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ON THE FUNCTIONAL EQUATION fix+y f(x)]=f(x) f(y)

By S.S. Jou

1. Introduction

The functional equation f : R—R, R the set of real numers, such that

Slat+y fF(x)]=Ff(x) F(p) (1
was first studied in [2]. The equation has certain applications in the continuous
groups and geometric objects. Practically the only continuous solutions of the

equation are given in the following theorem.

THEOREM A (See [1], page 132-135): Let f : R— R, f satisfy (1). Ther fol-
lowings are the only continuous solutions of (1).
i) f(x)=0, ¥V zER
ii) f(x)=cx+1, VxER, where cER

1—- a Y x{xl
ii1) f(x) = *1

0 V x22,>0

0 V 2<x,<0
iv) f(x)—{ , ’

l—‘?z—' Y x}xz

The proof of the theorem A is based on the following lemma.

LEMMA B. (See [1], page 132-135): Let f a continous solution of (1). If there
exist x;, XoE&R, x,7%x, such that f(x;)= =f(, )#Z0, then f(x)=constant.

The Dirichlet function, which takes value 1 for the rational numbers and O
for the irrational numbers, is an example of bounded, measurable solution of
(1). Using Hamel Base, it is posible to construct a unbounded and nonmeas-
urable solution of (1). In this article we generalize the domain of the equation

(1) to a real topological vector space X.

2. We use X to denote a real topological vector space and X* the dual space
of X; that is the collection of all real continouous linear functionals on X. A
subset MEX is called a linear manifold it M=x,+M, where x;&X and M, a

vector subspace of X. M is called a hyperplane if M, is maximal. The closure
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M of M is also a linear manifold if M is; hence any hyperplane is closed or
dense in X. For any hyperplane M, there exists (¢ : X—R, ¢ linear, such
that M =x,+ (x|9(x) =0} = {xlqs(x):gé(xo)} for some x,&X, and M is closed iff

o= X* (i.e., ¢ is linear and continuous).

LEMMA 1. Let f . X—R be continuous nontrivial such that flx+y f(x)]=
ff(y). Then My={x|f(x)=1} is a closed hyperplane containing O.

PROOF. If xy, y,&M, then f(xy+yy)=rxy+y, f(xx)] =F(xy) f(yy)=1, hence:

%ot y,EM o Putting x=y=0, we get f(O)=f (0)2 and this implies £(0) =0 or f(0)
=1, If f(0)=0, then f(x)=0 VxEX and we have to omit this case. Hence f(0)
=1, or 0€EM |

Let x, &M, Then f(xp f(—xy)=f(0)=1. Hence f(—xp)=1 or —x,EM,.

Let x,€M,, x,70. Define g, : R—R, g, () =f(Ax;) VASR ; then g satisfies.
(1). But gxn(O) =gxu(l)=l, hence by Lemma B, we have gxu(/'t):—-constant:l,
and this implies f(Axy)=1, or Ax,EM, V A&ER. Hence M is a vector subspace
of X. M, is closed by the continuity of f. If M, is not maximal, then there

exist x;, %,EX linearly independent such that spanix,, %t VM ,= {0}, here
spanix;, xz}:{xllexl-l-uxz, A, wER}. Define gl(l)_djf; f(Axy), g2(2)g
f(Ax,) ¥ AER. Then g and g, satisfy (1). Hence there exist 21 =A%, 2,=A,
%, such that f(z;) <1, f(z,)>1, which would imply the existence of z,&E{z|z=
Az +(1—A)z, 0<A<I1} such that f(z,)=1. Thus we reach to a contradiction.

THEOREM 1. Let X a real topological vector space such that flx+y f(x)]=
f(x) f(y). Then the following are the only continuous solutions.

1. f(x)=0YV x&X.

2. f(x)=0(x)+1 VxEX. where p&=X*

3. f(x)={l—¢(x)’ VaE xlo()<) where pSX*.
0 , YeE{x|p(x)>1}

PROOF. Let My={x|f(x)=1}. Then M, is a closed, maximal hypperplane
containing 0. Let g?vaEX* such that M,={x€X lgﬂo(x):O}, Let x,&X such that
9o(xp)=1. Then X=M®Rx, the direct sum, where Rx,={rx,|7ER}. Let X/
M, the quotient space. We define F : X/M,—R, F(ael £, nexeX/M,,

where % is an equivalence class. f is well defined because F(m+x) =f(x) V m
EM, YxeX,
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For x, y&X/M, supposing #&%, vy, then u+v f(w)Ex+3F (%), which implies

FlE+3F @] =flutof @] =@ f@=F@ F0.
X/M, is of dimension 1, and we can assume X/M,={A%;|AEK}.

Since f is continuous and satisfies (1), then the solutions of f are the fol-
lowing.
i) 7(A%,)=0, VAER
ii) 7(A%) =cA+1, Y AER, where cER.

A

i) f (%) ={
0, Y A>2,>0

(0, ¥ 2<2,<0
iv) f@fO)-—-{

A
Hence the solutions of f take the forms:
1. f(x)=0 Ve X.

2. f(@)=c gy +1=¢x)+1 V2EX with ¢=c g,&X*

¢0(x)
3a. f(x)= 1= A VaE{x]Go(x) <4 )
0 VaE {x|y(2) 24> 0}
0 V2E {x] gy (#) <2, <O} > @)

3b. f(x)=
l-ﬁ}%)— v .‘-I'E{x“éo(x)>22}

o o {1-¢Cx) AR

| 0 vz {zx|p(x) >1}
On the other hand, it is easy to prove that (1), (2), (3) Isatisfy the functional
equation o |

S a1 =12 F(3)
- THEQOREM 2. Let f: H—R and f satisfies flx+y f()1=f(x) f(¥) Vz, yE

H, where H is a real Hilbert space. Then the only continuous solutions of f are
the following:

1. f(x)=0V x&H

2. f()=<x, x> +1 Vx&H with x SH
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1-<x, x> Vaelr€H| <x;, x><1}
0 Vi xEH | <x, x,> 21}, x,&H,

where <,> denotes the inner product of H.

3. flx)=:

The proof follows directly from theorem 1 and the Riez Representation
Theorem.

COROLLARY. ZLet f:R"—R, and f satisfy flx+y ()] =f(x) f(y), Vzx,yE
R". Then the only continuous solutions of f are:
D f(x)=0 V 2=(%;, %5 -, xﬂ)ERﬁ.

n
2) f(x>=1+£§1 C?: .'ra- Vx'-_—'(xl, xz, i xﬂ)ERn

i r
T o P 1 11-’ . -<
3) Flr)— {1 El cx;, VYV z2&{(x, x,) ] E c;x, <1}

7
0 V 2&{(xy, %5 o, x,,)lgcixi}l}

where ¢,=R, =1, 2, *, n.
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