ON THE DEFINITION OF A HYPERATOM OF A RING

By Alexander Abian

In the direct product decomposition of a (not necessarily associative or commutative) ring \(R \) essential use is made of the notion of a hyperatom \([1],[3],[4]\) where a hyperatom of \(R \) is defined by the conjunction of statements (1) and (2) below. We show here that in all the cases pertaining to \([1],[3],[4]\), statement (1) implies statement (2). Accordingly, we define a hyperatom subject to statement (1) alone.

REMARK. We call a (not necessarily associative or commutative) ring zero-product-associative if and only if a product of elements of the ring which is equal to zero remains equal to zero no matter how its factors are associated. In \([2]\) it is shown that if \(A \) is a zero-product-associative ring without nilpotent elements then a product of elements of \(A \) which is equal to zero remains equal to zero no matter how its factors are associated or permuted. We observe also \([4, \text{Lemma} \ 2]\) that an alternative ring without nilpotent elements is zero-product-associative.

DEFINITION. A nonzero element \(a \) of a (not necessarily associative or commutative) ring \(A \) is called a hyperatom of \(A \) if and only if for every element \(x \) of \(A \),

\[(1) \quad ax \neq 0 \text{ implies } a(xs) = a \text{ for some } s \in A \]

THEOREM. Let \(A \) be a zero-product-associative ring without nilpotent elements and let \(a \) be a hyperatom of \(A \). Then for every nonzero element \(x \) of \(A \),

\[(2) \quad ax = x^2 \text{ implies } a = x \]

PROOF. Since \(x \neq 0 \) and \(A \) has no nilpotent elements, \(ax = x^2 \) implies \(ax \neq 0 \), and since \(a \) is a hyperatom \(a(xs) = a \) for some \(s \in A \) by (1). From \(ax = x^2 \) it follows \((a-x)x = 0\) which, by the Remark, implies \((a-x)xas = (a-x)(a(xs)) = 0\) and therefore \((a-x)a = 0\). But then the latter together with \((a-x)x = 0\) imply
\((a-x)^2 = 0 \). Hence \(a = x \), as desired.

Iowa State University
Ames, Iowa 50011
U.S.A.

REFERENCES

