PROPERTIES OF ALMOST C-CONTINUOUS FUNCTIONS

BY TAKASHI NOIRI

1. Introduction

In 1970, Gentry and Hoyle [1] have introduced the concept of c-continuous functions which has been investigated by Long and Hendrix [4] and Long and Herrington [5]. In 1975, Long and Hamlett [3] have defined and studied the concept of H-continuity analogous to that of c-continuity. On the other hand, in 1968 Singal and Singal [8] have introduced a weak form of continuity called almost-continuity. Quite recently, Suk Geun Hwang [9] has introduced a new class of functions, called almost c-continuous functions, which contains the class of c-continuous functions and that of almost-continuous functions. The purpose of the present paper is to continue the investigation of almost c-continuous functions.

2. Preliminaries

Throughout the present paper spaces mean always topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be regular closed (regular open) if Cl(Int(A)) = A (resp. Int(Cl(A)) = A).

DEFINITION 2.1. A function f: X → Y is said to be c-continuous [1] if for each x ∈ X and each open neighborhood V of f(x) in Y such that Y - V is compact, there exists an open neighborhood U of x in X such that f(U) ⊂ V.

A subset S of a space X is said to be quasi H-closed relative to X [7] (simply quasi H-closed) if for every cover \{V_α | α ∈ V\} of S by open sets of X, there exists a finite subfamily \(V_0\) of \(V\) such that

\[S \subseteq \bigcup \{ \text{Cl}(V_α) | α ∈ V_0 \}. \]

DEFINITION 2.2. A function f: X → Y is said to be H-continuous [3] if for each x ∈ X and each open neighborhood V of f(x) such that Y - V is quasi H-closed, there exists an open neighborhood U of x such that f(U) ⊂ V.

DEFINITION 2.3. A function f: X → Y is said to be almost-continuous [8] if
for each \(x \in X \) and each open neighborhood \(V \) of \(f(x) \), there exists an open neighborhood \(U \) of \(x \) such that \(f(U) \subseteq \text{Int}(\text{Cl}(V)) \).

Definition 2.4. A function \(f: X \to Y \) is said to be *almost c-continuous* \([9]\) if for each \(x \in X \) and each open neighborhood \(V \) of \(f(x) \) such that \(Y - V \) is compact, there exists an open neighborhood \(U \) of \(x \) such that \(f(U) \subseteq \text{Int}(\text{Cl}(V)) \).

Almost-continuous functions are almost c-continuous but the converse is not true in general \([9, \text{Example}]\). The following theorem shows the relationships between the functions defined above.

Theorem 2.5. The following implications hold and none of these implications can, in general, be reversed:

\[
\text{continuity} \implies H\text{-continuity} \implies c\text{-continuity} \implies \text{almost c-continuity}.
\]

Proof. See \([3, \text{Example 3}; \text{Example 4}]\) and \([9, \text{Example}]\).

3. Strongly-closed graphs.

Let \(f: X \to Y \) be a function of a space \(X \) into a space \(Y \). The subset \(\{(x, f(x)) \mid x \in X\} \) of the product space \(X \times Y \) is called the graph of \(f \) and usually denoted by \(G(f) \).

Definition 3.1 The graph \(G(f) \) is said to be *strongly-closed* \([6]\) if for each \((x, y) \in G(f) \), there exist open sets \(U \subseteq X \) and \(V \subseteq Y \) containing \(x \) and \(y \), respectively, such that \([U \times \text{Cl}(V)] \cap G(f) = \emptyset \).

The following lemma is a useful characterization of functions with strongly-closed graphs.

Lemma 3.2 (Long and Herrington \([6]\)). The graph \(G(f) \) is strongly-closed if and only if for each \((x, y) \in G(f) \), there exist open sets \(U \subseteq X \) and \(V \subseteq Y \) containing \(x \) and \(y \), respectively, such that \(f(U) \cap \text{Cl}(V) = \emptyset \).

Theorem 3.3 If a function \(f: X \to Y \) has a strongly-closed graph, then it is \(H \)-continuous.

Proof. Suppose that \(G(f) \) is strongly-closed. Let \(K \) be any quasi-\(H \)-closed set of \(Y \) and \(x \in f^{-1}(K) \). For each \(y \in K \), \((x, y) \in G(f) \) and hence, by Lemma 3.2, there exist open sets \(U_y(x) \subseteq X \) and \(V(y) \subseteq Y \) containing \(x \) and \(y \), respectively, such that \(f(U_y(x)) \cap \text{Cl}(V(y)) = \emptyset \). Now, the family \(\{V(y) \mid y \in K\} \) is a cover of \(K \) by open sets of \(Y \). Hence there exists a finite subset \(K_0 \) of \(K \) such that \(K \subseteq \cup \{\text{Cl}(V(y)) \mid y \in K_0\} \). Put \(U = \cap \{U_y(x) \mid y \in K_0\} \). Then \(U \) is an open set of \(X \) containing \(x \) and \(U \cap f^{-1}(K) = \emptyset \). This shows that \(f^{-1}(K) \) is a closed set of \(X \). Therefore, it follows from Theorem 1 of \([3]\) that \(f \) is \(H \)-continuous.
Theorem 3.4. If Y is a locally compact Hausdorff space and $f: X \to Y$ is an almost c-continuous function, then $G(f)$ is strongly closed.

Proof. Let $(x, y) \in G(f)$. Then $y \neq f(x)$ and hence there exist disjoint open sets V_1 and V_2 containing y and $f(x)$, respectively. Since Y is locally compact Hausdorff, there exists an open set V of Y such that $y \in V \subseteq \text{Cl}(V) \subseteq V_1$, where $\text{Cl}(V)$ is compact. Since $\text{Cl}(V)$ is regular closed and compact in Y, the almost c-continuity of f implies that $f^{-1}(\text{Cl}(V))$ is closed in X [9, Theorem 1]. Put $U = X - f^{-1}(\text{Cl}(V))$. Then U is an open set containing x and $f(U) \cap \text{Cl}(V) = \emptyset$. Hence it follows from Lemma 3.2 that $G(f)$ is strongly closed.

As an immediate consequence of Theorem 2.5, Theorem 3.3 and Theorem 3.4 we have

Corollary 3.5. Let Y be a locally compact Hausdorff space. Then for a function $f: X \to Y$, the following are equivalent:

1. $G(f)$ is strongly closed.
2. f is H-continuous.
3. f is c-continuous.
4. f is almost c-continuous.

Theorem 3.6. If Y is a compact (compact Hausdorff) space and $f: X \to Y$ is an almost c-continuous function, then f is almost-continuous (resp. continuous).

Proof. Let F be any regular closed set of Y. Since Y is compact, F is compact and hence $f^{-1}(F)$ is closed in X [9, Theorem 1]. Therefore, it follows from Theorem 2.2 of [8] that f is almost-continuous. If Y is compact Hausdorff, then it is regular and hence f is continuous.

Corollary 3.7. Let Y be a compact Hausdorff space. Then, for a function $f: X \to Y$, the following are all equivalent:

1. f is continuous.
2. f is almost-continuous.
3. $G(f)$ is strongly closed.
4. f is H-continuous.
5. f is c-continuous.
6. f is almost c-continuous.

Proof. It is known that an almost-continuous function into a Hausdorff space has a strongly closed graph [6, Theorem 1]. Hence this is an immediate consequence of Theorem 3.6.

Theorem 13 of [4] states that if $f: X \to Y$ is an almost-continuous bijection and Y is a Hausdorff space, then $f^{-1}: Y \to X$ is c-continuous. We shall show...
that "almost-continuous" in this result can be replaced by "weakly-continuous". A function \(f: X \to Y \) is said to be weakly-continuous [2] if for each \(x \in X \) and each open neighborhood \(V \) of \(f(x) \), there exists an open neighborhood \(U \) of \(x \) such that \(f(U) \subseteq \text{Cl}(V) \). Every almost-continuous function is weakly-continuous but the converse is not true in general [8, Example 2.3].

Lemma 3.8 (Levine [2]). A function \(f: X \to Y \) is weakly-continuous if and only if \(f^{-1}(V) \subseteq \text{Int}[f^{-1}(\text{Cl}(V))] \) for every open set \(V \) of \(Y \).

Lemma 3.9. If \(f: X \to Y \) is a weakly-continuous function and \(K \) is a compact set of \(X \), then \(f(K) \) is quasi \(H \)-closed relative to \(Y \).

Proof. Let \(\{ V_\alpha \mid \alpha \in \mathcal{V} \} \) be any cover of \(f(K) \) by open sets of \(Y \). By Lemma 3.8, we have \(K \subseteq \bigcup \{ \text{Int}(f^{-1}(\text{Cl}(V_\alpha))) \mid \alpha \in \mathcal{V} \} \). Since \(K \) is compact, there exists a finite subfamily \(\mathcal{V}_0 \) of \(\mathcal{V} \) such that

\[
K \subseteq \bigcup \{ \text{Int}(f^{-1}(\text{Cl}(V_\alpha))) \mid \alpha \in \mathcal{V}_0 \}.
\]

Therefore, we obtain \(f(K) \subseteq \bigcup \{ \text{Cl}(V_\alpha) \mid \alpha \in \mathcal{V}_0 \} \). This shows that \(f(K) \) is quasi \(H \)-closed in \(Y \).

Theorem 3.10. If \(Y \) is a Hausdorff space and \(f: X \to Y \) is a weakly-continuous bijection, then \(f^{-1}: Y \to X \) is \(c \)-continuous.

Proof. Let \(K \) be any compact set of \(X \). Then by Lemma 3.9 \(f(K) \) is quasi \(H \)-closed relative to \(Y \). Since \(Y \) is Hausdorff, \((f^{-1})^{-1}(K) = f(K) \) is closed in \(Y \) [7, (2.5), p.161]. Therefore, it follows from Theorem 1 of [1] that \(f \) is \(c \)-continuous.

4. Product spaces.

Let \(\{ Y_\alpha \mid \alpha \in \mathcal{V} \} \) be any family of spaces and \(\prod Y_\alpha \) denote the product space. It is known that if \(Y_\alpha \) is locally compact Hausdorff and \(f_\alpha: X \to Y_\alpha \) is \(c \)-continuous for each \(\alpha \in \mathcal{V} \), then a function \(f: X \to \prod Y_\alpha \) defined by \(f(x) = \{ f_\alpha(x) \} \) is \(c \)-continuous [5, Theorem 2.1]. The following theorem is an improvement of this result.

Theorem 4.1. If \(Y_\alpha \) is a locally compact Hausdorff space and \(f_\alpha: X \to Y_\alpha \) is an almost \(c \)-continuous function for each \(\alpha \in \mathcal{V} \), then a function \(f: X \to \prod Y_\alpha \), defined by \(f(x) = \{ f_\alpha(x) \} \) for each \(x \in X \), is \(H \)-continuous.

Proof. Let \((x, y) \in G(f) \). Then \(y \neq f(x) \) and there exists \(\beta \in \mathcal{V} \) such that \(y_\beta \neq f_\beta(x) \). Since \(Y_\beta \) is locally compact Hausdorff and \(f_\beta: X \to Y_\beta \) is almost \(c \)-continuous, \(G(f_\beta) \) is strongly-closed by Theorem 3.4. Hence, by Lemma 3.2 there exist open sets \(U \subseteq X \) and \(V_\beta \subseteq Y_\beta \) containing \(x \) and \(y_\beta \), respectively,
such that \(f_\beta(U) \cap \text{Cl}(V_\beta) = \emptyset \). Put \(V = V_\beta \times \prod_{x \neq \beta} Y_x \), then \(V \) is an open set containing \(y \) and \(f(U) \cap \text{Cl}(V) = \emptyset \). Hence, by Lemma 3.2, \(G(f) \) is strongly \(\varepsilon \)-closed. It follows from Theorem 3.3 that \(f \) is \(H \)-continuous.

Corollary 4.2. If \(X \) is Hausdorff, \(Y \) is locally compact Hausdorff and \(f: X \to Y \) is almost \(c \)-continuous, then the graph function \(g: X \to X \times Y \), defined by \(g(x) = (x, f(x)) \) for each \(x \in X \), is \(H \)-continuous.

Proof. The identity function \(i_X: X \to X \) is continuous and \(X \) is Hausdorff. Hence it follows from Corollary of [6] that \(G(i_X) \) is strongly-closed. The proof is quite similar to that of Theorem 4.1.

Theorem 4.3. If \(Y_\alpha \) is a locally compact Hausdorff space and \(f_\alpha: X_\alpha \to Y_\alpha \) is an almost \(c \)-continuous function for each \(\alpha \in \mathcal{V} \), then a function \(f: \prod_{\alpha \in \mathcal{V}} X_\alpha \to \prod_{\alpha \in \mathcal{V}} Y_\alpha \), defined by \(f(\{x_\alpha\}) = \{f_\alpha(x_\alpha)\} \) for each \(\{x_\alpha\} \in \prod_{\alpha \in \mathcal{V}} X_\alpha \), is \(H \)-continuous.

Proof. Let \((x, y) \in G(f) \). Then \(y \neq f(x) \) and there exists \(\beta \in \mathcal{V} \) such that \(y_\beta \neq f_\beta(x_\beta) \). Since \(Y_\beta \) is locally compact Hausdorff and \(f_\beta \) is almost \(c \)-continuous, \(G(f_\beta) \) is strongly-closed by Theorem 3.4. Hence, by Lemma 3.2, there exist open sets \(U_\beta \subseteq X_\beta \) and \(V_\beta \subseteq Y_\beta \) containing \(x_\beta \) and \(y_\beta \), respectively, such that \(f_\beta(U_\beta) \cap \text{Cl}(V_\beta) = \emptyset \). Put

\[
U = U_\beta \times \prod_{x \neq \beta} X_x \quad \text{and} \quad V = V_\beta \times \prod_{x \neq \beta} Y_x.
\]

Then \(U \) and \(V \) are open sets containing \(x \) and \(y \), respectively, such that \(f(U) \cap \text{Cl}(V) = \emptyset \). This shows that \(G(f) \) is strongly-closed. Therefore, it follows from Theorem 3.3 that \(f \) is \(H \)-continuous.

5. Compact spaces.

For any space \((Y, \sigma)\) the family \(\mathcal{B} \) of regular open sets having compact complements forms a base for a new topology \(\sigma^* \) on \(Y \). The reason is that if \(U \) and \(\mathcal{V} \) belong to \(\mathcal{B} \), then \(U \cap \mathcal{V} \) is regular open and \(Y - (U \cap \mathcal{V}) = (Y - U) \cup (Y - \mathcal{V}) \) is compact. Let \(f: X \to (Y, \sigma) \) be a function and \(f^*: X \to (Y, \sigma^*) \) a function defined by \(f^*(x) = f(x) \) for each \(x \in X \). Then, it is obvious that \(f \) is almost \(c \)-continuous if and only if \(f^* \) is continuous. Since \(\sigma^* \subseteq \sigma \), the identity function \(i: (Y, \sigma) \to (Y, \sigma^*) \) is continuous and also \(i^{-1}: (Y, \sigma^*) \to (Y, \sigma) \) is almost \(c \)-continuous.

Theorem 5.1. For any space \((Y, \sigma)\), the space \((Y, \sigma^*)\) is compact.

Proof. Let \(\{V_\alpha | \alpha \in \mathcal{V}\} \) be any \(\sigma^* \)-open cover of \(Y \). Let \(y \in Y \). Then there exist an \(\alpha_0 \in \mathcal{V} \) and \(\mathcal{V} \in \mathcal{B} \) such that \(y \in V \subseteq V_{\alpha_0} \). Since \(Y - \mathcal{V} \) is compact in \((Y, \sigma)\), there exists a finite subfamily \(\mathcal{F}_0 \) of \(\mathcal{V} \) such that \(Y - \mathcal{V} \subseteq \bigcup \{V_\alpha | \alpha \in \mathcal{F}_0\} \).
Therefore, we have $Y = V_{e_0} \cup \bigcup \{ V_{\alpha} | \alpha \in V_0 \}$. This shows that (Y, σ^*) is compact.

Theorem 5.2. If (Y, σ) is a compact Hausdorff space, then (Y, σ^*) is Hausdorff and $\sigma^* = \sigma$.

Proof. Let y_1 and y_2 be a pair of distinct points of Y. Since (Y, σ) is Hausdorff, there exist disjoint σ-open sets V_1 and V_2 containing y_1 and y_2, respectively. Therefore, we have $\text{Int}(\text{Cl}(V_1)) \cap \text{Int}(\text{Cl}(V_2)) = \emptyset$ and $y_j \in V_j \subseteq \text{Int}(\text{Cl}(V_j))$, where $j = 1, 2$. Since (Y, σ) is compact, $Y - \text{Int}(\text{Cl}(V_j))$ is compact and $\text{Int}(\text{Cl}(V_j)) \in \sigma^*$. This shows that (Y, σ^*) is Hausdorff. Since compact Hausdorff spaces are minimal Hausdorff, we have $\sigma \subseteq \sigma^*$ and hence $\sigma = \sigma^*$.

Theorem 5.3. If (Y, σ^*) is Hausdorff, then (Y, σ) is compact and $\sigma^* = \sigma$.

Proof. Let $\{ V_\alpha | \alpha \in \mathcal{P} \}$ be any σ-open cover of Y. Since (Y, σ^*) is Hausdorff, there exist disjoint σ^*-open sets V_1 and V_2 such that $Y - V_j$ is compact in (Y, σ) for $j = 1, 2$. Hence there exists a finite subfamily \mathcal{P}_j of \mathcal{V} such that $Y - V_j \subseteq \bigcup \{ V_\alpha | \alpha \in \mathcal{P}_j \}$, where $j = 1, 2$.

Therefore, we obtain

$$Y = (Y - V_1) \cup (Y - V_2) = \bigcup \{ V_\alpha | \alpha \in \mathcal{P}_1 \cup \mathcal{P}_2 \}.$$

Hence (Y, σ) is compact. Since $\sigma^* \subseteq \sigma$ and (Y, σ^*) is Hausdorff, (Y, σ) is Hausdorff and hence minimal Hausdorff. Therefore, we obtain $\sigma^* = \sigma$.

Corollary 5.4. A space (Y, σ) is compact Hausdorff if and only if the space (Y, σ^*) is compact Hausdorff.

Proof. This is an immediate consequence of Theorem 5.2 and Theorem 5.3.

Corollary 5.5. If a function $f : X \to (Y, \sigma)$ is almost c-continuous and (Y, σ^*) is Hausdorff, then f is continuous.

Proof. Since (Y, σ^*) is Hausdorff, (Y, σ) is compact Hausdorff by Theorem 5.3. Hence it follows from Theorem 3.6 that f is continuous.

References

Properties of almost c–continuous functions

Yatsushiro College of Technology, Japan