NUMERICAL RANGE THEORY FOR PSEUDO-BANACH ALGEBRAS

By T. Husain and A. Srinivasan

0. Introduction

In [7] Giles and the first author extended the concept of numerical range of an element of a normed algebra to locally multiplicatively convex algebra and studied some of the basic properties. In [8] Giles and Koehler studied it further. In this paper we study the numerical range of an element of a pseudo-Banach algebra introduced by Allan etc. in [3]. Among other results, we show that for any element of a pseudo-Banach algebra the numerical radius is equal to its spectral radius. Also its spectrum is compact and is contained in its numerical range which is a convex compact set. Hence we show that the convex hull of the spectrum of an element coincides with its numerical range. Moreover, we give a characterization of dissipative elements of a pseudo-Banach algebra. (The case for Banach algebras is known in [5]).

It is known [3] that every commutative Banach algebra with identity is a pseudo-Banach algebra and there are pseudo-Banach algebras which are not Banach algebras. It is interesting to note that in the case of a Banach algebra, the numerical radius is less than or equal to the spectral radius whereas in the present case of pseudo-Banach algebra, they are equal.

1. Preliminaries

The concept of pseudu-Banach algebra was introduced by Allan, Dale and McClure [3]. We reproduce the definition here:

DEFINITION 1.1. (Allan, Dales and McClure [3]) Let A be a commutative topological algebra over the complex field C with identity 1. A bound structure for A is a non-empty collection β of subsets of A satisfying the following conditions:

- (i) Each $B_{\alpha} \in \beta$ is absolutely convex, bounded, $B_{\alpha}^2 \subset B_{\alpha}$ and $1 \in B_{\alpha}$;
- (ii) Given B_1 , $B_2 \in \beta$, there exists B_3 in β and $\lambda > 0$ such that $B_1 \cup B_2 \subset \lambda B_3$. The pair (A, β) is called a *Bound algebra*.

For B_{α} in β , let $A(B_{\alpha}) = \{\lambda b : \lambda \in C, b \in B_{\alpha}\}$. In view of (i), $A(B_{\alpha})$ is a subalgebra of A generated by B_{α} . The Minkowski functional of B_{α} defines a submultiplicative seminorm $\|\cdot\|_{B_{\alpha}}$ on $A(B_{\alpha})$. If each $\|\cdot\|_{B_{\alpha}}$ is a norm, and if $A(B_{\alpha})$ is a Banach algebra with respect to $\|\cdot\|_{B_{\alpha}}$, and if $A = \bigcup \{A(B_{\alpha}) : B_{\alpha} \in \beta\}$, then A is called a *pseudo Banach algebra*.

If A is an algebra with identity 1, then G(A) denotes the set of all invertible elements in A, A' its topological dual and A^* its algebraic dual. We follow the notion and terminologies of [3] and [5].

PROPOSITION 1.2. (Allan etc. [3]) An algebra A is a pseudo-Banach algebra with respect to some bound structure, if and only if A is isomorphic with the inductive limit of an inductive system $(A_{\alpha}:i_{\beta\alpha}:\alpha,\ \beta\in\Lambda,\ \alpha\leq\beta)$, of Banach algebras with identity and continuous unital monomorphisms.

REMARK. Observe that a priori a pseudo-Banach algebra does not carry the inductive limit topology which is complete by definition. Its initial topology is in general coarser than the inductive limit topology. We assume that A is a complete topological algebra as well as a pseudo-Banach algebra in the sequel. The following simple known result is given here for the use in the sequel

PROPOSITION 1.3. Let (A, β) be a pseudo-Banach algebra with the inductive limit topology. Then a linear functional f on (A, β) is continuous, if and only if for each α , $f|A_{\alpha}=f_{\alpha}$ is a continuous linear functional on the Banach algebra $(A_{\alpha}, \|\cdot\|_{\alpha})$.

2. Numerical range of an element of a Pseudo-Banach Algebra

DEFINITION 2.1. Let (A,β) be a pseudo-Banach algebra with identity 1. Recall $\beta = \{B_{\alpha} : \alpha \in A\}$, where each B_{α} is an absolutely convex bounded set satisfying the conditions in 1.1. We put $A_{\alpha} = A(B_{\alpha})$ which is a Banach algebra. We define $D(A,\beta;1) = \{f \in A' : f(1) = 1, \|f|_{A_{\alpha}}\| \le 1$, for all $\alpha \in A\}$, and $D_{\alpha}(A,B_{\alpha};1) = \{f \in A^* : f|A_{\alpha} \in D(A_{\alpha},\|\cdot\|_{\alpha};1)\}$, where $D(A_{\alpha},\|\cdot\|_{\alpha};1) = \{f_{\alpha} \in A'_{\alpha}:\|f_{\alpha}\|_{\alpha} = 1 = f_{\alpha}(1)\}$. Observe that for each $f_{\alpha} \in A_{\alpha}'$, by the Hahn-Banach theorem there exists a $g \in A^*$ such that $g|A_{\alpha} = f_{\alpha}$.

THEOREM 2.2. Let (A, β) be a pseudo-Banach algebra with identity 1 and with the inductive limit topology. Then $\bigcap_{\alpha \in \Lambda} D_{\alpha}(A, B_{\alpha}; 1) = D(A, \beta; 1)$.

PROOF. If $f \in \bigcap_{\alpha \in \Lambda} D_{\alpha}(A, B_{\alpha}; 1)$, then f is a linear functional on A such that $f|A_{\alpha}=f_{\alpha}$ is a continuous linear functional on A_{α} , $\|f_{\alpha}\|_{\alpha} \leq 1$ and $f_{\alpha}(1)=1$ for each α in Λ . The continuity of f_{α} on A_{α} for all α in Λ implies the continuity of f on A by proposition 1.3. Clearly f(1)=1 and $\|f_{\alpha}\|_{\alpha} \leq 1$, for all α in Λ imply that $f \in D(A, \beta; 1)$. Conversely, if $f \in D(A, \beta; 1)$, then clearly $f_{\alpha}=f|A_{\alpha} \in A_{\alpha}$, $f_{\alpha}(1)=1$ and $\|f_{\alpha}\|_{\alpha} \leq 1$, for each $\alpha \in \Lambda$. Thus we have:

$$\bigcap_{\alpha \in A} D_{\alpha}(A, B_{\alpha}; 1) = D(A, \beta; 1).$$

THEOREM 2.3. Let (A, β) be a pseudo-Banach algebra with identity 1 endowed with the inductive limit topology. Then $D(A, \beta; 1) = \underline{\lim} \ D_{\alpha}(A, B_{\alpha}; 1)$ (projective limit, see [5]).

PROOF. First we show that for α , β in Λ , $\alpha \leq \beta$ implies $D_{\alpha}(A, B_{\alpha}; 1) \supset D_{\beta}(A, B_{\beta}; 1)$. If $f \in D_{\beta}(A, B_{\beta}; 1)$, then $f \in A^*$ and $f_{\beta} = f | B_{\beta}$ is in $D(A_{\beta}, \| \cdot \|_{\beta}; 1)$. So $f_{\beta} \in A_{\beta}'$. Since $\alpha \leq \beta$ means $B_{\alpha} \subset B_{\beta}$, it follows that $f | A_{\alpha} = f_{\beta} | A_{\alpha} \in A_{\alpha}'$. This proves that $f \in D_{\alpha}(A, B_{\alpha}; 1)$.

Now $\{D_{\alpha}(A, B_{\alpha}; 1)\}_{A}$ is a family of subsets of A^* indexed by the directed set A such that for $\alpha \leq \beta$, α , $\beta \in A$, $D_{\alpha}(A, B_{\alpha}; 1) \supset D_{\beta}(A, B_{\beta}; 1)$. For each α in A, the norm topology on $D_{\alpha}(A, B_{\alpha}; 1)$ induced by $\|\cdot\|_{\alpha}$ is finer than the norm topology on $D_{\beta}(A, B_{\beta}; 1)$ by $\|\cdot\|_{\beta'}$ whenever $\alpha \leq \beta$ because $B_{\alpha} \subset B_{\beta}$ for $\alpha \leq \beta$. Take $i_{\alpha\beta}$ to be the canonical injection: $D_{\beta}(A, B_{\beta}; 1) \rightarrow D_{\alpha}(A, B_{\alpha}; 1)$ for $\alpha \leq \beta$, then $\lim_{\alpha \in A} D_{\alpha}(A, B_{\alpha}; 1)$ may be identified canonically with $\bigcap_{\alpha \in A} D_{\alpha}(A, B_{\alpha}; 1)$ (See Bourbaki [6] page 50). But by Theorem 2.2, $\bigcap_{\alpha \in A} D_{\alpha}(A, B_{\alpha}; 1) = D(A, \beta; 1)$ and the result follows.

DEFINITION 2.4. Let (A,β) be a pseudo-Banach algebra and a an element of A. Since $A = \bigcup_{\alpha} \{A(B_{\alpha}) : B_{\alpha} \in \beta\}$, $a \in A_{\alpha}$ for some α . Put $V_{\alpha}(A, B_{\alpha} : a) = \{f(a) : f \in D_{\alpha}(A, B_{\alpha} : 1)\}$ and define the numerical range of a to be $V(A, \beta : a) = \{f(a) : f \in D(A, \beta : 1)\}$.

 $v(A, \beta; a) = \sup\{|\lambda| ; \lambda \in V(A, \beta, a)\}$ is called the numerical radius of a.

REMARK. Since a complete locally convex algebra in which every element is bounded is a pseudo-Banach algebra (cf: [3]), the results of this chapter hold good for those locally convex algebras as well.

THEOREM 2.5. Let (A, β) be a pseudo-Banach algebra and a an element of

A. If $a \in A_{\alpha}$ for some α , then $V_{\alpha}(A, B_{\alpha}; a) = V(A_{\alpha}, \|\cdot\|_{\alpha}; a)$ and $V(A, \beta; a) = \bigcap_{\alpha} \{V(A_{\alpha}, \|\cdot\|_{\alpha}; a) : a \in A_{\alpha}\}$. Moreover, $v(A, \beta; a) = \inf\{v(A_{\alpha}, \|\cdot\|_{\alpha}; a) \le \|a\|_{\alpha}, a \in A_{\alpha}\}$.

PROOF. By definition,

$$\begin{split} V_{\alpha}(A,B_{\alpha}\,;\,a) &= \{f(a)\,\,;\,f \in D_{\alpha}(A,B_{\alpha}\,;\,1)\} \\ &= \{g(a)\,\,;\,g \in A^*,\ g_{\alpha} \in D(A_{\alpha},\|\cdot\|_{\alpha}\,;\,1)\} \\ &= \{g_{\alpha}(a)\,\,;\,g_{\alpha} \in D(A_{\alpha},\|\cdot\|_{\alpha}\,;\,1)\} \\ &= \{g_{\alpha}(a)\,\,;\,g_{\alpha} \in D(A_{\alpha},\|\cdot\|_{\alpha}\,;\,1)\} \\ &\quad (\text{Since } g(a) = g_{\alpha}(a),\ \text{for } a \in A_{\alpha}) \\ &= V(A_{\alpha},\|\cdot\|_{\alpha}\,;\,a). \end{split}$$

Thus, by Theorem 2.2,

$$\begin{split} V(A,\beta\,;\,a) &= \{f(a)\,;\,f \in D(A,\beta\,;\,1)\} \\ &= \{g(a)\,;\,g \in \bigcap_{\alpha \in A} D_{\alpha}(A,B_{\alpha}\,;\,1)\} \\ &= \bigcap_{\alpha} \,\,\{g(a)\,;\,g \in D_{\alpha}(A,B_{\alpha}\,;\,1),\,\,a \in A_{\alpha}\} \\ &= \bigcap_{\alpha} \,\,\{V_{\alpha}(A,B_{\alpha}\,;\,a)\,;\,a \in A_{\alpha}\} \\ &= \bigcap_{\alpha} \,\,\{V(A_{\alpha},\|\cdot\|_{\alpha}\,;\,a)\,;\,a \in A_{\alpha}\}. \end{split}$$

Finally, since $V(A,\beta;a) = \bigcap_{\alpha} V(A_{\alpha},\|\cdot\|_{\alpha};a)$, we have, $v(A,\beta;a) = \inf_{\alpha} \{v(A_{\alpha},\|\cdot\|_{\alpha};a) \leq \|a\|_{\alpha}, \ a \in A_{\alpha}\}.$

THEOREM 2.6. Let A be a pseudo-Banach algebra with identity 1 and a an element of A. Then,

- (i) $\operatorname{Sp}(A; a) = \bigcap_{\alpha} \{ \operatorname{Sp}(A_{\alpha}; a) : a \in A_{\alpha} \}$, where $\operatorname{Sp}(A_{\alpha}, a)$ is the spectrum of $a \in A_{\alpha}$.
- (ii) $r(A;a) = \inf_{\alpha} \{r(A_{\alpha};a); a \in A_{\alpha}\}, \text{ where } r(A;a) = \sup_{\alpha} \{|\lambda|: \lambda \in \operatorname{Sp}(A;a)\}$ is the spectral radius.

PROOF. (i) By definition, $\operatorname{Sp}(A : a) = \{\lambda \in C : (\lambda 1 - a) \notin G(A)\}$. If $\lambda \in \operatorname{Sp}(A : a)$ then $(\lambda - a) \notin G(A)$. We claim that $(\lambda - a) \notin G(A_{\alpha})$ for each A_{α} for which $a \in A_{\alpha}$. For, otherwise, $(\lambda - a) \in G(A_{\alpha})$ for some A_{α} for which $a \in A_{\alpha}$. But this implies that $(\lambda - a) \in G(A)$ (because $G(A_{\alpha}) \subset G(A)$) contradicting that $(\lambda - a) \notin G(A)$. Hence $\operatorname{Sp}(A : a) \subset \operatorname{Sp}(A_{\alpha} : a)$, for all α 's for which $a \in A_{\alpha}$: and so $\operatorname{Sp}(A : a) \subset \bigcap_{\alpha} \{\operatorname{Sp}(A_{\alpha} : a) : a \in A_{\alpha}\}$. On the other hand, if $\lambda \in \bigcap_{\alpha} \{\operatorname{Sp}(A_{\alpha} : a) : a \in A_{\alpha}\}$,

then $(\lambda - a) \not\in G(A_{\alpha})$ for all A_{α} for which $a \in A_{\alpha}$. But the algebra A being the union of the subalgebras A_{α} , which are outer directed by inclusion, we see that $(\lambda - a) \not\in G(A)$; and therefore $\lambda \in \operatorname{Sp}(A; a)$. This proves (i).

(ii) By definition and (i), $r(A;a) = \sup \{|\lambda| : \lambda \in \operatorname{Sp}(A,a)\} = \sup \{|\lambda| : \lambda \in \bigcap_{\alpha} \{\operatorname{Sp}(A_{\alpha};a)\} = \inf_{\alpha} \{r(A_{\alpha};a) : a \in A_{\alpha} = A(B_{\alpha})\}$, because $\{B_{\alpha}\}$ is outer directed.

THEOREM 2.7. Let (A, β) be a pseudo-Banach algebra and a an element of A. Then $Sp(A; a) \subset V(A, \beta; a)$.

PROOF. We know that $\operatorname{Sp}(A_{\alpha}; a)$ is contained in $V(A_{\alpha}, \|\cdot\|_{\alpha}; a)$ for $a \in A_{\alpha}$, because A_{α} is a Banach algebra ([5], page 19, Th. 6).

Hence by Theorem 2.6,
$$\operatorname{Sp}(A:a) = \bigcap_{\alpha} \{\operatorname{Sp}(A_{\alpha}:a): a \in A_{\alpha}\}$$

$$\subset \bigcap_{\alpha} \{V(A_{\alpha}, \|\cdot\|_{\alpha}:a): a \in A_{\alpha}\}$$

$$= V(A, \beta:a) \text{ by Theorem 2.5.}$$

3. Some properties of the numerical range and spectrum

PROPOSITION 3.1. Let (A, β) be a pseudo-Banach algebra and a an element of A. Then Sp(A; a) is a compact subset of C and $V(A, \beta; a)$ a convex compact subset of C.

PROOF. By Theorem 2.6, we have $\operatorname{Sp}(A,a) = \bigcap_{\alpha} \{\operatorname{Sp}(A_{\alpha};a) : a \in A_{\alpha}\}$, where each $\operatorname{Sp}(A_{\alpha};a)$ is a nonempty compact subset of C [5]. Since $\operatorname{Sp}(A;a)$ is the intersection of nonempty compact subsets of C, it is compact. Further, since by Theorem 2.5

 $V(A,\beta;a) = \bigcap_{\alpha} \{V(A_{\alpha},\|\cdot\|_{\alpha};a); a \in A_{\alpha}^{\mathbb{F}}\}$, where each $V(A_{\alpha},\|\cdot\|_{\alpha};a); a \in A_{\alpha}$ is a convex compact subset of C, by Th. 3 (page 16, [5]) it follows that $V(A,\beta;a)$ is a convex compact subset of C.

THEOREM 3.2. Let (A, β) be a pseudo-Banach algebra with the inductive limit topology and a an element of A. Then, $r(A; a) = \inf \{r(A_{\alpha}; a); a \in A_{\alpha}\} = \inf \{\|a\|_{\alpha}, a \in A_{\alpha}\}$ and $r(A; a) = v(A, \beta; a)$.

PROOF. Let
$$\beta(a) = \inf \{ \|a\|_{\alpha}, \ B_{\alpha} \in \beta : a \in A_{\alpha} = A(B_{\alpha}) \}$$
. By Theorem 2.6 (ii),
$$r(A : a) = \inf \{ r(A_{\alpha} : a) : a \in A_{\alpha} \}$$

$$= \inf_{\alpha} \{ \sup \{ |\lambda| : \lambda \in Sp(A : a) \} \} \leq \inf_{\alpha} \{ \|a\|_{\alpha} : a \in A_{\alpha} \}$$

$$= \beta(a).$$

Now we prove that $\beta(a) \leq r(A; a)$. Suppose $a \in A_{\alpha} = A(B_{\alpha})$ for some $B_{\alpha} \in \beta$. If $z \notin \operatorname{Sp}(A_{\alpha}; a)$ and $|z| > ||a||_{\alpha}$, then $(z-a)^{-1} \in A_{\alpha}$ and $(z-a)^{-1} = z^{-1} + z^{-2} a + z^{-3} a^{2} + \cdots$, in which the series converges absolutely in A_{α} . Thus if $f \in A'$ and $g \in A$ and

THEOREM 3.3. Let (A, β) be a pseudo-Banach algebra and a an element of A. Then the closure of the convex hull of Sp(A, a), denoted by $Co(Sp(A; a), Coincides with <math>V(A, \beta; a)$.

PROOF. By Theorem 2.7 and Prop. 3.1, $\operatorname{Sp}(A;a)$ is a compact subset of C and $V(A,\beta;a)$ is a convex compact subset of C such that $\operatorname{Sp}(A;a) \subseteq V(A,\beta;a)$. Also by Theorem 3.2, $r(A;a) = v(A,\beta;a)$. Hence Co $\operatorname{Sp}(A;a) = V(a,\beta;a)$, because the latter is a compact convex subset.

THEOREM 3.4. Let F be a closed (under the inductive limit topology) subalgebra of the pseudo-Banach algebra (A, β) . Let (F, β') denote F with the bound structure β' restricted to F and let a be an element of F. Then $V(A, \beta; a) = V(F, \beta'; a)$.

PROOF. For each α we have $A(B_{\alpha}) \supset F(B_{\alpha}')$ i.e $A_{\alpha} \supset F_{\alpha}$, where $B_{\alpha}' = F \cap B_{\alpha}$. Also by the Banach-algebra numerical range theory (page 16, Th. 4, [5]) for each α when $a \in F_{\alpha}$, we have: $V(A_{\alpha}, \|\cdot\|_{\alpha}; a) = V(F_{\alpha}, \|\cdot\|_{\alpha}; a)$ or $V_{\alpha}(A, B_{\alpha}; a) = V_{\alpha}(F, B_{\alpha}'; a)$, for $a \in F_{\alpha}$.

Hence
$$V(A, B; a) = \bigcap_{\alpha} \{V_{\alpha}(A, B_{\alpha}; a) ; a \in A_{\alpha}\}$$
 (Theorem 2.5).
$$= \bigcap_{\alpha} \{V_{\alpha}(F, B_{\alpha}'; a) ; a \in F_{\alpha}\} = V(F, \beta; a).$$

REMARK. The above theorem is not true in general for any topological; algebra, e.g., see [9]. It is, however, true for Banach algebras [5].

COROLLARY 3.5. Let (A,β) be a pseudo-Banach algebra and a an element of A. Then $V(A,\beta;a)=V(P(a),\beta;a)$, where P(a) is the algebra of polynomials with complex coefficients.

PROOF. This is an immediate consequence of Theorem 4 (page 16, [5]) and Theorem 3.4.

The following properties (Theorem 3.6) are known to be true for Banach algebras. We show them here for pseudo-Banach algebras.

THEOREM 3.6. Let (A,β) be a pseudo-Banach algebra with the inductive limit topology, let a,b be elements of A and $p,q\in C$. Let $V(A,\beta;a)$ be denoted by V(A;a) for convenience. Then the following properties hold:

- (i) $V(A, a+b) \subset V(A; a) + V(A; b)$,
- (ii) V(A; p+qa)=p+qV(A; a), and $v(A; p+qa) \le |p|+|q| v(A; a)$,
- (iii) v(A : pa) = |p|v(A : a),
- (iv) $v(A; a+b) \le v(A; a) + v(A; b)$,
- (v) $r(A; a+b) \le r(A; a) + r(A; b)$,
- (vi) $r(A;ab) \le r(A;a) \ r(A;b) \ and \ v(A;ab) \le v(A;a) \ v(a;b)$,

(vii)
$$v(A; a^n) = v^n(A; a)$$
 and $r(A; a^n) = r^n(A; a)$.

PROOF. They are easy to verify. For the Banach algebra case, see [5].

THEOREM 3.7. Let (A, β) be a pseudo-Banach algebra and a an element of A. Then

$$\max \operatorname{Re} V(A : \beta : a) = \inf_{p > 0} p^{-1} \left\{ \inf_{\alpha} \|1 + pa\|_{\alpha} - 1 : a \in A_{\alpha} \right\}$$
$$= \lim_{p \to 0^{+}} p^{-1} \left\{ \inf_{\alpha} \|1 + pa\|_{\alpha} - 1 : a \in A_{\alpha} \right\}.$$

PROOF. By Theorem 2.5, we have,

$$\max \ \operatorname{Re} \ V(A,\beta\,;\,a) = \max \ \operatorname{Re} \ \bigcap_{\alpha} \ \{V(A_{\alpha},\|\cdot\|_{\alpha}\,;\,a)\,a \in A_{\alpha}\}.$$

$$= \inf_{\alpha} \ \{\max \ \operatorname{Re} \ V(A_{\alpha},\|\cdot\|_{\alpha}\,;\,a)\,:\,a \in A_{\alpha}\}$$

$$= \inf_{\alpha} \ \{\inf_{p>0} \ p^{-1} \ (\|1+pa\|_{\alpha}-1)\,:\,a \in A_{\alpha}\} \ (\text{by [5]})$$
 or
$$\lim_{p\to 0^+} \sup_{p>0} p^{-1} \ \{\inf_{\alpha} \ \|1+pa\|_{\alpha}-1\}, \ a \in A_{\alpha}\}.$$

or lim p→0+

THEOREM 3.8. Let (A,β) be a pseudo-Banach algebra and a an element of A. Then the set-valued map: $a \rightarrow V(A,\beta;a)$ is upper semicontinuous.

PROOF. Observe that $a \rightarrow V(A, \beta; a)$ is continuous if A is endowed with the inductive limit topology. Since for every $a \in A$, $V(A, \beta; a)$ is a convex compact subset of A by Theorem 3.1, the set-valued mapping: $a \rightarrow V(A, \beta; a)$ is upper semicontinuous as in (cf. [4]).

THEOREM 3.9. Let (A, β) be a pseudo-Banach algebra and a an element of A. Then

max Re
$$V(A, \beta; a) = \sup_{p>0} \left[\frac{1}{p} \log \left\{ \inf_{\alpha} \left\| \exp(pa) \right\|_{\alpha} : a \in A_{\alpha} \right\} \right].$$
or
$$\lim_{p \to 0^{+}}$$

PROOF.
$$\max \operatorname{Re} V(A, \beta; a) = \max \operatorname{Re} \bigcap_{\alpha} \{V(A_{\alpha}, \|\cdot\|_{\alpha}; a) : a \in A_{\alpha}\}$$

$$= \inf_{\alpha} \max \operatorname{Re} \{V(A_{\alpha}, \|\cdot\|_{\alpha}; a) : a \in A_{\alpha}\}$$

$$= \inf_{\alpha} \sup_{p>0} [p^{-1} \log \{\|\exp(pa)\|_{\alpha} : a \in A_{\alpha}\}]$$
or
$$\lim_{p\to 0^{+}} \sup_{p>0} [p^{-1} \log (\inf_{\alpha} \{\|\exp(pa)\|_{\alpha} : a \in A_{\alpha}\})].$$
or
$$\lim_{p>0^{+}} \sup_{p>0^{+}} [p^{-1} \log (\inf_{\alpha} \{\|\exp(pa)\|_{\alpha} : a \in A_{\alpha}\})].$$

DEFINITION 3.10. An element of a pseudo-Banach algebra is said to be dissipative if Re $z\leq 0$, for all $z\in V(A,\beta;a)$. (See [5] for the Banach algebra case.)

THEOREM 3.11. Let (A, β) be a pseudo-Banach algebra and a an element of A. Then a is dissipative if and only if $\inf_{\alpha} \{\|\exp(ta)\|_{\alpha} : a \in A_{\alpha}\} \le 1$, (t>0).

PROOF. Applying Theorem 3.9, we see that a is dissipative if and only if

 $\underset{\alpha}{\text{log inf}} \ \{\|\exp(ta)\|_{\alpha} : a \in A_{\alpha}\} \leq 0, \text{ i.e. if and only if } \underset{\alpha}{\text{inf}} \ \{\|\exp(ta)\|_{\alpha} : a \in A_{\alpha}\} \leq 1,$ (t>0).

THEOREM 3.12. Let (A, β) be a pseudo-Banach algebra and a an element of A. Then,

max Re Sp(A; a) =
$$\inf_{p>0} \left\{ \frac{1}{p} \log(\inf_{\alpha} \left\{ \|\exp(pa)\|_{\alpha} : a \in A_{\alpha} \right\}) \right\}$$
.

or
$$\lim_{p \to 0^{+}}$$

PROOF. max Re
$$\operatorname{Sp}(A : a) = \max$$
 Re $\bigcap_{\alpha} \left\{ \operatorname{Sp}(A_{\alpha} : a) : a \in A_{\alpha} \right\}$

$$= \max \operatorname{Re} \left\{ z : z \in \operatorname{Sp}(A_{\alpha} : a) : a \in A_{\alpha} \right\}$$

$$= \inf_{\alpha} \left\{ \max \operatorname{Re} \left\{ \operatorname{Sp}(A_{\alpha} : a) : a \in A_{\alpha} \right\} \right\}$$

$$= \inf_{\alpha} \left[\inf_{p > 0} \left\{ \frac{1}{p} \log \left(\| \exp(pa) \|_{\alpha} : a \in A_{\alpha} \right) \right\} \right]$$
or
$$\lim_{p \to 0^{+}}$$

$$= \inf_{p > 0} \left[\frac{1}{p} \log \left(\inf_{\alpha} \left\{ \| \exp(pa) \|_{\alpha} : a \in A_{\alpha} \right\} \right) \right]$$
or
$$\lim_{p \to 0^{+}}$$

McMaster University Hamilton, Ontario Canada, L8S 4K1

REFERENCES

- [1] G.R. Allan, A Spectral theory for locally convex algebras; Proc. London Math. Soc. (3) 15(1965) 399-421.
- [2] G.R. Allan, On a class of locally convex algebras; Proc. London. Math. Soc. (3), 17(1965) 91-114.
- [3] G.R. Allan, H.G. Dales and J.P. McClure, Pseudo-Banach algebra; Studia Math. XL(1971) 55-69.

- [4] F.F. Bonsall, B.E. Cain and Hans Schneider, The numerical range of a continuous: mapping of a normed space; aequationes mathematica; 2, 1(1968) 86-93.
- [5] F.F. Bonsall and J. Duncan, Numerical range of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lect. Notes Series 2, Camb. University Press, 1971.
- [6] N. Bourbaki, General topology Part I; Addison-Wesley Publishing Co., New York, 1966.
- [7] J.R. Giles and T. Husain, Boundedness of spectra and numerical ranges for elements of locally m-convex algebras (192), unpublished report (McMaster University).
- [8] J.R. Giles and D.O. Koehler, On numerical ranges of elements of locally m-convex algebras, Pacific J. Math. (1974) 79-90.
- [9] A. Srinivasan, Numerical ranges of elements of topological algebras, Ph. D. Theesis, McMaster University, 1976.