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NUMERICAL RANGE THEORY FOR PSEUDO-BANACH ALGEBRAS

By T. Husain and A. Srinivasan

¢. Introduction

In [7] Giles and the first author extended the concept of numerical range of
an element of a normed algebra to locally multiplicatively convex algebra and
studied some of the basic properties. In [8] Giles and Koehler studied it fur-
ther. In this paper we study the numerical range of an element of a pseudo-
Banach algebra introduced by Allan etc. in [3]. Among other results, we

show that for any element of a pseudo-Banach algebra the numerical radius

1S equal to its spectral radius. Also its spectrum is compact and is contained
in its numerical range which is a convex compact set. Hence we show that
the convex hull of the spectrum of an element coincides with its numerical

range. Moreover, we give a characterization of dissipative elements of a pseu-
do-Banach algebra. (The case for Banach algebras is known in [5]).

It is known [3] that every commutative Banach algebra with identity is a
pseudo-Banach algebra and there are pseudo-Banach algebras which are not
Banach algebras. It is interesting to note that in the case of a Banach algebra,
the numerical radius is less than or equal to the spectral radius whereas in

the present case of pseudo-Banach algebra, they are equal.

1. Preliminaries

The concept of pseudu-Banach algebra was introduced by Allan, Dale and
McClure [3]. We reproduce the definition here:

DEFINITION 1.1. (Allan, Dales and McCIure [3]) Let A be a commutative
topological algebra over the complex field C with identity 1. A bound structure

for 4 is a non-empty collection B of subsets of A satisfying the following
conditions:

(1) Each B &8 is absolutely convex, bounded, BE:CBQ, and 1&8,,;
(ii) Given B,, B,&p3, there exists B; in 8 and 4>0 such that B;UB,CAB,.

The pair (A, 8) is called a Bound algebra.
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For B, in £, let A(Ba,)z{}tb : 2eC, b&B,}. In view of (), A(B,) is a sub-
algebra of A generated by B,. The Minkowski functional of B, defines a
submultiplicative seminorm |-l on A(B,). lf each |+lz, is a norm, and if
A(B)) is a Banach algebra with respect to (-llg,, and if A=U{A(B,) : B,&5}
then A is called a psexdo Banach czlg;ebm.

If A is an algebra with identity 1, then G(A4) denotes the set of all invert-

ible elements in A, A’ its topological dual and A* its algebraic dual. We 1ol
low the notion and terminologies of [3] and [5].

PROPOSITION 1.2. (Allan etc. [3]) An algebra A is a pseudo-Banach algebra

with respect to some bound structure, if and only if A is isomorphic with the
inductive limit of an inductive system (A, ; z'ﬁa o, e, a<pb), of Banach alge-
bras with identity and continuous unital monomorphisms.

REMARK. Observe that a priori a pseudo-Banach algebra does not carry the
inductive limit topology which is complete by definition. Its initial topology is

in general coarser than the inductive limit topology. We assume that A is a

complete topological algebra as well as a pseudo-Banach algebra in the sequel.

The following simple known result is given here for the use in the sequel

PROPOSITION 1.3. Let (A,B) be a pseudo-Banach algebra with the inductive
limit topology. Then a linear functional f on (A, B) is continuous, if and only

if for each o, f lAa,=fa 18 @ continuous linear functional on the Banach aigebra
A, lI-1lD.

2. Numerical range of an element of a Pseudo-Banach Algebra

DEFINITION 2.1. Let (4,8) be a pseudo-Banach algebra with identity 1.
Recall B={B,; a&4}, where each B, is an absolutely convex bounded set sa-

tisfying the conditions in 1.1. We put A, ,=A(B,) which is a Banach algebra.
We define D(4, 8 D={f€A4": f(D=1, {f] <1, for all @&}, and D, (4,
B, i )={fEA*; flA,ED (A, Il : D}, where DA, |-l :1D={fEA :
1fylle=1=f,(L}. Observe that for each f &A,’, by the Hahn-Banach theorem
there exists a g&A* such that g|4, =f,.

THEOREM 2.2. Let (A, [8) be a psendo-Banach algebra with identity 1 and with

the inductive limit topology. Ther () ADa(A, B, :1)=D(A, 5:1).
=
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PROOF. If f& N D,(A,B, 1), then f is a linear functional on A such that
o/

f1A,=f, is a continuous linear functional on A, If, Il <1 and f,(1)=1 for

each o in A. The continuity of f, on A, for all « in 4 implies the continuity
of f on A by proposition 1.3. Clearly f(10=1 and If l,<1, for all « in 4
imply that f&€D(4,8:1). Conversely, if f{€D(4, 8: 1), then clearly f,=rl4a,
cA,/, f,(1)=1and f,<1, for each a€4. Thus we have:

N D, (A4,B,:1)=D(A4,8: 1).
aE

THEOREM 2.3. Let (A, B) be a pseudo-Banach algebra with identity 1 endow-
ed with the inductive limit topology. Then D(A, 1)=I£n D (A,B, ;1) (pro-

Jjective limit, see [D]).

PROOF. First we show that for ««, 8 in 4, << implies D (A, B, l)DDﬁ_.
(A, Bﬁ ;1. If fEDﬁ(A, Bﬁ : 1), then f&A* and f5=f|Bﬁ is in D(Aﬁ, “'”5:
1). So f £EA3". Since < means BaCBﬁ, it follows that f|A_=f ﬁIAaEAa,’.
This proves that f&€D_ (A4, B, : 1.

Now {D_(A4, B,_; 1)}, is a family of subsets of A* indexed by the directed
set A such that for <8, a, €4, D, (A, B, :1)DD4(A4, Bg: 1). For each « in
4, the norm topology on D (A4, B, : 1) induced by [+l , is finer than the norm
topology on Dﬁ(A, Bﬁ ;1) by |- 5 whenever <5 because Bm,CB‘8 for a<g.
Take 7,5 to be the canonical injection: Dg(4, By s 1)-D,(A4,B ;1) for a<pg,
then Lim D, (4, B, :1) may be identified canonically with 1 D (4, B, 1)

— (=Y
(See Bourbaki [6] page 50). But by Theorem 2.2, QAD (A, B, :1)=D(A4,8: 1)
4 4

and the result follows.

DEFINITION 2.4. Let (4,8) be a pseudo-Banach algebra and ¢ an element
of A. Since A= U {A(B,) ; B g}, ac=A, for some a. Put V (4, B, : a)=1f
(a) ; fE€D (A4, B:: 1)} and define the numerical range of a to be V{4, 8; a)=
{fla) : reD(4, 5 D}
v(A,8:a)=sup{l|d]| ;s A&V (A, B,a)} is called the numerical radius of a.

REMARK. Since a complete locally convex algebra in which every element

is bounded is a pseudo-Banach algebra (cf: [3]), the results of this chapter
hold good for those locally convex algebras as well.

THEOREM 2.5. Let (A,B) be a pseudo-Banach algebra and a an element of
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A. If a€A, for some a, then V (A, B, :a)=V (A, |l e and V(A,B:a)=
N{V(A Il s @) s a€A ). Moreover, v(A,B:a)=inf{v(A4, -1, O<lal, S
o

A},

PROOF. By definition,

V(A,B,; a)=1{f(a) ;: f€D (A, B, : 1D}
={g(a) : g€A*, g,&D(A, -, D}
={g (@) ; g,ED(A, Il D}
(Since g(a)=g,(a), for a€EA4, )
=V(4, -, : a.

Thus, by Theorem 2.2,

V(A,B:a0)={fla); fED(A,B; 1)}
=1gla) i g€ N D (A, B, : 1)}
ac
=N {g(a) :LgEDa(A, B, 1), e=A}
=N {V (4B, :a): a4}

=N V(4 Il 2 @) a4,

Finally, since V(4,8:a)=NV(4,_ |-, a), we have,
#4

TH]

v(A4,8; a)=i11rf {v(A, -, 3 @)<lall,, a€A,}.

COREM 2.6, Let A be a pseudo-Banach algebra with identity 1 and a an

element of A. Then,

(D

Sp(4 ; @=N{5p(4, ; @) ; a&SA,}, where Sp(4,, @) is the spectrum of aEA .
4

(i) 7(A:a@)=inf {r(4,; a) ;a=A,}, where (A ; a)=sup {|1]| : 2&Sp(4 ; )}

s the spectral radius.

PROOF. (i) By definition, Sp(4:ae)={A&C ; (A1—a)& G(A)}. If 1&5p(4;
a) then (A—a)EG(A). We claim that (A—a)&G(A4,) for each A, for which «

cA,

FFor, otherwise, (A—a@)&G(4,) for some A, for which acA,. But this

implies that (A~a)EG(A) (because G(4,)CG(A4)) contradicting that (A—a)&&

G(A). Hence Sp(4:a)CSp(4,: @), for all a’s for which e€A4, ; and so Sp

(4:;a)CN{Spld,; @) i a€A,}. On the other hand, if A&N{Spl4,:a) : eaEA4 _},
o o
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then (A-a)EG(A4,) for all A for which e€A,. But the algebra A being the
union of the subalgebras A, which are outer directed by inclusion, we see

that (A—a)EG(A) ; and therefore A&Sp(4 ; @). This proves (1).
(ii) By definition and (), (4 ;a)=sup {|lA]|; A€Sp(4,a)}=sup {|A] :ZEQ

Sp(4, ;s @} =inf{r(4 :a) : a€A,=A(B )}, because {B,} 1s outer directed.
X

THEOREM 2.7. Let (A, ) be a pseudo-Banach algebra and a an element of
A, Then Sp(A ; a)CV(A4,5; a).
PROOF. We know that Sp(4,; @) is contained in V (4, -l ;e for e€A4,

because A is a Banach algebra ([5], page 19, Th. 6).
Hence by Theorem 2.6, Sp(A4:a@)=N{Sp(4,: @) : a€EA}
- (8 4

CQ VA4, ,:a;:aesA}
=V(A4,8: a) by Theorem 2.5.

3. Seme properties of the numerical range and spectrum

PROPOSITION 3.1. Let (A,B) be a pseudo-Banach algebra and a an element
of A. Then Sp(A: a) is a compact subset of C and V(A,[5: a) a convex compact

subset of C.

PROOF. By Theorem 2.6, we have Sp(4,a)=N{Sp(4,: @) ; a=A,}, where
A

each S5p(4, : @) is a nonempty compact subset of ¢ [5]. Since Sp(4 : @) is the
intersection of nonempty compact subsets of C, it is compact. Further, since

by Theorem 2.5
V(A,5:a)=) V{4, [l 3 @) s a=AL}, where each V(4,3 @ ecA, is

a convex compact subset of C, by Th. 3 (page 16, [5]) it follows that V (4,
B3 a) is a convex compact subset of C,

THEOREM 3.2, Let (A,5) be a pseudo-Banrach algebra with the inductive limit
topology and a an element of A. Then, r(A;a)=inf {r(4,:a) ;e=A,}=inf
o

llell,, e€A } and (4 a)=v(4,8; a.

PROOF. Let B(e@)=inf {lail , B,&B3acA,=A(B,)}. By Theorem 2.6 (il),

7(A4 ; @)=inf {r(4,: a) : aEA4,}
=inf{sup {|4] ; A&SH(4 ; @}} <inf{llall, : e&A, }

=f5(a).
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Now we prove that 8(a)<r(4 : a). Suppose e&A =A(B, ) for some B, &3, If

2ESp(A, @) and |2{ > lal ,, then (z—d)_IEAa, and (z_a)—lzz—l_l_z—za_l_z—saz;
+ ---, in which the series converges absolutely in A, Thus if f€4A" and g

(D=Ff((z—a)™Y), then g(z)=z_1f(l)+z“2f(fl)+Z—3f(€32)+'"(*)= for 2&Sp(4,, ;
a) and |z|>|la|l ,=B(a). Clearly g is holomorphic for (2| >7(A_, @) and hence:

1/n

from its Laurent expansion (*) we have lim sup | f(a”)ll/”ilim Sup]!s:zﬂl[{:|r :

H—r0O0 =200 X

Thus lim sup| f(a")]l/nir(f-l s a), (J&A’) proves that 8(e)<r(A4 : a). But then.

H—00

Bla)<r(A :; a)=inf :r(Aa,  @)<<inf v(4,; lI-Ha, - a)iiinf{l\alla ; a=4,} =6(a), wh-
X 4 4 X
ich also implies that inf r(Aa, ; a)=ini v(4,B,_,a). Hence we have r(4: a)=v
# 4 '8 4

(4,8 a) =inf {lall,, e A, =p(a).

THEOREM 3.3. Let (A,B) be a pseudo-Banach algebra and a an element of’

A. Then the closure of the convex hull of Sp (A,a), denoted by Co Sp(A4; a).,.
coincides with V(A, B ; a).

PROOF. By Theorem 2.7 and Prop. 3.1, Sp(4; @) is a compact subset of C.
and V(4,8 @) is a convex compact subset of C such that Sp(4:a)ZV (4,8
a). Also by Theorem 3.2, (A a)=v(A4,8:a). Hence Co Sp(4:ae)=V{(a}pB:.
a), because the latter is a compact convex subset.

THEOREM 3.4. Let F be a closed (under the inductive limit topology) subalg--
ebra of the pseudo-Banach algebra (A,[B). Let (F,[3') denote F with the bound’
structure 5 restricted to F and let a be an element of F. Then V(4,8:a)=V

(F, 5 a).

PROOF. For each o we have A(B )DF(B,’)i.e A,DOF,, where B,/=F(1B,.

Also by the Banach-algebra numerical range theory (page 16, Th. 4, [5]) for
each « when e&F,, we have: V(A4 _, |-l ,: &)=V (F |-, :a) or V (A, B,;ax
=V (F,B, :a), for a&F .

Hence V(A,B: a)=N{V_,(4,B_ ; a) ; a&A 4 (Theorem 2.5)
44

=N {V (F,B, ;a):aEF }=V(F,§; a).

REMARK. The above theorem is not true in general for any topological:
algebra, e.g., see [9]. It is, however, true for Banach algebras [5].
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COROLLARY 3.5. Let (A,B) be a pseudo-Banach algebra and a an element of”
A, Then V(A,B:a)=V(P(a),B:a), where P(a) is the algebra of polynomials-
with complex coefficients.

PROOF. This is an immediate consequence of Theorem 4 (page 16, [5]) and.
Theorem 3. 4.

The following properties (Theorem 3.6) are known to be true for Banach.

algebras., We show them here for pseudo-Banach algebras.

THEOREM 3.6, Let (A, ) be a pseudo-Banach algebra with the inductive limzit.
topology, let a,b be elements of A and p,qEC. Let V(A, B; a) be denoted by V-
(A @) for convenience. Then the following properiies hold:

() VA,e+b)CTV(A:a)+V(A;b),
(i) V(A : p+qga)=p+qV(A;:a), and v(A:; p+qa)<|p|+|q] v(4:; a),

(ii1) v(4: pa)=|plv(4 ; a),

(v) v(A;: a+d)<v(4A;a)+v(A:b),

(v) r(Asa+d)<r(A;:;a)+r(4:b),
(vi) r(Asad)<r(A:a) r(A:0b) and v(A; ad)<v(A; a) v(a;bd),

(vi) v(A:e@)=0v"(A:a) and r(A;ad)=r"(4; a).

PROOF. They are easy to verify. For the Banach algebra case, see [5].

THEOREM 3.7. Let (A,B) be a pseudo-Banach algebra and a an element of
A. Then

max Re V(4:8:a)= ig% pt {infll1+pal ,—1: a€EA,}
X
=lim p * {inf |1+palla—1; aEA4}.
p—0t o
PROOF. By Theorem 2.5, we have,
max Re V(4,8:a)=max Re N {V(4,.1l-ll,;:a)aEA,}.
4 4

=inf {max Re V(4,, |-l ,:a) :aEA,}

= inf {inf p~ (l1+pal—1);aE€A} (by [5])
o p >0

or
lim
p—0F

. -1 . B
_EEP tnf [I1+pell,—1), a€A,}.
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or
lim
p—0F |
THEOREM 3.8. Let (A,5) be a pseudo-Banach algebra and a an element of

A. Then the set-valued map: a—V (A, B a) is upper semiconiinuous.

" PROOF. Observe that e—V (A4, 8 @) is continuous if A is endowed with the
inductive limit topology. Since for every e&A4, V(A4,8: a) is a convex compact
subset of 4 by Theorem 3.1, the set-valued mapping: ¢e—=V (4,8 @) is upper

-semicontinuous as in (cf. [4]).

THEOREM 3.9. Let (A4,B) be a pseudo-Banach algebra akd a an element of
A, Then | - | |

L . ____ ] -_]'— . - - . B
max Re V(4,8 @) —ggg [ » log {11;’:' lexp(padll, ; ‘aEAa,}].

or
Iim
p—0"

I,

PROOF. max Re V(4,8:e>=max Re N {V(4, -l a) ; eEA )}
4 4
=inf max Re {V(4_ -], i a);:eaESA}
' 4
. -1 . .
12 ig% [p ~ log {llexp(pa)ll, a&A }]
or

lim
p—0t

=sup 5" log (inf {lexp(pa)l, : €4, 1],
or |

Iim
p>0

DEFINITION 3.10. An element of a pseudo-Banach algebra is said to be dis-

sipative if Re z<0, for all 2&€V (4, B8:a). (See [5] for the Banach algebra
.case. )

THEOREM 3.11. Let (A, B) be a pseudo-Banach algebra and a an element of
A, Then a is dissipative if and only if inf {lexp(ta)|  :e€EA4 }<1, (>0).
| o | |

PROOF. Applying Theorem 3.9, we see that a is dissipative if and only if
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log inf {llexpUdli,; e€4,} <0, i.e. if and only if inf {[lexp({a)l , : e&A } <1,
8 | s 4
(¢>0).

THEOREM 3.12. Let (A,5) be a pseudo-Banrnach algebra and a an element of
A. Then,

=i (L Tog(; Gl
max Re Sp(4 s )=int {5 loglint {lexp(padl,, : a€4,D));
or
lim
p—0t

PROOF. max Re Sp(4;ae)=max Re N {Sp(4,: a) :a€A4,}

=max Re {z: zESp(Aa ; @) :‘czezﬁlﬂ}~ _- |
=inf {max Re Sp(4,: @) :acA}
(A4

=in [inf {4~ log (lexp(po)l ec4,)}]

or
Iim
p—Gt

. 1 : .
—in - log (inf {lexp(pa)l, ; a€4,))

or

Iim
p—0*
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