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On the Numerical Evaluation of the Wave Paltern of a Havcloek Source*

Dong Kee Lee**

Abstract

A method of evaluating Kelvin  wave pattern is
presenled in this paper. The mathematical manipul-
ation of x-derivative of the Green function of the
Havelock source by the use of contour integration
on the complex plane has resulted in the expres-
sions that can be readily incorporated with computer
program. The efficiency and accuracy that can be
secured by the use of the present mathematical
expressions seem to be excellent when suitable
numerical quadratures are employed. The wave pat-
terns for particular submergences of the singularity
are presented.

Notation of Symbels in General Use

g ¢ Acceleration due to gravity

U : Speed of the free stream

K : Wave number (g/U%)

£+ Submerged distance of the singularity

x : Position vector of a field point (x={(x,»,2))

x’ : Position vector of the singularity (x"=(z’,3’,

=)

£ Wave clevation

it Imaginary unit (=+—D
i. Introduction

When the tow problem around a ship is formulated
with the assumption of ideal fluid, the field equation

turns out to be a Laplace equation of the velocity
potential. One way of solving this linear partial
differential equation is the use of integral solution
method, that is, the use of singularities based on
the solution of Poisson’s equation. If a floating body
problem is approached with this method, the free
surface demands distribution of singularities over
itself to restrict the flow within the limited space
out of the body and below the free surface, and at
the same time to satisfy the required boundary
condition. However this raises unwieldy difficulties
originating from the fact that its configuration
in association with the particular speed and geo-
metry of the body is by no means available in
advance.

These difliculties forced the early investigators to
introduce the approximation about the position of
application of Bernoulli’s equation and thereafter the
linearisation of the free surface boundary cordition.
If these simplifications are accepted, it is not absol-
utely nccessary to distribute singularities on the
free surface to restrict the fiow domain. Instead, it
would be more plausible to endow the property of
generating free surface to the singularity itself.
This is possible because the linearised frece surface
boundary condition resulted in the form of differen-
tial equation appears to be satisfiable by some func-
tion satisfying the fecld equation, i the suitable
form of solution of the homegeneous Poisson equa-

tion (Laplace equation) is added to its particular
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integral to make up the function. This means that
the free surface boundary condition is to be absorbed
as the built-in nature of the singularity. Such a
singularity has been customarily called a Havelock
source (or a Kelvin source) and the Green function
of this singularity has been constructed by a number
of investigators [1], (27, (3].

No doubt the comstruction of such a function is
a triumphant success in the field of the linearised
ship wave-making theory. Indeed it is accepted as
one of the fundamental solutions of the field equa-
tion. In contrast, however, the practical use of the
function has been quite a different matter because
of the complexity of its numerical evaluation. Alth-
ough this situation has been greatly altered with
the appearance of high speed computing machines,
it is still of indispensable requirement from both
economic and mathematical reasons to provide a
reliable and efficient means of obtaining the numer-
ical value.

Historically the evaluation of numerical values of
the function in the form of wave pattern has never
failed to arouse interests of naval architects and
considerable amount of efforts has duly been poured
into it. Wigley dealt with this problem but, because
of prohibitive amount of calculation, showed wave
profile along the centerline only, i.e. the path of
the singularity. More recently Adee (4], Standing
[5], Noblesse (6] and many others have considered
the problem. These recent investigations reflected
that the main attention has been shifted to the
mathematical manipulation of the function so that
the basis for the algorithm that could work with
best efficiency and accuracy may be provided.

It is the purpose of this paper to introduce one
method of such decompositions of the function,
an algorithm based on, which has proved to work
satisfactorily in both speed and accuracy.

A moving Cartesian coordinate system is employed
in this paper with its «-axis directed opposite to
the motion of the singularity (or equivalently
coincident with the free ‘stream), z-axis directed
vertically upwards and y-axis directed so as to

compose the mentioned coordinate system rig-
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ht-handed one, and with its origin located directly
above the singularity, at the undisturbed water

level.

2. The Wave Elevation

One of a number of alternative forms of the Green
function which satisfies the linearised free surface
boundary condition and the radiation condition is,
by Wehausen (7],

1

G(x;x’):~~l—m

[x—x']

4K £72 N J‘“ -iliﬂ-zl) o

Tz Jo sec*d 0 k-KsecZHCOSUe(I z’)
cosf)

cos(k(y—y")sind)dk do
+4K | et eKtansedt sin(K(z—az')
0
secf)
cos(K(y—y")sec?d sin®)dd (1)
where K=g/U*
x=(z,y,2)
x'=(z', 9y, 2")

x/=(z',y, —2')

with —eolz<{®, —ola/lw
—ooylw, —ooly oo
—oolzLl, —o0<2’<0

for the uniform onset velocity field with the mag-
nitude U in the positive z-direction. x denotes the
position vector of a field point and x’ that of the
source in the coordinate system fixed with respect
to the source.

The wave elevation which is consistent with the
approximation introduced for the derivation of the
above Green function is given by the expression

C(x,y>:%Gz[<x, ¥ 03 (2", 2]

the subscript z denoting partial derivative. With-
out losing generality, the position of the source can
be brought directly below the origin of the coordin-
ate system, ie. (z’,5,2)=(0,0, —£), f being the
submerged distance of the source from the undistu-
rbed waterplance. With this arrangement, the wave

elevation will be given by

) :% Gl(z, 3. 05 (0,0, — )] @
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Wave Pattern of a Havelock Source

The straightforward differentiation of eq. (1) shows
that

4K fz/zsecﬁf

/2
+4K2f: secfe Eseec’ cos (Kx sech) cos (Ky
sec?d sinf)dé

_ 2K x/2 i oo M__ke-_‘ir . _
—Tf_‘/zsecﬁ fo o Kaeci sin(kw)dkdo

Tz sin (kzcosd)
cos (kysin@)dk d6

’2

+2K2 f"/zsec%e‘K“ ecoos (Kitisec?0) d9

—‘,25 b © —ik ~k(f—ii

T o= _”Zsecb’ {Refo %—Ksectd © )dk] 46
72

+2K2f:/23ec30e" Rrsec’logs(Kwsec0)do 3

where @=xcosf+ysind
Because eq. (3) is an even function of 3y, it is su-
ficient to consider the region y>0 only.

3. Contour Integration

In view of the pole appearing in the inner integral
of the first term of eq. (3), use will be made of

the residue theorem. Defining the integral as I, i.e.

- I" ;’k_ ~Rf-iB
I= fo k—Ksec?d ¢ 'dk &Y

a suitable contour should be sought to manipulate
it. Consider a complex plane h, where

h=k+ik

=re'®

then the integral I will be, in general, of the form
kS xw)dh (5)

on this complex plane. If a contour is chosen so
that the integrand is analytic inside it and tends to
zero ot the large circular path, then the integral
I will be, from the Cauchy-Goursat theorem and the

residue theorem,

—— —kUf—iw)
I= f - Ksec‘0 dk

e e Ui giogy 4 Res(Ksec?9)

ﬁf —ire'?
T Jo ref?—Ksect

—i - re‘,,l‘((p «)
N i —
v fEtwle it Jo r—Ksec’d v f 2wl
+Res(Ksec?d) 6)
where a=tan"1(®@/f) and ¢ is the angle between
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the real axis and a radial line. As is obvious from
this expression, if ¢ is chosen identical to «, the
exponent will become a purely real quantity., Then,
Since v fi+mileit=f—iw,

~r

LTE e ret
f—zw 0 r— Kseczﬂ(f——zw)
+Res(K sec?d) ¢p)

Depending on the sign of @, the contour is chosen

according to the following two classifications.
A) When w>0

I

K sec?0 k.

Fig. 1. Contour of integration when @w>0

The contour shown in Fig.1 has been chosen to
ensure that the real part of the exponent of eq. (5)
is always negative on the large circular path R.
The angle ¢ is given by

g=tan " (@/f) ®

which is positive. The residue on the small half

circle p is
Res(Ksec?d) =nKsec2fe Kseclt/—iw) )]
B) When w<0
k'

k

Fig. 2. Contour of integration when <0

The contour is chosen in the fourth quadrant to

ensure that the integral eq. (5) will tend to zero on
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the circular path R. The angle ¢ is again given by
¢q. (3) and the residue is, in this case, because of
the negative direction of integration on the half
circle p,

Res(Ksec®) == —n Ksecife Keec®d /iw (10)

As is clear from eq. (9) and eq. (10), the residuc
is given by the identical expression in both cases
except for the sign and therefore the integral I may
be uniquely expressed taking the sign into account

as follows;

e A re’m :
I= S—iw fo = Ksec®0( f—iw) drtsgn(@)

aKsec fe Kseclif-in) an
where sgn(io) means

sgn{@)= 1if @w>0

sgn(@)=—1 if @w-20
The real pdrt of the integral I is

» - I\AZl\jSeL'U . —r
R“u)—f 2t fo (r—Kfsec®d) + K¥w'secs " ar

Fsgn (D) xKsectfe K /s lcos (Kasec™d) (12)

When @ is zero, Re(I) must vanish as is obvious
from eq. (3). This fact offers the limiting value of

the first term of eq. (12) when @ approaches zero,

ie.
BRI T R——
fitwt Jo K fsect B)2+Kwecc 97 r]ui;H)
= -n:Ksec~de‘K““ f
’ w - T )KfSL(;H_ JE— ~-r
L fi’q—ﬁf?’fc r—Kfsec®) Kizg'seciy ¢ dr] B0
=rKsec gg K e (13)

This result will be very useful in programming.
4. Change of Iatcgrating Parameciers

The substitution of eq. (12) intc cg. (3) vyields
the following expression for G

. ZK t/.)
G.=2E [

x

T

r —2Kf scc‘t)
—K fsec?d)*+ Ko o'secd

. i
. s _
+ R B ec f + ;

r—2K fscc
~r drdbl
(rffxfsu )2+ K> 0 isectd | dvd

’t/ g
-4K? ( sec“()e’Kfs“Z"cos(istec#/)(lﬂ
J o

D) j. 2 b ea
::E cosf - '--”"'fg’f

n Je fetw

re” drdd
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reos’—2K f

(reos?o— Ixfj FK'w

,"Kf W r
~xs2 OSU} gt e

rcos*0—2K f
(reos?d—K f )P+ K 2w* re

~ re Tdrdd

~rdrd

—’rﬂlKefe wscc%}e*Kf“‘z”cos(Kﬁ)sch())d&
where 6 is an angle which makes @W=zxcosf+y sind
zero, 1.e.
< =
=tan"*(~x/v). ( "6”2) (15)
Because of the discontinuity of the integrand as

shown by eq. (13,

divided into two parts in eq. (14).

the range of 6-integration is

To convert the integrals into more convenient
forms, the following transformations are made:

A) [or the first integral, let s be

s=sin -+

V' tyt
=sinl+a
where a=xz/ vz’ +y% then
=) == zcosd + ysingd
=z Y1~ +y(—a),
and s==0 and (1+a) when 0= and z/2 repectively;

B) for the second integral, let g be

g=—sind—

=—sinfd—a
then W=i,=x J1=(gFa)t—y(g+a), and =0 and
(1—a) when 0=6 and —xz/2 respectively;
C) for the last integral, let ¢ be
t=tanf
then scc?$=1+1¢
wsec 0= (x-+yt) ¥/ [ 1
and t==—z/y and o when =0 and =/2 respec-
tively.

Substituting these results into eq. (14), G: becomes

‘72[‘:[1”‘ wlr f""
Gi= v Jo  fitmEJe

ril—(G—a)?] 2K

T 0T - KA K T
oK fi7e @y -
«,",,_’gl*—(qra)ll 2K f drdo

1 (gra) K F 1+ K my
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+4K‘~’fw
ety

(z+ye)Jde (16

STt e B it oos (K T462

5. Individual Casecs

5.1 When y>0

A) when z<0
In this case a=&/ Jxi+y® is megative and hence
from eq. (16)

‘)Kf Fi(s)ds+- 2K fl»af+— s (s8)ds

cag [T VTR W cos (K VIR
—-X/y

(x4y2)1dt (17
where if s%0

T (11— (s—a)*]—2Kf
R = [ ot

- (G—a)—Kfi*+K* X

Wy r[1—(s+a)]—2Kf 'l
T e - (st —KfV+ K@
re~’dr (18a)
if s=0, Fi(0)=0 (18b)
and F(s)= f; [l :Lklsjib)z{]a)}é;z{(f K 2,
re”dr (19)
B) when z=0

Because a=:0 and #@;=--w,, the first two integrals
in eq. (16) cancel each other and therefore
Gumik? [T JTHEE 10 cos (Kt VIFE) .
20
C) when z>0

In this casc, a is positive and so, from eq. (16)

1-a ) }{ 1ta
&=ggfofﬂﬂﬂ+%ifpa??T“H@A
+4K? f VI K cos K V165
(x?yt,']dt 2D

where Fi(s) is given by ¢q. (18a) and cq. (18b), and

Fa(S):f: r[l—(s~a)~,‘—2Kf —ere”Tdr.

I Ga)t I =K Kaa®
It must be noted that the first two integrals of eq.

(22

(16) should be treated with care when @; and @
are noughts at the lower limits of the integrating
parameters s and g respectively, because in such

cases the two inner integrands have poles between

KB ECTEE 164 43R 1979% 12H

17

the integration range of r. However this trouble can
be overcome by suitable use of the known fact
shown by eq. (13) —suitable, because the part
corresponding to Re(I), eq. (12), has been altered
due to the series of manipulations stemming from
the second part of eq. (14).

As a way of doing this, if the first two integrals
of eq. (16) are combined on their overlapping
integrating intervals, as shown by the first terms of
eq. (17) and eq. (21) with the definition of Fi(s)
by eq. (18a), a careful study of eq. (13) reveals
that the combined integrand vanishes at the lower
integrating limit, i.e. F1(0)=0, which is the source
of trouble. Then the integrand Fi(s) becomes a
well-behaved function within the integrating interval.
The unoverlapped part of the integral, the second
terms of eq.
difficulty.

2 When y=0

A) when 2<0

(17) and eq. (21), pose no specific

In this case, @ is given Ly ®@W=uzcosf and from
eq. (1) @ is #/2. Then the first and third integrals
of eq. {14) vanish leaving the second integral only.
Hence, considering that the integrand is an even

function of 4,

4K [ s
G,= =)o cosf— f‘+w .
rcos’d—2K f

(reosty—K f)r+ Kt ¢ 4 4

4K w f“’
Tz fo firw? Jo

B i

using the transformation s=sind to cbtain the latter
expression, and then w=zx JI—s.

B) when =0

It is simplest to consider this case from eq. (3).
By the use of the transformaticn t=tan¢ with @=0,

G:=1K? f: 1 Kt gy, @5

C) when x>0

Because @ is —z/2 from c¢q. (15), the second
intepral of eq. (14) disappears, and because integr-
ands of the first and third integrals are even funct-

ions of ¢
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3. Wave Pattern (Source Submergence (. 98cm

20
T : =
4K [ w "
G;——Tfo cosd i fo
rcos?—2K f _
e T - r 0
(rcos®— K f)*+ K*w* re” dr d
‘TS.KZfZ secife K reec’tcos (Kwsectd)do
)
4K fl ,_f;tl_,__f""
=7 Jo Frat )
rd=s—2Kf “r dr ds
GU—s)—Kf+Km ¢ "
8K [ VI Peos(Ka v IFE) e/ 1 ds
(25)

with the transformation s=sing and f=tand in the

first and second integrals respectively to obtain the

latter expression for G.. @ is given by W=z V1—s

6. Remarks on the Computation and

Further Comments

The expressions for the z-derivative of the Green
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Fig. 4. Wave Pattern (Source Submergence 1.97em)

Netation cit

function given for the individual cases in the previ-
ous section can readily be used for numerical cale-
ulation of its value at an arbitrary point on the
water plane with some standard quadrature. The
most efficient integrating scheme adopted in the
quadrature may not be the same for each integral,
and this can be determined only by expecrience.

The merit of the chosen contour and the subseq-
uent developments seems to be that the evaluation
of the integrand is very economical. It is to be
noted that the poles not fully. removed by the
contour integration (see eq. 14) have been finally
removed in eq. 18

The examples of the actual numerical computation
are presented in the form of wave elevation, this
being obtained by eq. 2, in Table 1, Table 2, and
for better visual effect, in Fig. 3 and Fig. 4. The
wave contours could also be plotted if necessary.

The gencral appearance of the wave system seems
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quite realistic.

The inner of the double integrals has been evalu-
ated by Gauss-Laguerre quadrature and the outer hy
Clenshaw-Curtis method. A quadraturc based on
Simpson’s mcthod with interval subdivision proved
adequate for the evaluation of the single integral.

The time nceded to compute the value at a single
point depends on the position of the point, the
submergence of the source and the wave number.
On average, some fractions of a sccond of CUP time
was spent in the cases of the example presented.

The y-and z-derivatives of the Green function can
also be manipuiated in much the same fashion as
the z-derivative to provide the means of evaluating
the velocity components induced by the singularity.
Plotting the values of those derivatives however
would not suggest as direct analogy to the reality
as that of the z-derivative.

Quite apart from the manipulation of the Green
function, it scems definitely impractical to use the
singularity as the basic flow generating mechanism
for the ship wave-making problem by Hess and
Smith’s (8] type of approach at the present stage
of computing technology. The singularity and the
method of evaluating its flow inducing property just
cxist there perhaps waiting for the cheaper in CPU
time and faster computing machine. It should also
be born in mind that the singularity offers the
soluting of only the linearised problem to which the
reason of discrepancy between the experimental
results and the theoretical predictions is partially

attributed.
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