbody>
</table>

※ 일본의 환율변동 및 시점차이로 합산가격에 오타가 있을 수 있음
자료: 사료협회(일본)
<table>
<thead>
<tr>
<th>구분</th>
<th>국명</th>
<th>오차범위 (초과 또는 미달하지 않은 것)</th>
</tr>
</thead>
<tbody>
<tr>
<td>수분</td>
<td>미국사료관리협회 미시시피주</td>
<td>성분보증량의 12%초과 또는 미달</td>
</tr>
<tr>
<td>단백질</td>
<td>한국</td>
<td>성분보증량의 5%미달</td>
</tr>
<tr>
<td>단백질 (0~19.99%)</td>
<td>조지아주</td>
<td>성분보증량의 2%+0.3</td>
</tr>
<tr>
<td>단백질 (20~34.99%)</td>
<td></td>
<td>2%+0.4</td>
</tr>
<tr>
<td>단백질 (35~49.99%)</td>
<td></td>
<td>2%+0.5</td>
</tr>
<tr>
<td>단백질 (50%이상)</td>
<td></td>
<td>2%+0.6</td>
</tr>
<tr>
<td>단백질</td>
<td>영국</td>
<td>1/10 이하</td>
</tr>
<tr>
<td>단백질</td>
<td>한국</td>
<td>0.36</td>
</tr>
<tr>
<td>비단백질 당</td>
<td>미국사료관리협회 미시시피주</td>
<td>성분보증량의 10%초과 또는 미달</td>
</tr>
<tr>
<td>염산</td>
<td>영국</td>
<td>성분보증량의 1.25% 또는 1/4 초과</td>
</tr>
<tr>
<td>비타민</td>
<td>미국사료관리협회 미시시피주</td>
<td>성분보증량의 13%미만</td>
</tr>
<tr>
<td>지방</td>
<td>미국사료관리협회 미시시피주</td>
<td>성분보증량의 14%초과</td>
</tr>
<tr>
<td>지방</td>
<td>조지아주</td>
<td>15%초과</td>
</tr>
<tr>
<td>지방</td>
<td>영국</td>
<td>0.75%</td>
</tr>
<tr>
<td>지방</td>
<td>한국</td>
<td>또는 1/10초과</td>
</tr>
<tr>
<td>저혈당류</td>
<td>미시시피주</td>
<td>0.20</td>
</tr>
<tr>
<td>저혈당류</td>
<td>조지아주</td>
<td>10%초과</td>
</tr>
<tr>
<td>저혈당류</td>
<td>영국</td>
<td>0.5%</td>
</tr>
<tr>
<td>저혈당류</td>
<td>한국</td>
<td>또는 1/8초과</td>
</tr>
<tr>
<td>의분비</td>
<td>미시시피주</td>
<td>성분보증량의 9%초과</td>
</tr>
<tr>
<td>의분비</td>
<td>한국</td>
<td>0.17%</td>
</tr>
<tr>
<td>녹화당</td>
<td>미시시피주</td>
<td>성분보증량의 10%초과 또는 미달</td>
</tr>
</tbody>
</table>
다음 표와 같이 일본의 사료가 견한 한국에 비하여 높은 바 공정규격시로 우리보다 현가가 낮을 수 있는 곳에서, 그 이유는 무엇인가? 일본보다 공정규격이 높다고 해서 한국의 사료물질이나 기술이 앞서 있다고 생각하는 양축가는 따로 없을 것이다.

6. 사료의 성분검사 및 분석요자

우리나라는 관계당국에서 수시로 사료 성분을 채취하여 분석 검사하므로 공정규격을 준수하고 있는가, 저질사료로, 생산하지 않는가의 여부를 검사하여 위반하였을 경우 응분의 행정조치를 취하여야 양축가를 보호하고 있다. 본인은 사료검사로 인하여 많은 양축가가 보호되고 있는데 전적으로 통감이며 앞으로도 당면된 국내사료 제조업자의 수준이 선진국 수준에 도달할 때까지는 어떤 형태로든 이런 제도가 필요하다고 본다.

다시 그 검사기준이 비과학적이고 양심적인 제조업자가 응징을 당하여야 한다고 생각한다.

(표 6)에서는 우리나라와 외국간의 사료분석입의 오차범위를 보여주고 있는바 우리나라의 경우 분석오차 범위가 너무 좁은 경향이 있는 것이다.

조단백질 성분분석의 경우 미국사료관협회는 5%수준의 분석오차를 인정하여 육계와 같이 단백수준이 높은 사료나 큰 병아리 사료와 같이 단백수준이 낮은 사료요도 공정하게 검사하고 있다. 이것은 사실 매우 합리적인 방안이라고 생각된다.

단백질 15% 사료의 경우 미국은 0.75%, 한국은 0.36%의 분석오차를 인정하고 있다.

결과로 대부분의 사료공장은 단백질 15%사료의 경우 15.5 - 16.0%로하여 제조하고 있다고 하는데 그 이유는 단백질사료의 과다투입으로 인한 손해보다는 행정조치가 더 엄격하고 타격이 크기 때문인 것 이며 일종의 낭비일 수도 있다.

배합사료에 단백질 원료가 많이 들어가면 좋은닭이 아니나 생각하는 양계업자가 있었지만 사료의 품질은 단순히 한 요소로만 결정되어지는 않는다. 에너지수준 기호성, 기타 미량 요소, 필수 아미노산 등 육도의 여러 요소가 잘 맞아야 하는 것이 다. 또한 반드시 배합사료 공장들이 경로 어본이나 양질의 박류로서 조합단백질을 공급하고 있다는 보장도 없는 것이다.

실제로 작년부터 산란계에서 많이 발생되는 요산작용증 같은 질병도 필자는 배합사료와 무슨 관계가 있는 것이 아닌가 우려할 때가 많았다. 이 질병의 큰 원인은 단백질 과다공급 특히 어분, 옥분, 혐백분 등이 원료를 과다사용시 발생빈도가 높다고 하는데 반면에 적자생산은 소화성사료이 양질이고 가가인 어분등을 많이 써서 발생한다고 보기에 좀 적게생산이 부족하기 때문이다.

국가적인 차원에서도 옵바른 공정규격이 제정되었을 때 그 수준에서 모든 사료 원료를 경감하여 가축생산성은 같이 원료를 절약하는 것이 유리할 것임은 자명한 사실이라 하겠다.

7. 결론 및 방안

이상 두서없이 현재의 사료성분 한도사항을 여러가지에서 검토하여 보았으나 필자만의 주장이 많이 섞여 있어 들릴 걸림도 없지 않아 있으리라고 보아진다.

그러나 이와 입출과의 관계로 표현하여도 과한 것이 없는 양축가와 사료공업은...
다함께 연구 발전하여 국가에 보답하여야 한다는 공동의 대명제를 알고 있다.
따라서 요점을 정리하여 보면

원칙적으로 사료의 성분, 급여기간등은 각각의 배합사료 제조회사가 자주적으로 연구 통용하는 것이 바람직하다 하겠다.

첫째 현재의 사료공정규격은 사료의 품질향상을 위하여 탄력적으로 운영되는 것이 바람직하며, 데모시 통록성분이 성분 한도보다 높을 경우 추가되는 사료원가를 인정하여 양질의 사료를 제조할 것이 보이므로 자격을 높이려는 노력도 한다.

둘째, 한국의 가축사향소로 그 순수성의 배합사료가 생산될수 있도록 유도한다.

셋째, 육체 외상용 사료등 휘약사료의 부활이 필요하다고 보며

넷째, 재질변조, 특히 흉기인 애들에 가축의 생산성을 지속시킬 수 있도록 탄력성을 보유하고, 판매가격을 구분도록 하며

다섯째, 가급적이면 배합사료가격의 자유화가 바람직하고 여의지 없음시 사료공장과 앙축가간의 재약생산 (주문사료) 방안이 강구되었으면 하며

여섯째로, 가축의 스트레스 사료, 펌프트사료등 특수사료를 생산하여 앙축가들에 경영성과가 향상되도록 하는 등을 생각해 볼 수 있다.

일곱째로 배합사료의 성분검사에서 분석오차 범위를 재정도하여 자원낭비를 막을 수 있어야 한다.

무엇보다도 앙축가들은 협력하며 협박하여야 하겠다. 어느 사업 이론간에 높은 기업이윤을 목표로 하여 열심히 노력하고 있는 것이 현실이기 때문이다.