ON THE FUNCTIONAL EQUATION f[x+y f(x)] = f(x) f(y)

By S.S. Jou

Introduction

The functional equation $f: R \longrightarrow R$, R the set of real numers, such that f[x+y f(x)] = f(x) f(y)(1)

was first studied in [2]. The equation has certain applications in the continuous groups and geometric objects. Practically the only continuous solutions of the equation are given in the following theorem.

THEOREM A (See [1], page 132-135): Let $f: R \longrightarrow R$, f satisfy (1). Then followings are the only continuous solutions of (1).

i)
$$f(x) = 0$$
, $\forall x \in \mathbb{R}$

ii) f(x) = cx+1, $\forall x \in \mathbb{R}$, where $c \in \mathbb{R}$

iii)
$$f(x) = \begin{cases} 1 - \frac{x}{x_1} & \forall x \leq x_1 \\ 0 & \forall x > x_1 > 0 \end{cases}$$
iv)
$$f(x) = \begin{cases} 0 & \forall x \leq x_2 < 0 \\ 1 - \frac{x}{x_1} & \forall x \geq x_2 \end{cases}$$

iv)
$$f(x) = \begin{cases} 0 & \forall x \le x_2 < 0 \\ 1 - \frac{x}{x_2} & \forall x \ge x_2 \end{cases}$$

The proof of the theorem A is based on the following lemma.

LEMMA B. (See [1], page 132-135): Let f a continous solution of (1). If there exist $x_1, x_2 \in \mathbb{R}$, $x_1 \neq x_2$ such that $f(x_1) = f(x_2) \neq 0$, then f(x) = constant.

The Dirichlet function, which takes value 1 for the rational numbers and 0 for the irrational numbers, is an example of bounded, measurable solution of (1). Using Hamel Base, it is posible to construct a unbounded and nonmeasurable solution of (1). In this article we generalize the domain of the equation (1) to a real topological vector space X.

2. We use X to denote a real topological vector space and X^* the dual space of X; that is the collection of all real continuous linear functionals on X. A subset $M \subseteq X$ is called a linear manifold if $M = x_0 + M_0$, where $x_0 \in X$ and M_0 a vector subspace of X. M is called a hyperplane if M_0 is maximal. The closure

 \overline{M} of M is also a linear manifold if M is; hence any hyperplane is closed or dense in X. For any hyperplane M, there exists $(\phi: X \longrightarrow R, \phi \text{ linear, such that } M = x_0 + \{x | \phi(x) = 0\} = \{x | \phi(x) = \phi(x_0)\}$ for some $x_0 \in X$, and M is closed iff $\phi \in X^*$ (i.e., ϕ is linear and continuous).

LEMMA 1. Let $f: X \longrightarrow R$ be continuous nontrivial such that $f[x+y \ f(x)] = f(x)f(y)$. Then $M_0 = \{x | f(x) = 1\}$ is a closed hyperplane containing 0.

PROOF. If x_0 , $y_0 \in M_0$, then $f(x_0 + y_0) = f[x_0 + y_0] = f(x_0) f(y_0) = 1$, hence $x_0 + y_0 \in M_0$. Putting x = y = 0, we get $f(0) = f(0)^2$ and this implies f(0) = 0 or f(0) = 1. If f(0) = 0, then f(x) = 0 $\forall x \in X$ and we have to omit this case. Hence f(0) = 1, or $0 \in M_0$.

Let $x_0 \in M_0$ Then $f(x_0)$ $f(-x_0) = f(0) = 1$. Hence $f(-x_0) = 1$ or $-x_0 \in M_0$. Let $x_0 \in M_0$, $x_0 \neq 0$. Define $g_{x_0}: R \longrightarrow R$, $g_{x_0}(\lambda) = f(\lambda x_0) \ \forall \lambda \in R$; then g_{x_0} satisfies (1). But $g_{x_0}(0) = g_{x_0}(1) = 1$, hence by Lemma B, we have $g_{x_0}(\lambda) = \text{constant} = 1$, and this implies $f(\lambda x_0) = 1$, or $\lambda x_0 \in M_0 \ \forall \lambda \in R$. Hence M_0 is a vector subspace of X. M_0 is closed by the continuity of f. If M_0 is not maximal, then there exist x_1 , $x_2 \in X$ linearly independent such that $\text{span}\{x_1, x_2\} \cap M_0 = \{0\}$, here $\text{span}\{x_1, x_2\} = \{x \mid x = \lambda x_1 + \mu x_2, \lambda, \mu \in R\}$. Define $g_1(\lambda) \stackrel{\text{def.}}{=} f(\lambda x_1)$, $g_2(\lambda) \stackrel{\text{def.}}{=} f(\lambda x_2) \ \forall \lambda \in R$. Then g_1 and g_2 satisfy (1). Hence there exist $z_1 = \lambda_1 x_2$, $z_2 = \lambda_2 x_2$ such that $f(z_1) < 1$, $f(z_2) > 1$, which would imply the existence of $z_0 \in \{z \mid z = \lambda z_1 + (1 - \lambda) z_2, 0 \le \lambda \le 1\}$ such that $f(z_0) = 1$. Thus we reach to a contradiction.

THEOREM 1. Let X a real topological vector space such that $f[x+y \ f(x)] = f(x) \ f(y)$. Then the following are the only continuous solutions.

- 1. $f(x)=0 \forall x \in X$.
- 2. $f(x) = \phi(x) + 1 \ \forall x \in X$. where $\phi \in X^*$
- 3. $f(x) = \begin{cases} 1 \phi(x), & \forall x \in \{x \mid \phi(x) \le 1\} \\ 0, & \forall x \in \{x \mid \phi(x) \ge 1\} \end{cases}$ where $\phi \in X^*$.

PROOF. Let $M_0 = \{x | f(x) = 1\}$. Then M_0 is a closed, maximal hypperplane containing 0. Let $\phi_0 \in X^*$ such that $M_0 = \{x \in X | \phi_0(x) = 0\}$, Let $x_0 \in X$ such that $\phi_0(x_0) = 1$. Then $X = M \oplus Rx_0$, the direct sum, where $Rx_0 = \{rx_0 | r \in R\}$. Let X/M_0 the quotient space. We define $\tilde{f}: X/M_0 \longrightarrow R$, $\tilde{f}(\tilde{x}) \stackrel{\text{def.}}{=} f(u)$, $u \in \tilde{x} \in X/M_0$, where \tilde{x} is an equivalence class. \tilde{f} is well defined because $f(m+x) = f(x) \ \forall m \in M_0$, $\forall x \in X$.

For \tilde{x} , $\tilde{y} \in X/M_0$, supposing $u \in \tilde{x}$, $v \in \tilde{y}$, then $u+v f(u) \in \tilde{x}+\tilde{y}\tilde{f}(\tilde{x})$, which implies $\tilde{f}[\tilde{x}+\tilde{y}\tilde{f}(\tilde{x})]=f[u+vf(u)]=f(u) \ f(v)=\tilde{f}(\tilde{x}) \ \tilde{f}(\tilde{y})$.

 X/M_0 is of dimension 1, and we can assume $X/M_0 = {\lambda \tilde{x}_0 | \lambda \in R}$.

Since \tilde{f} is continuous and satisfies (1), then the solutions of \tilde{f} are the following.

i)
$$\tilde{f}(\lambda \tilde{x}_0) = 0$$
, $\forall \lambda \in \mathbb{R}$

ii) $\tilde{f}(\lambda \tilde{x}_0) = c\lambda + 1$, $\forall \lambda \in \mathbb{R}$, where $c \in \mathbb{R}$.

iii)
$$\tilde{f}(\lambda \tilde{x}_0) = \begin{cases} 1 - \frac{\lambda}{\lambda_1}, & \forall \lambda \leq \lambda_1 \\ 0, & \forall \lambda \geq \lambda_1 > 0 \end{cases}$$

iv)
$$\tilde{f}(\lambda \tilde{x}_0) = \begin{cases} 0, & \forall \lambda \leq \lambda_2 < 0 \\ 1 - \frac{\lambda}{\lambda_2}, & \forall \lambda \geq \lambda_2 \end{cases}$$

Hence the solutions of f take the forms:

1.
$$f(x)=0 \quad \forall x \in X$$
.

2.
$$f(x) = c \phi_0(x) + 1 = \phi(x) + 1$$
 $\forall x \in X \text{ with } \phi = c \phi_0 \in X^*$

$$3a. \ f(x) = \begin{cases} 1 - \frac{\phi_0(x)}{\lambda_1} & \forall x \in \{x | \phi_0(x) \leq \lambda_1 \} \\ 0 & \forall x \in \{x | \phi_0(x) > \lambda_1 > 0 \} \end{cases}$$

$$3b. \ f(x) = \begin{cases} 0 & \forall x \in \{x | \phi_0(x) \leq \lambda_2 < 0 \} \\ 1 - \frac{\phi_0(x)}{\lambda_2} & \forall x \in \{x | \phi_0(x) > \lambda_2 \} \end{cases} \iff (3.)$$

3.
$$f(x) = \begin{cases} 1 - \phi(x) & \forall x \in \{x \mid \phi(x) \le 1\} \\ 0 & \forall x \in \{x \mid \phi(x) \ge 1\} \end{cases} \text{ with } \phi \in X^*$$

On the other hand, it is easy to prove that (1), (2), (3) satisfy the functional equation

$$f[x+yf(x)]=f(x) f(y)$$

THEOREM 2. Let $f: H \longrightarrow R$ and f satisfies $f[x+y f(x)] = f(x) f(y) \forall x, y \in H$, where H is a real Hilbert space. Then the only continuous solutions of f are the following:

1.
$$f(x)=0 \ \forall \ x \in H$$

2.
$$f(x) = \langle x, x_0 \rangle + 1 \ \forall x \in H \ with \ x_0 \in H$$

3.
$$f(x) = \begin{cases} 1 - \langle x, x_0 \rangle & \forall x \in \{x \in H \mid \langle x_0, x \rangle \leq 1\} \\ 0 & \forall x \in \{x \in H \mid \langle x, x_0 \rangle \geq 1\}, x_0 \in H, \end{cases}$$

where \langle , \rangle denotes the inner product of H.

The proof follows directly from theorem 1 and the Riez Representation Theorem.

COROLLARY. Let $f: R^n \longrightarrow R$, and f satisfy f[x+yf(x)] = f(x) f(y), $\forall x, y \in R^n$. Then the only continuous solutions of f are:

1)
$$f(x)=0 \quad \forall x=(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$$
.

2)
$$f(x)=1+\sum_{i=1}^{n} c_i x_i$$
 $\forall x=(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

3)
$$f(x) = \begin{cases} 1 - \sum_{i=1}^{n} c_{i}x_{i} & \forall x \in \{(x_{i}, \dots, x_{n}) | \sum_{i=1}^{n} c_{i}x_{i} \leq 1\} \\ 0 & \forall x \in \{(x_{1}, x_{2}, \dots, x_{n}) | \sum_{i=1}^{n} c_{i}x_{i} \geq 1\} \end{cases}$$

where $c_i \in \mathbb{R}$, $i=1, 2, \dots, n$.

Universidad de Oriente Cumana, Venezuela

REFERENCES

- [1] J. Aczél, Lecture on functional equations and their applications, A.P. 1966.
- [2] S. Golab and A. Schinzel, sur 1 "Equation functionnelle f[x+y f(x)] = f(x)f(y), Publ. math. Debrecen 6, 113-125, 1959.
- [3] G.E. Gheorgin, Verallgemeineinerungen einiger Funktionalgleichungen, Enseignement math., 210, 147-151, 1964.
- [4] S.S. Jou, "Sobre una ecuación funcional", Acta Científica Venezolana, Vol. 27 N° 1, 1976.
- [5] W. Rudin, Functional analysis, MaGraw-Hill, Inc. 1973.
- [6] E. Vincze, Uber die Losung de Funktionalgleichung $f[x+y \ f(x)] = L[h(x), \ h(y)]$, Ann Polon. math., 15, 1965.