ON COMPLEX CONFORMAL CONNECTIONS IN AN ALMOST COMPLEX MANIFOLD WITH A TORSION TENSOR

BY OK KYUNG YOON

§ 1. Introduction

Let \(M \) be an \(n \)-dimensional Riemannian manifold with metric tensor \(g_{ji} \). The change of the metric

\[
\tilde{g}_{ji} = e^{\varphi} g_{ji},
\]

where \(\varphi \) is a certain scalar function, does not change the angle between two vectors at a point and so is called a conformal change of the metric.

If there exists a function \(\varphi \) such that the Riemannian manifold with metric tensor \(e^{2\varphi} g_{ji} \) is locally Euclidean, the Riemannian manifold is said to be conformally flat.

It is well known (Weyl [1]) that the so-called Weyl conformal curvature tensor

\[
W^h_{\kappa j i} = K^h_{\kappa j i} + \delta^h_k C_{ji} - \delta^h_j C_{ki} + C^h_k g_{ji} - C^h_j g_{ki}
\]

is invariant under a conformal change of \(g \), where \(K^h_{\kappa j i} \) is the Riemann–Christoffel curvature tensor of \(M \) and

\[
C_{ji} = -\left(\frac{1}{n-2} \right) K_{ji} + \left(\frac{1}{2(n-1)(n-2)} \right) K g_{ji},
\]

\[
C^{h}_{k} = C^{sh}_{k}, \quad K_{ji} = K_{ij}^t, \quad K = g^{ji} K_{ji}
\]

and a necessary and sufficient condition for \(M \) to be conformally flat is that

\[
W^h_{\kappa j i} = 0 \quad \text{for} \quad n > 3
\]

and

\[
\nabla_{j} C_{ji} - \nabla_{j} C_{ki} = 0 \quad \text{for} \quad n = 3,
\]

\(\nabla_{j} \) denoting the operator of covariant differentiation with respect to Christoffel symbols formed with \(g \).

A complex analogue of the above in a Kaehler manifold is given by K. Yano (K. Yano [2]).

Received May 7, 1979
In a Kaehler manifold M with the Hermitian metric tensor g_{ij} and complex structure tensor F_{ij}, we have

$$V_k g_{ji} = 0, \ V_k F^k_{ij} = 0, \ V_k F_{ji} = 0,$$

where $F_{ij} = F_{ji} g_{st}$ and consequently $F_{ji} = -F_{ij}$.

The affine connection which satisfies

$$D_k e^s_{ji} = 0, \ D_k e^s_{F_{ji}} = 0$$

and torsion tensor

$$1/2 (F^h_{ji} - F^h_{ij}) = -E_{ji} q^h,$$

where p is a scalar function and q^h is a vector field, is given by

$$F^h_{ji} = \begin{bmatrix} h \\ j \\ i \\ \end{bmatrix} + p_j \partial_j^h + p_i \partial_i^h - p^h g_{ji} + q_j F^h_i + q_i F^h_j - q^h F_{ji},$$

where

$$p_i = \partial_i p, \ p^h = p_i g^h, \ q_i = -p_j F^i_j, \ q^h = q_i g^i.$$

For this connection called a complex conformal connection, K. Yano proved the following theorem:

If in an n-dimensional Kaehler manifold $(n \geq 4)$, there exists a scalar function p such that the complex conformal connection is of zero curvature, then the Bochner curvature tensor of the manifold vanishes.

Define C^h_{kji} by

$$C^h_{kji} = K^h_{kji} + \delta^h_{k} L^i_{ji} - \delta^h_{j} L^k_{li} + q_j L^h_{ki} - q_i L^h_{kj} + F^h_k M_{ji} - F^h_j M_{ki} + M^h_{k} F_{ji} - M^h_{j} F_{ki}$$

$$+ \left(\frac{2}{n+4} \right) V_{kj} F^h_i + F_{kj} B^i_j,$$

where

$$V_{kj} = 1/2 K_{kj} F^i_i,$$

$$M_{ji} = -K_{ji} F^i_i,$$

$$M_{ji} = - \frac{1}{2 (n-2)} (H_{ji} + H_{ij}) - \frac{1}{n+4} V_{ji} + \frac{1}{n^2 - 4} \left(\frac{n+1}{n+4} V - 1/2 K \right) F_{ji},$$

$$L_{ji} = M_{ji} F^i_i,$$

$$L^h_k = L^h_{ki} g^{ih}, \ M^h_{k} = M_{kj} g^{ih}, \ B^h_i = B_{kj} g^{ih},$$

$$B_{ji} = H_{ji} + n M_{ji} - 2 M_{ij} - \frac{1}{n+2} \left(\frac{1}{n+4} V + 1/2 K \right) F_{ji},$$

$$V = V^u F^u \text{ and } K = K^u g^{u}.$$
This tensor is called a complex conformal curvature tensor. The complex conformal curvature tensor \(C^{kijh} \) is invariant under a change of the complex conformal connection. (O.K. Yoon [5]).

A complex analogue of the above in an almost complex manifold with a torsion tensor is not yet known. The main purpose of the present paper is to try to find some properties concerning this problem. In § 2 we state some of fundamental formulas in an almost complex manifold with a torsion tensor to fix our notation and in § 3, we introduce what we call complex conformal connections in an almost complex manifold with a torsion tensor.

In § 4, we study the integrability condition for an almost complex manifold \(M \) with a torsion tensor, in § 5, we state some fundamental formulas, and in § 6 we study an invariant curvature tensor.

§ 2. Preliminaries

We consider an \(n \)-dimensional almost complex manifold \(M \) with a torsion tensor \(S_{ji}^h = \frac{1}{2}(\Gamma_{ji}^h - \Gamma_{ij}^h) \) which is covered by a system of coordinate neighborhoods \((U; \xi^h) \) and denote by \(g_{ji} \) and \(F_{ji}^h \) the components of the Hermitian metric tensor and those of the complex structure tensor of \(M \) respectively, where here and in the sequel the indices \(h, i, j, k, \ldots \) run over the range \(\{1, 2, \ldots, n\} \).

We denote by \(D_j \) the operator of covariant differentiation with respect to \(\Gamma_{ji}^h \), then the torsion tensor \(S_{ji}^h = \frac{1}{2}(\Gamma_{ji}^h - \Gamma_{ij}^h) \) is given by

\[
S_{ji}^h = -u^h F_{ji},
\]

where \(u^h \) are components of a vector field. Then, we have

\[
D_k g_{ji} = 0, \quad D_k F_{ji} = 0, \quad D_k F_{ji} = 0,
\]

where \(F_{ji} = F_{j'g_{si}} \) is skew symmetric.

Above all, we notice that an affine connection is symmetric, that is, which satisfies

\[
D_k g_{ji} = 0
\]

and whose torsion tensor

\[
1/2(\Gamma_{ji}^h - \Gamma_{ij}^h) = S_{ji}^h
\]

is uniquely determined and given by

\[
\Gamma_{ji}^h = \frac{1}{2} \left[\left[ji \right] + S_{ji}^h + S_{ji}^h + S_{ij}^h, \right.
\]

where (Hayden [6])

\[
S_{ji}^h = S_{ij}^k g_{ti}^k.
\]
So we have, for the components Γ^h_{ji} of affine connection in an almost complex manifold M with a torsion tensor $S_{ji}^h = -u^hF_{ji}$

\[(2.7) \quad \Gamma^h_{ji} = \{h\}_{ji} + u_jF^h_i + u_iF^h_j - u^hF_{ji},\]

where $\{h\}_{ji}$ are the Christoffel symbols formed with g_{ji} and

\[F^h_j = g^h_iF_{ij} = -F_{jg}^h = -F^h_j, \quad u_i = u^i g_{ii}.\]

We denote by

\[(2.8) \quad K_{kji}^h = \partial_k \{h\}_{ji} - \partial_j \{h\}_{ki} + \{h\}_{s} \{s\}_{ji} - \{h\}_{s} \{s\}_{ki},\]

the components of the Riemann–Christoffel curvature tensor of M, where $\partial_k = \partial/\partial x^k$.

It is well known that K_{kj}^i and $K_{kji}^h = K_{kji}^h g_{sh}$ satisfy

\[(2.9) \quad K_{kji}^h = -K_{kj}^i, \quad K_{kji}^h = -K_{kj}^i,\]

\[(2.10) \quad K_{kji}^h = K_{kji}^h,\]

\[(2.11) \quad K_{kji} + K_{jik} + K_{ijk} = 0\]

and

\[(2.12) \quad \nabla_v K_{kji}^h + \nabla_h K_{ji}^v + \nabla_j K_{ki}^h = 0,\]

\[(2.13) \quad \nabla_v K_{kji} = \nabla_v K_{ji} - \nabla_j K_{ki},\]

\[(2.14) \quad 2\nabla_v K_{ji} = \nabla_v K,\]

where

$K_{ji} = K_{ij} = K_{sji}^i$ and $K = g^{ji} K_{ji}$

are the Ricci tensor and the scalar curvature symbol $\{h\}_{ji}$, respectively.

§ 3. Integrability conditions

We consider the integrability conditions in an almost complex manifold M with a torsion tensor.

From (2.7), using $D_k F_{ji} = 0$, we have

\[D_k F_{ji} = \nabla_k F_{ji} - u_i g_{kj} + u_j g_{ki} - w_j F_{ki} + w_i F_{kj} = 0,\]

where $w_j = -u_j F^s_j$, consequently

\[(3.1) \quad \nabla_k F_{ji} = g_{kj} u_i - g_{ki} u_j - F_{kj} w_i + F_{ki} w_j.\]
On complex conformal connections in an almost complex manifold with a torsion tensor 75

Then, from the Ricci identity, we obtain

\begin{align*}
(3.2) \quad \nabla_i \nabla_j F_{ij} - \nabla_j \nabla_i F_{ij} &= K_{ik} F_{kj} - K_{k} F_{ij} \\
&= g_{kj} u_{li} - g_{lj} u_{ki} - g_{k} u_{ij} + g_{ij} u_{k} \\
&= F_{kj} w_{li} + F_{lj} w_{ki} + F_{k} w_{ij} - F_{ij} w_{k},
\end{align*}

where

\begin{align*}
(3.3) \quad u_{ji} &= \nabla_j u_{i} - u_{j} w_{i} + 1/2 \rho F_{ji}, \\
(3.4) \quad w_{ji} &= \nabla_j w_{i} - w_{j} w_{i} + 1/2 \rho g_{ji} = - u_{k} F_{ji}, \\
(3.5) \quad \rho = u_{k} g_{st} = w_{i} w_{s} g^{st}.
\end{align*}

If we define

\begin{align*}
(3.6) \quad K_{ij} F_{st} &= A_{ji}, \\
(3.7) \quad K_{j} F_{st} &= - H_{ji},
\end{align*}

then, from (2.9), (2.10) and (2.11), we have

\begin{align*}
(3.8) \quad K_{ij} F_{st} &= K_{ij} F_{st} = - 2 A_{ji}, \quad A_{ji} + A_{ij} = 0.
\end{align*}

And, from (3.2), we have also

\begin{align*}
(3.9) \quad A_{ji} - H_{ji} &= (n - 3) u_{ji} + u_{ij} + (u_{st} F_{st}) F_{ji},
\end{align*}

consequently

\begin{align*}
(3.10) \quad 2 A_{ji} - (H_{ji} - H_{ij}) &= (n - 4) (u_{ji} - u_{ij}) + 2 (u_{st} F_{st}) F_{ji}, \\
(3.11) \quad H_{ji} + H_{ij} &= - (n - 2) (u_{ji} + u_{ij}), \\
(3.12) \quad A - K &= 2 (n - 2) (u_{st} F_{st}),
\end{align*}

where \(A = u_{st} F_{st}, \quad K = K_{st} g^{st} = H_{st} F_{st}. \)

From (3.10), (3.11) and (3.12), we find

\begin{align*}
(3.13) \quad u_{ji} &= - \frac{1}{2(n-2)} (H_{ji} + H_{ij}) \\
&+ \frac{1}{2(n-4)} \left\{ 2 A_{ji} - (H_{ji} - H_{ij}) - \frac{A-K}{n-2} F_{ji} \right\} \quad \text{for } n > 4,
\end{align*}

\begin{align*}
(3.14) \quad 2 A_{ji} - (H_{ji} - H_{ij}) - \frac{A-K}{2} F_{ji} &= 0 \quad \text{for } n = 4.
\end{align*}

On the other hand, since the Nijenhuis tensor

\[N_{ij} = F_j^t (\partial_i F^{\hat{s}}_t - \partial_i F^t_{\hat{s}}) - F^t_i (\partial_j F^{\hat{s}}_t - \partial_j F^t_{\hat{s}}) \]
of the complex structure tensor F^h_i vanishes in virtue of (3.1), the complex structure tensor F^h_i be integrable.

Thus, we have

Proposition 3.1. In an n-dimensional Riemannian manifold $M(n \geq 4$, even number) with metric tensor g_{ji}, the necessary and sufficient condition such that the manifold M can be admissible an almost complex structure F^h_i which satisfies

$$D_k g_{ji} = 0, \quad D_k F^h_i = 0 \quad \text{and} \quad \Gamma^h_\ell_j - \Gamma^h_\ell_i = -2F^h ji$$

is follows;

$$K^h_{kjhl} = -K^h_{jkh}, \quad K^h_{kjh} = -K^h_{kjh}, \quad K^h_{kjh} = K^h_{jhk},$$

$$K^h_{kjh} + K^h_{jkh} + K^h_{jk} = 0,$$

and

$$K^h_{kjh} F^h_i - K^h_{khi} K^h_j = g_{kj} u_{hi} - g_{jh} u_{ki} + g_{hi} u_{kj} - F^h_{kj} w_{hi} + F^h_{ih} w_{kj} - F^h_{ji} w_{h},$$

where, $u_{ji} = \frac{1}{2(n-2)} (H_{ji} + H_{ij})$,

$$w_{ji} = u_{ji} F^h_i.$$

If $n=4$, the last condition can be replaced by

$$2A_{ji} - (H_{ji} - H_{ij}) - \frac{A - K}{2} F^h_{ji} = 0,$$

where

$$A_{ji} = K^h_{khi} F^h_i, \quad K^h_{ji} = K^h_{khi}, \quad H_{ji} = -K^h_{jih};$$

and

$$A = A^h_{st} F^h_{st}, \quad K = K^h_{st} g^h_{st}.$$

§ 4. Some formulas in an almost complex manifold M with a torsion tensor

We denote by

(4.1) \[R^h_{kji} = \partial_k \Gamma^h_\ell_j - \partial_\ell \Gamma^h_\ell_i + \Gamma^h_\ell_i \Gamma^h_\ell_j - \Gamma^h_\ell_j \Gamma^h_\ell_i; \]

the components of the curvature tensor of M.

By a straightforward computation, from (2.7), we find
On complex conformal connections in an almost complex manifold with a torsion tensor

(4.2) \[R_{kji} = K_{kji} - F_k^h u_{ji} + F_j^h u_{ki} - u_k^h F_{ji} + u_j^h F_{ki} + F_i^h (u_k - u_{jk} - u_{kj} - u_{ki}) - 2 F_k^j (u_i w^h - u_i w_j) + u_k (\delta_j^h u_i - g_j^h u^h + F_j^h w_i - F_j^h w_i + F_i^h w_j) - u_j (\delta_i^h u_i - g_i^h u^h + F_i^h w_i - F_i^h w_i + F_i^h w_k), \]

where \(w^h = w_{i} g^h \), from which \(R_{kji} = R_{kji}^s g_{sh} \) satisfy

(4.3) \[R_{kji} = -R_{jki}, \quad R_{kji} = -R_{kji}, \]

(4.4)

(4.5) \[R_{kji} + R_{jki} + R_{ikj} = -2 F_{kj} X_{(ij)} + 2 F_{ji} X_{(kh)} + 2 F_{ki} X_{(jh)} - 2 F_{kj} X_{(ih)} + 2 F_{ji} X_{(kh)} - 2 F_{ki} X_{(jh)}, \]

where \(X_{(ji)} = X_{ji} + X_{ij}, \quad X_{[ji]} = X_{ji} - X_{ij}, \)

and

(4.6) \[X_{ji} = u_{ji} + 2 u_{ij} w_i - u_{ij} w_j + (\delta/2) F_{ji}. \]

Using \(D_k F_{ji} = 0 \), from the Ricci identity, we have

(4.7) \[R_{kji} F_{k} = R_{kji} F_{ji}. \]

Now, if we define

(4.8) \[R_{tji} F_{ti} = -2 E_{ji}, \quad R_{jist} F_{st} = -2 V_{ji}, \quad R_{kji} F_{ki} = A_{ji}, \]

then, from (4.4) and (4.5), we have

(4.9) \[2 V_{ji} - 2 E_{ji} = -n X_{ji} + 2 X F_{ji}, \]

(4.10) \[A_{ji} - A_{ij} = 2 V_{ji} = 2 X_{ji} - 2 X F_{ji}, \]

(4.11) \[A_{ji} - E_{ji} = -(n - 2) X_{ji}, \]

where \(X = X_{ji} F_{ji} \), and consequently if we put

\[A = A_{ji} F_{ji}, \quad E = E_{ji} F_{ji} = V_{ji} F_{ji}, \]

then we have

(4.12) \[X = \frac{1}{n-2} (E - A). \]

From (4.11), we have

(4.13) \[X_{[ji]} = \frac{1}{n-2} \{ 2 E_{ji} - (A_{ji} - A_{ij}) \}, \quad X_{(ji)} = -\frac{1}{n-2} (A_{ji} + A_{ij}). \]
furthermore, eliminating X_{ji} from (4.9), (4.10) and (4.11) we have

$$n(A_{ji} - A_{ij}) - 4E_{ji} - 2(n - 2) V_{ji} + 2(E - A) F_{ji} = 0.$$

Substituting (4.11) and (4.13) into (4.4) and (4.4), we have

$$R_{kji} = -R_{kij} = \frac{1}{n - 2} \left\{ F_{kj} A_{(ji)} - F_{jk} A_{(ki)} + F_{ji} A_{(kh)} - F_{ki} A_{(jh)} - F_{ih} (A_{kj} - 2E_{kj}) + F_{kj} (A_{ih} - 2E_{ih}) \right\},$$

$$R_{kj} + R_{jik} + R_{ikj} = \frac{2}{n - 2} \left\{ F_{kj} (A_{ih} - E_{ih}) + F_{ji} (A_{kh} - E_{kh}) + F_{ik} (A_{jh} - E_{jh}) \right\}.$$

On the other hand, from the Bianchi identity, we have

$$D_i R_{kji} + D_k R_{jih} + D_j R_{ikh} = 2u^s (F_{ls} R_{sjih} + F_{kj} R_{slih} + F_{jl} R_{skih}),$$

hence, by contracting with F_{kj}, we obtain

$$u^s R_{slih} = \frac{1}{n - 2} (F_{ust} D_{slih} - D_{ti} E_{ih}).$$

Substituting (4.18) into (4.17), we have

$$D_i R_{kji} + D_k R_{jih} + D_j R_{ikh} = \frac{2}{n - 2} \left\{ F_{ls} (F_{ust} D_{slih} - D_{ti} E_{ih}) + F_{kj} (F_{ust} D_{slih} - D_{ti} E_{ih}) + F_{jl} (F_{ust} D_{tlih} - D_{ks} E_{ih}) \right\}.$$

Therefore, we have the following

Proposition 4.1. In an n-dimensional ($n \geq 4$) almost complex manifold M with Hermitian metric tensor g_{ji}, complex structure tensor F_i^h, the affine connection which satisfies

$$D_k g_{ji} = 0, \quad D_k F_{ji} = 0$$

and

$$\Gamma^h_{ji} - \Gamma^k_{ij} = -2F_{ji} u^h,$$

where u^h is a vector field, is given by

$$\Gamma^h_{ji} = \left\{ \begin{array}{l} h \\ j \end{array} \right\} + F^h_{jti} + F^h_{ij} - F_{ji} u^h.$$
On complex conformal connections in an almost complex manifold with a torsion tensor 79

Furthermore, for the curvature tensor, the following relations hold;
\[R_{kjih} = - R_{jikh}, \quad R_{kjih} = - R_{kjh}, \quad R_{kji} F^i_h = R_{kjh} F^i_h, \]
\[R_{kji} - R_{kjh} = \frac{1}{n-2} \{ F_{kh} A_{(ji)} - F_{jh} A_{(ki)} + F_{ji} A_{(kh)} - F_{ki} A_{(jh)} \}
- F_{ih} (A_{kj} - 2E_{kj}) + F_{kj} (A_{ih} - 2E_{ih}) \}
\]
\[R_{kjih} + R_{jikh} + R_{ikjh} = \frac{2}{n-2} \{ F_{kj} (A_{ih} - E_{ih}) + F_{ji} (A_{kh} - E_{kh}) + F_{ik} (A_{jh} - E_{jh}) \}, \]
\[nA_{ji} - 4E_{ji} - 2(n-2) V_{ji} + 2(E - A) F_{ji} = 0 \]

and
\[D_l R_{kjih} + D_l R_{jikh} + D_l R_{lkh} = \frac{2}{n-2} \left(F_{lk} D_s R_{sjih} + F_{kj} D_s R_{ltih} + F_{ji} D_s R_{tkih} \right) F^{st} \]
\[\quad - \frac{2}{n-2} \left(F_{lk} D_s E_{ih} + F_{kj} D_s E_{ih} + F_{ji} D_s E_{kh} \right). \]

§ 5. Complex conformal connections

In an almost complex manifold \(M \) with a torsion tensor \(S_{jih} = - u^h F_{ji} \), we consider a conformal change of Hermitian metric
\[(5.1) \quad \tilde{g}_{ji} = e^{2p} g_{ji}, \quad \tilde{F}_{ji} = e^{2p} F_{ji}, \quad \tilde{F}_i^h = \tilde{F}_{js} g^{sh} = F_i^h, \]
where \(p \) is a scalar function, and we look for an affine connection \(\tilde{F}_{ji}^h \) such that
\[(5.2) \quad \tilde{D}_k \tilde{g}_{ji} = 0, \quad \tilde{D}_k \tilde{F}_{ji} = 0, \]
where \(\tilde{D}_k \) are the operator of covariant differentiation with respect to the connection \(\tilde{F}_{ji}^h \), and the torsion tensor \(\tilde{S}_{ji}^h \) is given by
\[(5.3) \quad \tilde{S}_{ji}^h = - v^h \tilde{F}_{ji}, \]
where \(v^h \) are components of a vector field. We call such a metric change a complex conformal change of the metric.

By the remark above, we have, for the components \(\tilde{F}_{ji}^h \) of this affine connection,
\[(5.4) \quad \tilde{F}_{ji}^h = \begin{bmatrix} h \\ j_{ji} \end{bmatrix} + \tilde{F}_{j_{ji}}^h v_i + \tilde{F}_{ji}^h v_j - v^h \tilde{F}_{ji}, \]
where \(\begin{bmatrix} h \\ j_{ji} \end{bmatrix} \) are the Christoffel symbols with \(\tilde{g}_{ji} \), and \(v_i = v^s \tilde{g}_{si} \).
Also, using
\begin{equation}
\tilde{h}_{ji}^{\tilde{h}} = \tilde{h}_{ji} + p_j \tilde{e}_j^h + p_i \tilde{e}_i^h - p^h g_{ji},
\end{equation}
we have
\begin{equation}
\tilde{F}_{ji}^{\tilde{h}} = \tilde{h}_{ji} + p_j \tilde{e}_j^h + p_i \tilde{e}_i^h - p^h g_{ji} + v_j \tilde{F}_i^{\tilde{h}} + v_i \tilde{F}_j^{\tilde{h}} + v^h \tilde{F}_{ji},
\end{equation}
where \(p_i = \partial_i p \) and \(p^h = p e^{ih} \). From (2.7), using (5.1), we have
\begin{equation}
\tilde{F}_{ji}^{\tilde{h}} = \Gamma_{ji}^{\tilde{h}} + p_j \tilde{e}_j^h + p_i \tilde{e}_i^h - p^h g_{ji} + \left((v_j - u_j) F_i^{\tilde{h}} + (v_i - u_i) F_j^{\tilde{h}} - (e^{2p} t - u^h) F_{ji} \right).
\end{equation}
If we define \(q^h \) by
\begin{equation}
q^h = e^{2p} t - u^h,
\end{equation}
then
\begin{equation}
q_i = q^h g_{si} = (e^{2p} t - u^h) g_{si} = e^{2p} g_{si} - u^h g_{si} = v_i - u_i.
\end{equation}
Substituting (5.8) and (5.9) into (5.7), we have
\begin{equation}
\tilde{F}_{ji}^{\tilde{h}} = \Gamma_{ji}^{\tilde{h}} + p_j \tilde{e}_j^h + p_i \tilde{e}_i^h - p^h g_{ji} + q_j F_i^{\tilde{h}} + q_i F_j^{\tilde{h}} - q^h F_{ji}.
\end{equation}
We now compute \(D_k \tilde{F}_{ji} \) and find
\begin{align*}
D_k \tilde{F}_{ji} &= D_k (e^{2p} F_{ji}) \\
&= e^{2p} \left((q_i F_j^t - p_j) F_{ki} + (p_i - q_i F^t) F_{kj} \\
&\quad - (q_i + p_i F^t) g_{kj} + (q_j + p_j F^t) g_{kj} \right).
\end{align*}
Thus, in order that \(D_k \tilde{F}_{ji} = 0 \), we must have
\begin{equation}
(q_i F_j^t - p_j) F_{ki} + (p_i - q_i F^t) F_{kj} - (q_i + p_i F^t) g_{kj} + (q_j + p_j F^t) g_{ki} = 0
\end{equation}
for which, transvecting with \(g^{kj} \), we find
\begin{equation}
(n-2) (p_i F^t + q_i) = 0,
\end{equation}
that is, assuming \(n \geq 4 \)
\begin{equation}
p_i F^t + q_i = 0.
\end{equation}
Therefore,
\begin{equation}
q_i = -p_i F^t, \quad p_i = q_i F^t.
\end{equation}
The converse being evident, we have

\begin{proposition}
In an almost complex manifold with a torsion tensor...
\end{proposition}
by a complex conformal change of the metric
\[\tilde{g}_{ij} = e^{2p} g_{ij}, \quad \tilde{F}_{ij} = e^{2p} F_{ij}, \]
the affine connection \(\tilde{\Gamma}_j{}^i{}^h \) which satisfies
\[\bar{D}_k \tilde{g}_{ij} = 0, \quad \bar{D}_k \tilde{F}_{ij} = 0 \]
and
\[\tilde{\Gamma}_j{}^i{}^h - \tilde{\Gamma}_i{}^j{}^h = -2v^h \tilde{F}_{ij}, \]
where \(p \) is a scalar function and \(v^h \) is a vector field, is given by
\[\tilde{\Gamma}_j{}^i{}^h = \Gamma_j{}^i{}^h + p_i \delta_j{}^h + p_j \delta_i{}^h - p^h g_{ji} + q_j F_i{}^h + q_i F_j{}^h - q^h F_{ij} \]
where
\[p_i = \partial_i p, \quad p^h = p_i \delta^i{}^h, \quad q_i = -p_i F_i{}^t, \quad q^h = q_i \delta^i{}^h. \]

We call such an affine connection a complex conformal connection in an almost complex manifold with a torsion tensor.

§ 6. Curvature tensor of a complex conformal connection and its invariant

We consider a complex conformal connection (5.10) in an almost complex manifold with a torsion tensor and compute the curvature tensor of \(\tilde{\Gamma}_j{}^i{}^h \):
\[
\tilde{R}^h{}_{jki} = \partial_k \tilde{\Gamma}^h{}_{j}{}^{i}{}^{k} - \partial_j \tilde{\Gamma}^h{}_{k}{}^{i}{}^{k} + \tilde{\Gamma}^h{}_{k}{}^{i}{}^{l} \tilde{\Gamma}^l{}_{j}{}^{k}{}^{i} - \tilde{\Gamma}^h{}_{j}{}^{i}{}^{l} \tilde{\Gamma}^l{}_{k}{}^{i}{}^{k}.
\]

By a straightforward computation, we find
\[
\tilde{R}^h{}_{jki} = R^h{}_{jki} + \partial_j p^h \delta^i{}^k - \partial_k p^h \delta^j{}^i - q_j p_k + q_k p_j + q^h \delta^i{}^k + F_j{}^k q_i - F_i{}^k q_j - F_i{}^q q_j + F_k{}^q q_i + F_i{}^h \alpha_j{}^k - 2 F_{kj} \delta_i{}^h,
\]
where
\[
\begin{align*}
\rho_i &= D_j p_i - p_j p_i + q_j q_i + (\lambda/2) g_{ji}, \quad \rho_i = p_i, \\
\lambda &= p_i p^i = q_i q^i, \\
q_i &= -p_i F_i{}^t, \quad \rho_i = q_i F_i{}^t, \\
\alpha_{kj} &= q_{kj} - q_{jk} - \mu F_{kj}, \quad \alpha_{kj} = -\alpha_{kj}, \\
\mu &= \lambda + 2 q_i u^i, \\
\beta_{ji} &= p_j q_i - p_i q_j + q_j w_i - q_i w_j + p_j u_i - u_j p_i.
\end{align*}
\]
If we define

\[\beta_j^h = \beta_j^h, \beta_j^i = -\beta_j^i. \]

If we define

\[\tilde{R}_{kji}^j = \tilde{R}_{kji}^j \]

\[R_{stji}^u = -2E_{ji}, \tilde{R}_{stji}^u = -2\tilde{V}_{ji}, \tilde{R}_{stji}^u = \tilde{A}_{ji}, \]

then, from (4.8), we have

\[\tilde{E}_{ji} = E_{ji} - 2(q_{ji} - q_{ij}) - (\alpha/2) F_{ji} + n\beta_{ji}, \]

where \(\alpha = \alpha_{st} F_{st} = 2p - n\mu, p = \rho_{st} e^{t} = q_{st} F_{st} \), and transvecting with \(F_{ji} (= e^{2p} F_{ji}) \), we have

\[e^{2p} E = (2\beta - \alpha), \]

where \(\alpha = \alpha_{st} F_{st} = 2p - n\mu, \beta = \beta_{st} F_{st} = 2\mu \) and

\[(6.13) \quad e^{2p} E = E - (n + 4) p + \frac{n(n + 4)}{2} \mu. \]

From (4.8), (6.11) and (6.2), we have

\[\tilde{V}_{ji} = V_{ji} - 2(q_{ji} - q_{ij}) + 2\mu F_{ji} - (n/2) \alpha_{ji}, \]

\[\tilde{A}_{ji} = A_{ji} - (n - 1)q_{ji} + q_{ij} - pF_{ji} - \alpha_{ji} + 2\beta_{ji} \]

and transvecting with \(F_{ji} (= e^{2p} F_{ji}) \), we have

\[e^{2p} V = V - (n + 4) p + \frac{n(n + 4)}{2} \mu, \]

\[e^{2p} A = A - 2(n + 1) p + (n + 4) \mu. \]

From (6.16) and (6.17), we find

\[(6.18) \quad p = \frac{1}{2(n^2 - 4)}(nA - 2E) - \frac{1}{2(n^2 - 4)}(nA - 2E)e^{2p}, \]

\[(6.19) \quad \mu = \frac{1}{(n + 4)(n^2 - 4)} \{ (n + 4) A - 2(n + 1) E \} \]

\[- \frac{1}{(n + 4)(n^2 - 4)} \{ (n + 4) A - 2(n + 1) E \} e^{2p}. \]

If we put

\[Q = \frac{1}{2(n^2 - 4)}(nA - 2E), \quad \bar{Q} = \frac{1}{2(n^2 - 4)}(nA - 2E), \]

\[N = \frac{(n + 4) A - 2(n + 1) E}{(n + 4)(n^2 - 4)}, \quad \bar{N} = \frac{(n + 4) A - 2(n + 1) E}{(n + 4)(n^2 - 4)}, \]
On complex conformal connections in an almost complex manifold with a torsion tensor

(6.18) and (6.19) can be written as

\[p = Q - Qe^{2\theta}, \quad \mu = N - \overline{N}e^{2\theta} \]

and consequently

\[PF_{ji} = QF_{ji} - \overline{Q}F_{ji}, \quad \mu F_{ji} = NF_{ji} - \overline{N}F_{ji}. \]

From (6.15), we have

\[\overline{A}_{ji} = \overline{A}_{ij} = A_{ji} - A_{ij} - 2(n+2)(q_{ji} - q_{ij}) - 2P - 2\mu F_{ji} + 4\beta_{ji}, \]

from which, using (6.12) and (6.21), we have

\[q_{ji} - q_{ij} = \frac{1}{(n+4)(n-2)} \{ n(A_{ji} - A_{ij}) - 4E_{ji} - 2(n-2)\overline{Q}F_{ji} \} \]

\[- \frac{1}{(n+4)(n-2)} \{ n(\overline{A}_{ji} - \overline{A}_{ij}) - 4E_{ji} - 2(n-2)\overline{Q}F_{ji} \}, \]

\[\beta_{ji} = \frac{1}{2(n+4)(n-2)} \left[4(A_{ji} - A_{ij}) - 2(n+2)F_{ji} \right. \]

\[+ (n-2) \left[2\overline{Q} - (n+4)N \right] F_{ji} \left. \right] - \frac{1}{2(n+4)(n-2)} \left[4(\overline{A}_{ji} - \overline{A}_{ij}) \right. \]

\[- 2(n+2)E_{ji} + (n-2) \left[2\overline{Q} - (n+4)\overline{N} \right] F_{ji} \]

On the other hand, from (6.15), we have

\[\overline{A}_{ji} + \overline{A}_{ij} = A_{ji} + A_{ij} - (n-2)(q_{ji} + q_{ij}), \]

from which, using (6.23), we find

\[q_{ji} = \frac{1}{2(n+4)(n-2)} \left\{ (n+4)(A_{ji} + A_{ij}) + n(A_{ji} - A_{ij}) \right. \]

\[- 4E_{ji} - 2(n-2)QF_{ji} \right\} \]

\[- \frac{1}{2(n+2)(n-2)} \left\{ (n+4)(\overline{A}_{ji} + \overline{A}_{ij}) + n(\overline{A}_{ji} - \overline{A}_{ij}) - 4\overline{E}_{ji} - 2(n-2)\overline{Q}F_{ji} \right\}. \]

Substituting (6.23) into (6.6), we obtain

\[\alpha_{ji} = \frac{1}{(n+4)(n-2)} \left[n(A_{ji} - A_{ij}) - 4E_{ji} - (n-2) \left[2Q + (n+4)N \right] F_{ji} \right] \]

\[- \frac{1}{(n+4)(n-2)} \left[n(\overline{A}_{ji} - \overline{A}_{ij}) - 4\overline{E}_{ji} - (n-2) \left[2\overline{Q} + (n+4)\overline{N} \right] F_{ji} \right]. \]

If we define M_{ji}, L_{ji}, B_{ji} and T_{ji} by

...
\[M_{ji} = \frac{1}{2(n+4)(n-2)} \left\{ (n+4)(A_{ji} + A_{ij}) + n(A_{ji} - A_{ij})
ight\} - 4E_{ji} - 2(n-2)QF_{ji} \], (6.28)

\[L_{ji} = M_{ji}F'_{ji} \], (6.29)

\[B_{ji} = \frac{1}{2(n+4)(n-2)} \left\{ 4(A_{ji} - A_{ij}) - 2(n+2)E_{ji} + (n-2)2Q - (n+4)N \right\} F_{ji} \], (6.30)

\[T_{ji} = \frac{1}{2(n+4)(n-2)} \left\{ n(A_{ji} - A_{ij}) - 4E_{ji} - (n-2)2Q + (n+4)N \right\} F_{ji} \], (6.30)

then, (6.24), (6.26) and (6.27) can be written as

\[p_{ji} = B_{ji} - \overline{B}_{ji}, \quad q_{ji} = M_{ji} - \overline{M}_{ji}, \quad \alpha_{ji} = T_{ji} - \overline{T}_{ji} \], (6.32)

and consequently

\[p_{ji} = q_{ji}F_{ji}, \quad q_{ji} = (M_{ji} - \overline{M}_{ji})F_{ji} = L_{ji} - \overline{L}_{ji} \], (6.33)

\[L_{jh} = L_{js}F_{sh}, \quad M_{jh} = M_{js}F_{sh}, \quad B_{jh} = B_{js}F_{sh} \], (6.34)

Substituting (6.32), (6.33) and (6.34) into (6.2), we have

\[R_{kh} + \delta_{j}^{h}L_{ki} - \delta_{k}^{h}L_{ji} - \overline{\delta}_{j}^{h}\overline{L}_{ki} + \overline{\delta}_{k}^{h}\overline{L}_{ji} + \overline{\delta}_{j}^{h}\overline{L}_{ki} + \overline{\delta}_{k}^{h}\overline{L}_{ji} \]
\[\quad + F_{j}^{h}M_{ki} - F_{k}^{h}M_{ji} + F_{ji}M_{k}^{h} + F_{kj}M_{i}^{h} \]
\[\quad + F_{j}^{h}T_{kj} - 2F_{kj}B_{i}^{h} \]

\[= R_{kj} + \delta_{j}^{h}L_{ki} - \delta_{k}^{h}L_{ji} - g_{ji}L_{k}^{h} + g_{ki}L_{j}^{h} \]
\[\quad + F_{j}^{h}M_{ki} - F_{k}^{h}M_{ji} + F_{ji}M_{k}^{h} + F_{ki}M_{j}^{h} \]
\[\quad + F_{j}^{h}T_{kj} - 2F_{kj}B_{i}^{h} \]

If we define \(C_{j}^{h} \) as

\[C_{j}^{h} = R_{kj} + \delta_{j}^{h}L_{ki} - \delta_{k}^{h}L_{ji} - g_{ji}L_{k}^{h} + g_{ki}L_{j}^{h} \]
\[\quad + F_{j}^{h}M_{ki} - F_{k}^{h}M_{ji} + F_{ji}M_{k}^{h} + F_{ki}M_{j}^{h} \]
\[\quad + F_{j}^{h}T_{kj} - 2F_{kj}B_{i}^{h} \], (6.35)

then (6.35) reduces into

\[C_{j}^{h} = C_{j}^{k} + \delta_{j}^{h}L_{ki} - \delta_{k}^{h}L_{ji} - g_{ji}L_{k}^{h} + g_{ki}L_{j}^{h} \]
\[\quad + F_{j}^{h}M_{ki} - F_{k}^{h}M_{ji} + F_{ji}M_{k}^{h} + F_{ki}M_{j}^{h} \]
\[\quad + F_{j}^{h}T_{kj} - 2F_{kj}B_{i}^{h} \]

We call such a tensor \(C_{j}^{h} \) a complex conformal curvature tensor in an
almost complex manifold with a torsion tensor. Thus, we have the following theorem.

Theorem In an n-dimensional ($n \geq 4$) almost complex manifold with a torsion tensor, the complex conformal curvature tensor C_{kji}^h defined by

$$C_{kji}^h = R_{kji}^h + \delta_j^k L_{ki} - \delta_k^h L_{ji} - \epsilon_{ji} L_{k}^h + \epsilon_{ki} L_j^h$$

$$+ F_j^k M_{ki} - F_h^k M_{ji} - F_{ji} M_{k}^h + F_{ki} M_j^h$$

$$+ F_i^h T_{kj} - 2F_{ij} B_i^h$$

is an invariant under a complex conformal change of metric

$$\bar{g}_{ji} = e^{2\varphi} g_{ji}, \quad \bar{F}_{ji} = e^{2\varphi} F_{ji}.$$

Reference

Seoul National University