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ANALYTIC SUFFICIENCY CONDITIONS FOR GOLDBACH’S CONJECTURE

By C.J. Mozzochi and R. Balasubramanian

1. Introduction

It is generally known among serious students of the Goldbach conjecture that
within the framework of the Hardy-Littlewood circle method attack on the
problem the whole difficulty is in obtaining the requisite estimate on the integral
of the representation function over the minor arcs.

The purpose of this paper is to fill a gap in the literature by carefully
elaborating upon the above statement; as we have not been able to find any
of our results even mentioned in print.

2. The Hardy-Littlewood circle method

In this section we will present an outline of the Hardy-Littlewood circle
method as modified by Vinogradov in [77] and as presented by Estermann in
[13].

. 15
Let @)=, fGa, )=o), 2= LB

For each #» we will select a finite number of rational points in the closed
interval [xy, xp+1]. Symmetrically placed about each of these rational points
will be a closed neighborhood of radius x,. Each such closed neighborhood will
be called a major arc, and the union of all such major arcs for each fixed =
will be denoted, M (n). Everything will be arranged so that for each fixed #
(greater than some fixed integer N,) the major arcs will be pairwise disjoint.
For each fixed # each interval between adjacent major arcs (or between a
major arc and the point xy) will be called a minor arc, and the union of all
such minor arcs will be denoted m(#z). Clearly, for each n, m(n)N\M(n)=0
and m()UM )= [x,, xo+1]. )

The crux of our application of the Hardy-Littlewood circle method will be
the construction of three sequences R(»#), S(n), and T'(x) with the following
properties:

1. —é—n log™“n<T (n).
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2. ffg(x, n)e(—nx)dx=T ®)R (1) +0(nlog ™ “n).
M(n)

3. S(w)—Rn)=0(1).

4, There emsts a real number 0, such that S(n)=6>0 if » is an even
integer,

We conclude th1s section with the. followmg

LEMMA 2, 1. Lez‘ {4, } be any sequence of subsets of [xo. xot1]. Then
ffz(x, n)e( —nx)dx=0(nlog 'n).

PROOF.
Xo + 1

| 1
ffz(x, n)e(—nx)dx <f }f (x, n) dx_<_f f(x, n) 2dx=H(n).
A, ] 0 |

3. An analytic sufficiency condition with the generalized Riemann
hypothesis

At the very end of his expository talk to the Mathematical Society of
Copenhagen in 1921 (cf, [24]) Hardy made under the assumption of Hypothesis
R the following statement after dlscussmg the case 7=3 Wthh corresponds to
his Theoerm D in [25].

There is unfortunately a wvital difference between the case =2, which
corresponds to Goldbach’s theorem, and all of the rest. We have to fill in the
skeleton whi_ch I have presented to you, and to transform it into an accurate
proof; and in doing this we find ourselves compelled to suppose that r>2. It
only remains that I should explain to you shortly the reason for this regre-
ttable limitation. The explanation which follows must be taken merely as a
first approximation to the truth.

We will not elaborate further upon this statement by Hardy other than to
say that it is clear that Hardy and Littlewood in 1921 knew in addition to
their assumption of Hypothesis R precisely what the difficulty was with
regard to their method of attack on the Goldbach conjecture.

The rest of this section will be devoted to exhibiting a plausible analytic
sufficiency condition for the asymptotic formulation of Goldbach’s conjecture
under the assumption of the generahzed Riemann hypothems by means of
Estermann’s formulation of Vlnogradov s modification of the Hardy -Littlewood
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circle method.

First we present some preliminary lemmata and theorems, some of whichs
will be used in Section 4.

LEMMA 3.1. For any numbers x; and %o,

fx1tx, v)=(r)f (%1, v)—2mixy f e(uxy)f(x, wdu.
0

PROOF. [13] page 53.

_ — _E(mx) _
Let g(x, v) E-gn%v log 71 (v=>2) and g(x,2)=0 (v<2).

LEMMA 3.2. For any numbers x, and %o,

v

g(x1+x, )=e(vt)g(x;, v)—21ix, f e(uxo)g(xy, pdp.
0

PROOF. [13] page 63.

A 3.3. C,(m)= 2 .
LEMM () d/rﬁ/u ‘u( d )d

PROOF. [28] page 237,

THEOREM 3.1. Let m>3, k<m*(logm)? and (& I)=1. Then under the:
assumpiion of the generalized Riemann hypothesis for every >0

5+0

. [ sm 2
[T s B, ) 2 0) <A(D)m .

PROOF. [9] page 129.

THEOREM 3.2. Let m=>3, k<log"m and (k, 1)=1. Tken

: _ I sm __Alogm
(TI(m s &, D O, I.’S_/-lm exp< 500 )

PROOF. [13] Chapter 2.

LEMMA 3. 4.

1 _ §(@EEB) log x
,?E; 50> 506 _Iogx-I—A-I—O( p )

PROOF. [46] page 38.



88 C. J. Mozzochi end R. Balasubramanian

LEMMA 3.5.
o O 3 () C,(1)=0(d (n)(log log 35)% 1)
=R TS R 508

PROOF. [49] page 211.
LEMMA 3.6. d(#)=0(n*) for enery &>0.

PROOF. [28] page 260.

LEMMA 3.7. qugﬂ — oo for every €>0.
7

'PROOF. [28] page 267.

LEMMA 3.8. If f(q) is multiplicative, and )3’[ f(g)| <oo, then

q%f(q) HZf(p ).

p m=0

PROOF. [13] page 3.

LEMMA 3.9, If (n, g)=a and g=aN, then

- nk \_ u(N)P(g)
“o(m= (g%g{( q )" dN)
1, q4)=

PROOF. [28] page 238.

LEMMA 3.10. Corresponding to any x and any y=>1 there are numbers h, q such
‘that (h, q)=1 and such that ¢y and |qx—h| <y'"1

PROOF. [28] page 30.

Restrict € such that 0<e <l(13_0' For each » let m(#) be those points in [x,
29+1] which are not in any closed neighborhood (major arc) of radius x;
-about any rational number —2— where (h, ¢)=1 and ¢<#°. If #>N, then the

Jnajor arcs are palrwise disjoint, since
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1
2 log 572
1 —2¢

‘Clearly, the measure of M (#n) is less than or equal to( ) ; so that since

-a<'—-%— it tends to zero; so that the measure of #(»%) tends to one.

Let »(n) be the number of representations of # as the sum of two primes. It

1S easy to see that
o1

r(n)=|

Xo

fz(:r:, n)e(—nx)dx for any x,.

‘We decompose the above integral into

(1) = f £20x, m)e(—nx)dx+ f 20y, me( —nx)dx

m(n) M(n)
=A(n)+B(n)

By Lemma 2.1 we know that A(x)=0(#n 10g_1n).
"We now establish the following.

THEOREM 2.3, Assume the generalized Riemann hypothesis. Then A(n)=o(n

log ™°r) implies r(n)>0 for every even n=>N 0r

PROOF. By definition
[ 73 we(-mo)dx= = = T, o),

M(n) qsnt ((;;,<qh)§=q1
‘“where
.
T (R, q)=f f(x, n)e(—nx)dx.
?
—_— X,

q

LEMMA 3.11. Let ¢<n", |yI<xy (h, ¢)=1, and n=N,.
Then

f< g Es ”>_ ggg gCy, n)|<C,(log™r)nt/?+e+0,

PROOF. By the definition of f(x, v) we have

) - gdd)=m
g

'But it is easy to see
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= ()=, 5 () = )

F A, q 0I<q q <y
p1q ({,¢)=1 p=l(modq)
[h “
= — rq, 1)),
Oggq((q [1C[v] i q ))
(Irfi'):"l

and by Theorem 3.1 we have for some 5<I%6

[1({v] s q, 1)— ;S(E;”)] £n1/2+5(0<'u<ﬂ, (g, [)=1 and n>=Ny).

But by definition /s[v]=¢(0, v), and since (%, g)=1 we have by Lemma 3.3
that /

[h
2 &) =u@.
(l,g)=1

Hence for 0<<v<<x and #=>N,,
f(—k—-, v)— #(q) g, v)|<g+| 2= e( pk) ¢(q) [sv]

q o(g) ’ p<v q d(q)
pTq
=g+| = p=y ("q” NIICla 5 g, D~ W%}
(,q)= 1

SQ‘I‘Q?ZI/Z-I-5£ﬂ5+7i1/2+8+5£01721/2+E+a\ 0<v<n.

By Lemma 3.1 and Lemma 3.2 we have

f( 2 -9, n>=e(7zy)f<—§—, v)—2frz'y j:e(vy)f( g

v)d 0,

and

gy, n)=e(uy)g(0, n)—2miy fs(vy)g(o, v)dv,
0

]0 15
5 1 we have

Hence, using the fact that |y|<xy and xp=-

e __#g)
Lty n)=58 gy, )

g(ny){f<—g——, 72)-— gggg g (0, 12)}—27:33, fs(vy){f<%, v) gggg £ (0, v)}dz)[r

|

n

<|A( L n) 4850 w] +2en |#( L 0)-5B50, 0]
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<(1+27x412)C ulHetet 2
ng(logmn)nl/ 2+¢49 for n>N Or

LEMMA 3.12., Umnder the hypothesis of Lemma 3.11 we have

|f2( h -y, ﬂ>_ gi(q) _gz(y’ ) £03(10g15ﬂ)n3/2+£+5.
1 ¢ ()

PROOF. This is immediate by Lemma 3.11 and the trivial inequalities |[f(x,
n)|<wn and |g(y, #)|<<# and the fact that if |e|<m and [b|<<n, then | a®—b°|
2n|a-—>b].

We now assume #=>N, throughout the rest of the proof.

By a change of variable y=( —-%—) we have
T, q)'=€( _r’r';h )j?fz(%_l—y’ n)g(—ny)dy CA)

-'.‘xg

However, by Lemma 3. 12

|€<"—fz,h )j:f 2(—:; Y n)e(—ny)dy— ;jgg s( ’;k ) f :fz(y, n)e(—ny)dy

2
< | |75+, ”>—~¢z?§ g%y, w|dy< [ Cyllog®mn®/2+e+ gy
— X0 q —Zg

Now let T';(n)= f gz(y,- n)e(—ny)dy: so that by (A) and the above we

have if (&, g)=1 and ¢<#°, then

2
_ 19 - nh 30, 1/2+4e+0
T =L Ti(mye( =25 )| <CiQog™mGa %% (B
Let T(n)= 37 log_lﬂéllog_lmz (C)

with the conditions of summation m;>2, my,=>2, and my-+ms=mn.
1/2
It is easy to see that T(fz)=f gz( y, n)e(—ny)dy. (D)
—1/2

Also, it is clear that the number of terms on the righthand side of (C) is
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2

(n—3), and each term is greater than log™ “# and less than 1: so that —é—n

log ™ “n <T'(n). (E)
It is easy to see using the formula for the sum of a geometric series that

e 1 1 1
elmy) | <l—— < s (w12, 0O < .
o S ey 21yl o Si=70

Hence by the definition of g(y, #) and Abel’s lemma,

2(y wI<iyl™  (0<lyI<5)s

so that
1/2

lT(ﬂ)—Tl(n)|£2fy‘zdy<2x0_1=2fz log ™ 1°n. (E)

Hence for (k, ¢)=1, q<#°

L 2( 1 —15
L) Mgy | [T -Tam | 5 Canlog™

and combining this fact with (B) we have

2 .
T(h, q)—-~ (@) T(n)e 7k ) <c (log®n) (n1/2+€+0%)
I H(q) ( q ) ;

1l nlog™Pm: (G
¢"(g)

so that that adding (G) ¢(g) times for some fixed ¢<<#" we have

2

2
o= G
<C,(log¥m)(n/*+ 1) (g) 4 ¢(1q) (2r log™"°n). (H)

But (35(9)_"'\:?35 and by definition

nh O
- . - PR :‘

0%1::‘_{ q€< q ) q(ﬂ)
(h,g)=1

s0 that it follows immediately from (H) that:

<C,(log¥n) (n!/2e+%) 1 3 (lq)—(zn log ™). (I)

Now summing over all ¢<#° ani using Lemma 3.4 we have
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T 3T T(h ) —Tm) 3 “@ -C,(n)

g<nt &<)=ql <t ()

SC,;(log n)n1/2+38+5+[ %‘ gé( }(2% Iog"15n)
g<ne

£
<C,(log¥n)n’ 2+3E+5—I—<C5 log #*+Cgs+C. logsn )(2?2 log ™ %)
7

SQ(logBOn)nl/ 2+3E+5—I—an log_14n+an log_lsiz

+Cyont Clog ™M

<Cy 7 log ™ ;

Hence this estimate with the hypothesis yields

2
r(n)~T(n) 5= 5390 C (n)| <k(m)n log~%+Cyyn log™n : (1)
g<ne ¢ CQ)

where 2(n)—0. Now let

Rim)= 5= —&(—‘7)—0 (1) and S(w)= 5 @ ¢ ().
< ¢°(q) =1 ¢%(g)

By Lemma 3.5 and Lemma 3.6 we have that

50n)~ R(m) | <G, 402008 Jog )" ¢, w7 Clog logdn'y_
n n
so that |S(n)—R(n)|=0(1).
By (E) what remains to be done is to show that S(#) is uniformly bounded
away from zero.

Let f(g)=- @c ().
$°(@)

Since u1(g), ¢(¢g) and C, (n) are all multiplicative functions of ¢, f is a mul-
tiplicative function of ¢. Also, by means of the trivial estimate on C (»),

namely 7, and a direct application of Lemma 3.7 we have
1

L (@)

so that by Lemma 3.8 we have for each n

Z‘]f(q)l<n)___,’ oo for each #;

S(n) =TI Z’f(p’”)

g m=0

But
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2
If m=0, Fp")=FpD=r)=4c,(my=1

¢"(1)
2 C
If m=1, f"=f(pH=F(p)=LL) C (n)=_—2)
) T (-1
If m>2, u("™=0; so that f (p")=0.
Hence
Stn) =H(1+ Cp(n)z)'
p (p—1)

But by Lemma 3.9 we have C,(r)=(p—1) if (p, »)>1, and C,(m)=—1 if

{p, n)=1:so that
C,(n)

1 = 1
S(r)=211 (14 .,})2:2 1 (1 )22 (1-—-—.-):.1.
o pgz( -7 e\ T o e\

4, An analytie sufficiency conditien without the generalized Riemann

hypothesis

One, of course, would prefer an analytic sufficiency condition for the
asymptotic formulation of Goldbach’s conjecture which would not require the
ceneralized Riemann hypothesis. Mozzochi (c.1975) in [53] established such a

condition, and we will improve his results here and in Section 5.

For each 7 let m(n) be those points in [xy, x3+1] which are not in any
closed neighhorhood (major arc) of radius xy about any rational number
-.f]—"’- where. (%, q)zl, (g, n)=1 and qgloglsfz. If u>N, then the major arcs

are pairwise disjoint. Clearly, the measure of M (%) is less than cor equal to

2 10g45n
72
tO oOne.

) ; so that it tends to zero. Consequently, the measure of m(s2) tends

Let (%) be the number of representations of 7 as the sum of two primes.
[t is easy to see that

%o+ 1
r(zz)=f fz(x, n)e(—nx)dx for any x;

We decompose the above integral into

(n) = f F20x, m)e(—nx)dz-+ f F2x, mel —nx)dz

m:( 1) M(n)
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=A(n)+B(n).
By Lemma 2.1 we know that A(n)=0(x log_ln).
We now establish the following.

THEOREM 4.1. A(n)=o0(n log “n) implies r(#)>0 for every even n=N,.
PROOF. By definition

ffz(x, n)e(—nx)dx= 3 3 T(h, q),
(1) g<log'®n O0<h<q
mn (g,n)=1 (h,g)=1

wvhere
h

s o
q+“

Tk g)= f fz'(x, n)e(—nx)dx.

h

'_"_xﬂ

q

LEMMA 4.1. Let ¢<log™n, |y|<xq, (k ¢)=1, and #=>N, Then

f(? =, n)— ‘;Egg g(y, )| <n log_ﬁgn.

PROOF. This follows from Theorem 3.2 in a way very similar to the way
‘that Lemma 3. 11 follows from Theorem 3.1. See Theorem 58 in [13].

LEMMA 4.2. Uwuder the hypothesis of Lemma 4.1 we have

2
f2<i+y, ?3>_"£fo(q> g(y, )| <Cin’log™%n.
q p~(q) .

PROOF. This follows from Lemma 4.1 in exactly the same way that Lemma
3. 12 follows from Lemma 3. 11.

We now assume #>N, throughout the rest of the proof.
By a change of variable yz(x——g—) we have

T (A, q)=e<— ”qk )fuﬂ(—l;—%—y, n)e(—-ny)dy. CA)

.However, by Lemma 4.2

e( ﬁgk )[x{.?(z -9, n)s(—ny)d;;— gzgz;_e( ?Zk >f_i2(y’ n)e(—ny)dy

2( R . 2 —69
< f (—E—er, n)—- ;JEZ; £ (y, n) dygfclfzz log 0 ndy
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54

Ggfzr-an log ™ "z.

:2.'1:'001?@2 log_
Lo

Now let T((n)= fgg(y, nwe(—ny)dy ;s so that by (A) and the above we-

have that if (7, ¢)=1, q_<_10g15n then

2
ITUZ, q) — ‘f_)@) Tl(n)e(— nk ) <Con log ~*n. (B)
d"(q) q
Let T(n)= 3_ log ny log ms ¢C)

niy, Mo

with the conditions of summation m,=>2, my,=>2, and m;+m,==n.
By exactly the same arguments that we used in the proof of Theorem 2a.3"

we have
—51;—12 log ~*n<<T(n). (D)
and for (&, q)=1, qgloglsn
-2 @ |y -7y ) | <21 Tog ™ 5. (E)
1 ¢"(q) ¢ (q)

Combining (E) with (B) we have for (%, ¢)=1 and qglogwn

2
T(h, q)—-% (‘Q-T(n)e B <C nlog_mn—l- 1 (2n log—15fz); (F):
] (@) ( q ) ’ °(a)

so that adding (F) ¢(g) times for some fixed g<log™n we have:

I 37 T(h, q)— £ () T(n) 3= e( - ”k)

0<h< 2 O<h< q
o=t (9) oy =]
<(Cyn log"54n)¢(q)+-¢4/31() (2nlog™"m)¢ (@) (G
g

But ¢(q)_<_10g15n and by definition

32 e(—ik-)=cq(ﬂ) :
0<h<yg qd
(h,q)=1

so that it follows immediately from (G) that

2
= T, - L@ 1@,
AN ()

L (2nlog%). (H)

<Co,n log"39n - '
” $*°(g)
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15

Now summing over all ¢g<<log™#z such that (g, #)=1 we have

s 3T T -Twm 3= £ (@) C, (1)

<logi5n 0<a<g g<logisn 2
%q, n)=1 (g, ﬂ)=1 (g, n)=1 (9)
<(Con log ™n) (loglsfz)-l—[ S ; /51 —] (2n log_lon)
g<loglsn gj (Q)

<<Con qu"24fz+ Ca(2n log_lofz) <C.n log""lon ;

since by Lemma 3.7

1 .
D X — <<C. (C. independent of 7).

Hence this estimate combined with the hypothesis yields

y(n)—T(n) 3= ” (‘D-C (n) <k(7z)nlog_2n+04n log_miz, (1)

1 5
ik 6°(q)

where 2(z)—0. Now let

Rm= 37 K “(9) C,(n)
g<logisn ¢%(g)

(g.n)=1
and
oo 2
S(n)= 3 #9(‘7) Cq(fZ)D (n)
7=1 07(g)
where
_(1if (g m)=
Dq(n)_{ if (g, 12)>1
Then

> £ (‘D -C (n)D (n)
g>log'tn ¢> (g)

< =
g>logtn 7 (q)

g square free

R(n)—S(n)

since uz(q) =0 if ¢ is not square free, and by Lemma 3.9 if ¢ is square free-
and (¢, #)=1, then [C (n)|=1. Hence lS(ﬁ)—R(ﬂ)l£C510g‘_l4%, by Lemma.
3.7 so that [S()—R(n)|=0(1).

By (D) what remains to be done is to show that S(#) is uniformly bounded.

away from zero.

Let
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2
F=+D ¢ (D, ).
) !

Since u(g), ¢(¢), D,(m)and C (u) are all multiplicative functions of ¢, f is
a multiplicative function of ¢. Also, by means of the trivial estimate on C,
(), namely #, and a direct application of Lemma 3.7 we have

):’ L (g) | <m Z‘ 1 <oo for each #:
L ¢*(g)

so that by Lemma 3.8 we have for each #

S(n)=T1 Z‘ f(ﬂm)

g m=0
But
If m=0, F(p™=F(pS=F(1)= ;‘El; C,(m)D;(n)=1.
_ 3 ‘(D) _ G Dy(n)
If m=1, f(p)=F(p)= px )Cp(%)D () (1)

If m>2, u(p™=0: so that f(p™)=0: so that
Cp(ﬂ)Dp(l?Z) )
(p—1)°
Clearly, if # is even, D;(z)=0; and by Lemma 3.9 we have Cp(n)=( p—1)
if (p, @)>1and Cy(m)=—11f (p, n)=1; so that

C.(m)D,(n) 1
S(y= I |1+—L—E )2 (1— : )
) pgz ( (p—1)° p>nz ( p—l)z

1 1
21}31_[2( 71l ) T2

so that Theorem 4.1 is now established.

| S(?z)=1'1(1 |
p

If one tries to drop the condition (¢, #)=1 in the definition of m(x) above,
then one is confronted with trying to show that either S(w)—R{)=0(1) or
S(n)—R(n)=0(S(®n)), but neither of these statements appears to be true if ¢<<
logMn for any integer M > 0.

Let xg*=xy~ = where 0<e<l. Let m*(#) be those points in [x, #xy+1] which
are not in any closed neighborhood of radius xy* about any rational number
—g—— where (&, g)=1 and qgloglsn

Clearly,
()Y (me* () Une**(n))
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where
i h
*¥ (17 — h . R .
/74 (ﬁD—U[q X0 q_|_x0]'
k,g)=1
(g.n)>1
qg<loglsn
0<h<qg
But
m* (n) Nm**(n) =9,
and
f ] iz, n) deQxO*nzlogBszgcﬁ(n log ~°n) =0(n log ~*n)
m**(n)
so that if
[ |77 w]dr=otnlog=2m, K>
m*(n) ,
then

ff?'(x, n)e(—nx)dx=A(n)=0(nlog™ “n).
m(n)

5. Some impreper approaches to Goeldbach’s conjecture

The following deep result is due to Vinogradov and its proof can be found
in [{13] page 54.

THEOREM 5.1. Suppose
A : 1 log P n<v<n,
Ay logn<g<n log™*n,
As: (B, 9=1,
then,

Ay f(-—g—- z)) <(n log“gn),

Fix >0, arbitrarily small. Let Z(#) be a sequence of positive real numbers
converging to zero. Consider

A% Ie(n)nl/ 2 Iog“lfz <lv<n.
A* . log15n <q_*’\;'?zl+e log“lsn.
'AS*: (k, Q’)ZL

Az f(-—g- z;) <k(m)n**log " n.

LEMMA 5.1, If A%, As* and A3* imply A5, then (K) (of Section 4) is
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lrue.

PROOF. Suppose x&m* (). By Lemma 3. 10 there exist numbers % and q such
that (&, ¢)=1, qgf:cl“log_l‘r’n and |gx—h| <n~{+E log™n.
But then this implies that log™”n<¢; so that using A* and the trivial

inequality f(—, v) <v we have

f<_{;", v) <k(m)n'"log™'n (0<v<n).

—(A+e)y 15 .
Setting y=x—% we have Iy\=.x-—-z—-i < log 7 <n (HE}.
q

Hence by Lemma 3.1 we have

fCx, n)

e(n;;)f (%, n)—?.m'y | fﬂ s(uy)f(%, u)dul
0

<k(n)n’ 2log"1n-l—2:r(-fi ;—)-I-}e(n) n/ 210g"172
7

<(1+2n)k(n)n'’? log_ln.
However, it is not the case that A;*, A,* and As* imply A4*: for if onme

lets v=7"° and g=n, then it is easy to see that for any 6£—%
1 Tog 7 <cos @I ") S e if n=N,.

In fact, one can construct an infinite number of counterexamples by letting
h=1, q=[n'"?**T%" and v=0"?14 where 4>0 is arbitrarily small.

The upshot of all of this is that it is not possible to establish (K) by trying
to obtain the requisite estimate on | f(x, n)| for x&m*(x).

If (A,*) is replaced by

AX* nf<q<nlog n

then we have

LEMMA 5, 2. If Al*’ Az** and As* zmply .A4*, then A(?z)=0(n log_'n) where
A(n) is defined in Section 3.

PROOF. Same as proof of Lemma 5, 1.

However, for any arbitrarily small 420 we can use the corresponding coun-
terexample mentioned above to show that it is not the case that A%, A4,**

and As* imply Aj%.
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Also, in passing we note that it is easy to see that the conditions 7(#)=
o(nlog™“n) and A(w)=0(nlog™ “n) are not compatible where A(z) is that of

elther Section 3 or of Section 4.
Nor is it the case that

l_xu

f £2x, me(—nx)dx=0(nlog=n),

for if this were true, then by (F) of Section 4 we would have

|7(n) —e(—=n)T () | <k(n)nlog ~“n+Conlog n, ,
where k(n)—0. And since €(—n)=1 for all », this fact together with (D) of
Section 4 would imply that every sufficiently large integer can be expressed

as the sum of two primes.

6. Final comments

In a forthcoming paper we plan to establish Theorem 3.3 without assuming
the generalized Riemann hypothesis. To produce such a proof one must in
addition to other important details carefully and delicately analyze the difficulty
concerning the possible exceptional character in a satisfactory manner, It
appears that all of the necessary tools to do this have been developed in [50].

We would like to thank Dr.R.C. Vaughan and Professor E. Bombieri for

helpful discussions on the contents of this paper.
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