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Abstract

A sufficient condition for a Stackelberg strategy to coincide with an equilibrium point is presented.
Information pattern of a Stackelberg strategy is essentizlly differemt frem that of an equilibrivm
solution and therefere the two strategies need not be the ssme. Hewever, under scme reslrictions
on the cost functions the difference in infermation patterns between the two strategies con be
disregarded so that the two strategies coincice, The result is extended to the czse of discrete-time

dynamic games.
I. INTRODUCTION

In a two-person zero-sum game, the obijectives of the two players are exactly opposite and the
optimal strategy («°v®) will satisfy the saddle point condition

J(@h,v) KI5 00) <J(w,2%) Vv, m

where J{w,v) is the payoff function which depends on the minimizing player's strategy = and
the maximizing player's strategy z. In two-person nonzero-sum games, on the other hand, the
objectives of the players are neither exactly opposite nor do they coincide with each other. Thus,
there are several ways of defining an “optimal strategy” according to the rationality assumed by
each player. Corresponding to the saddle point condition of a zero-sum game, there is an
equilibrium point condition for 2 nonzero-sum game If J,(x,v) and J;(a,v) are cost functions
for Plavers 1 and 2 and each player’s goal is to minimize his own cost function, then an equilibrium
noint {«*,»*) will satisfy the foliowing conditions:

Jl(‘u*,'b'*)<J1(H,v*) :‘V%“ (2)
Folu®,0*) S (u* v} Vo 3
A plaver who selects an equilibrium strategy is assured that this course of action will minimize

his cost function provided his opponent holds fast to his equilibrivm strategy.
In this paper a condition for the existence of equilibvum pomt is derived using the stratepy
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suggested by von Stackelberg (discussed in [1], [2], and [7]). Originally the Stackelberg
strategy is defined for the case where the information pattern is biased in the sense that the first
player does not know the cost function of the second, but the second player knows both of the
cost functions. In the equilibrium conditions, on the other hand, there are no restrictions on the
information pattern of the cost function. But if we place some restrictions on the cost functions,
we can disregard the difference in information pattern between the two strategies and derive
conditions for which the Stackelberg strategy is the same as the equilibrium solution.

I. A SUFFICIENT CONDITION

DEFINITION 1 : Given a two-person game where Player I wishes to minimize cost function
Ji(x,v) and Player 2 wishes to minimize cost function Je{u,v)} by choosing =,v from admissible
strategy sets IV and V, respectively, the strategy set (u°,v.% is called a Stackelberg strategy
with Player 2 as leader and Player 1 as follower if for any x=U and v=V,

S, v®) < Sl (w).0), 4
where ) )

Ji(a(v),0) =m0 J,(u,0) = - )
and . . ' ' _

u? =2 (w7, : (6)

The definition of 2 Stackelberg strategy with Playver 1 as leader and Player 2 as follower
would parailel the above definition: (»,%%,%) is a Stackelberg strategy with Plaver 1 as leader if
for any €U and »=V, '

I (0% <TG, T ), _ e . (M
where _ .

Solu, y(u))_ﬂi,“ Jolu,v) o . @®)
and N o .

R TP _- . o _ ¢y

A Stackelberg strategy with Player 2 as leader is the optimal strategy for Piaver 2 if Player
2 announces his move first and if the goal of Player 1 is to minimize J;, while that of Player 2
is to minimize J,. By announcing his Stackelberg strategy vy first, Player 2 forces Player 1 to
follow and use the Stackelberg strategy u:° since the follower will do no better than to follow a
Stackelberg strategy himself.

In a two-person game, the value of the cost function depends on the order in which the players
chocse their strategies. In zero-sum games, the player who chooses second can either improve
the value of his cost function or be at least assured of not being worse off than if he had to
choose first. In nonzero-sum games, on the other hand, the plaver who chooses first can force
the game to the solution point which produces the smallest value of his cost criterion. Thus, the
cost for the leader of the Stackelberg stretegy is less than or equal to his cost when the
equ111brmm strategy is used, that is, '

(20, Ty (o, 0%) (10)
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Fo (22, 02") <o ue¥,0%) {11)

In this section, a condition for eqtiality_ in the abdve two inequalities is derived. Many authors
(3,4, and 5) have proved the following existence theorem of an equilibrizm point.

THEOREM 2:Let U and V be two compact convex Sets in Ra and R., respectively. Let
Jl(u,-u)'and J.(u,v)be two continuous functions on UX V, and further let Ji{u,%) be convex inu
for fixed v and Ju(x,v) convex in v for fixed «. Then, there exists an equilibrium pair (s* v*).

Let
Xl_{ s Ty, 5(@) = EE“JI(u,ﬁ(a))}, (1)
Y, ()= {o0) : (0 5@) =2 J (o)), | (13)
X @={at) : @@ =T" (o)) ], (14)
Y2={€;:J2(a(-5),%) —min Jg(u(v),'v)}. | s

If there are no restrictions placed on the cost functions Ji(x,v), and J:(w,v), then there may
not be 2 unique strategy pair which minimizes these functions. Although the first player is
indifferent to whichever strategy, in X»(v), he selects since they all produce the same value of
his payoff, Jy(x,v), different strategies may have a large influence on the second player’s payoff,
Je{u,v). Thus the sets X, X,(v), Y («), and Y: may not be singleton sets.

In the Stackelberg solution, it is assumed that the follower does not know the leader’s cost
function. So the nonuniqueness of the follower’s strategy, %(w), is irrelevant in the derivation of
Stackelberg solution. Thus, we must make sormne restrictions on the nonuniqueness of the strategy:
#(v), to relate the Stackelberg solution to the equilibrium point. '

The following theorem gives sufficient conditions for a Stackelberg strategy to coincide with
an equilibrium point.

THEOREM 3 : Let U and V be two compact convex sets in R" and R», respectwely Let J, (u,v)
and J,{u,v) be two continuous functions on UXV, and further let J,(zxv) be convex in x for
fixed v and Ju(w,v) convex in v for fixed u. Then we have the following:

(1) if X; and Y, are singleton sets, and J;(#(v),v) <Jp(w:%v), then the Stackelberg strategy
with Player 2 as leader, (u:%v:"), is also an equilibrium solution.

(I) ¥ X, and Y, are singleton sets, and J, (,9(x)) <J.(%,%,°), then the Stackelberg strategy
with Player 1 as leader, {(,%%,%), is also an equilibrium solution. :

PROOF: From equation (5), J,{#{z}, v) _,nggn gy (u,0).

In general “";},“ Ji(u,v) <J, (wv) VucsU and v& V.

Thus, we have J,(#(@),v) <J,{,v).

Letting v=wv:" in the above equation and in view of equation (6) we have Ji(&",v:") <J; (w,7:°).
On the other hand, from equation {4), J.(w%.") <J.(#(v),v).

By hypothesis J.{#{(v),v) <J2 (% 7).

Thus, we have J (b v:®) <Jp(u:v).

Hence. (w:%,v,%) satisfies both conditions (equation(2) and (3)) for an equilibrium point.

Part (1) can be similarly handled. ‘
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The following corollary is a direct consequence of Theorem 3.
COROLLARY 4:1f either condition (I) or () of Theorem 3 is satisfied and the two
Stackelberg are identical then both Stackelberg solutions are the same as an equilibrium point,

that is,
(16)

u = =p*
and
v V= v 0 =¥, (1%
We shall illustrate the foregoing discussions by a simple numerical example.
EXAMPLE 1 : Consider the case where Players 1 and 2 wish to minimize their cost functions
Jy and Ji, respectively, where
1 (u,0) =2utv+4)2
i v) =(ut2v—1)% |u|<5, |v|<5.

(1) From equation (), z(w)=—1v—2, |o[<5,
Player 2's payoff then becomes J,(z (w),w):(-%*a—iﬂ)z whose minimum occurs at v=u,2=2.

The corresponding strategy for Player 1 becomes w=#{v,°)=—3.
Thus, the Stackelberg sclution with Player 2 as leader is given by (%% =(—3,2) with

J] (ugu, Ugu) :Jz(uzn. 'L’ao) =O.

(1) From equation (&), 5(;;):—-%;;_}_%, Ju] 5.

2
Player 1’s payoff then becomes Jl(a,z?(u))z(—g—u—:-%) whose minimum oceurs at z=u,"=—3.

The corresponding strategy for Player 2 becomes »,%=%(#,%) =2.

Thus, the Stackelberg solution with Player 1 as leader is given by (,%%,%)={(—3, 2) with
i oy =l 0, %) =0

Observe that all conditions of Theorem 3 ave satisfied in this game: Both J, and J, are contin-
wous and J, is convex in # for all » and J; is convex in v for all w. Both #(z) and 5(x) are

unique. Finally, J, (u,i(u)):(-g—u—i—%)z <J, (0% == (2u+-6)%.
Thus, from Theorem 3 and Corollary 4, the Stackelberg solution peint (-3, 2) is also an

equilibrium point.
Ii. DISCRETE MULTISTAGE GAMES

Theorem 3 can also be applied to discrete multistage games.
Let the transition of stages at stage i be described by
z(i+1)=g: [2(D) (), v()], i=1, -, N, (18)
where
z(i) =game state at i-th stage,
u(f)=Player I's strategy at the i-th stage,
v(ij=Player 2's strategy at the i-th stage.

The objective functions for Players 1 and 2 are

h=3 L Ti2(®,u(),v6)] (19
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F=F, Lili 20,063 (20)

where L; [i,2(),u(),v()] is the payoff function of Player j at the 7-th stage game. Player 1
wishes to choose #(1}, ---, #(N) so as to minimize J,, while Player 2 wishes to pick »(1),--,
w(N} 50 as to minimize J.

The following definition of feedback Stackelberg strategy is analogous to the one given by
Chen and Cruz [1].

DEFINITION 5 : A feedback Stackelberg strategy with Player 2 as leader is defined as [#0(:),
vt (f)].i=1, ---, N, satisfving

Wi =K [i,2(5),4° @), v ()], @an
and

Wo()=,B0, K, (20,26 00),0()]. (22)
where

K; [L2(0,u@),v@ =W, G+ D) +L; [4,2(),u(s), o)), 7=12, (23

Kl [:1',2(2.),??(1., U(?:)),'U(i) ]:u({!}iﬁ%{ Kl. [:',z(i),u(i),v(i)], (24)

w0 =r{,v,°(i}), (25)

W(i+1) is the value of the objective function of Player 1 for the last (N—i) stages when
feedback Stackelberg strategy with Player 2 as leader is used, W(N+1)=0, and U; and V: are
the sets of all admissible strategies of Players 1 and 2, respectively, at the i-th stage game.

The feedback Stackelberg strategy with Player 1 as leader, [2,° (), 2,° (@], i=1, -~ N, can be
defined similarly.

Let
X, ={300) K\ T 2(,200),5(, 2()
=85, Kiliz@w@0Ge@], (26)
YiGu@)={pGu(d) : Ke i 2(),u6),5G,46)]
i ACHORTORTON § | @)
X:io ) =18G,00) 1 K\ [i2(),26,06)),0 ()]

— o0 K, iz (), 0 ()]}, 28)
and
v()=[36) : Ka [i2().2G:56)),56)]
=, min Killi,2@),86,0(0),0()]). (29
Then, sufficient conditions for a feedback Stackelberg strategy to be a feedback equilibrium

solution [6] for a discrete multistage game are given by the following theorem.
THEOREM 6 : Let U; and V,, i=1,---, N, be compact convex sets in R~ and R* Let K=
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@), u{v()] be continuous functions defined on U;XV: for all i=1,+~ N, and J=I,2, and
si19332 K, is coavex in «(i) for fixed »(i) and K, is convex in (i) for fixed »{7) for all i=
1, -+, N. Than we have the following:

(1) If X,(,2() and Y.(i) are singleton sets and :

K, 2(), ale(),v(D]1<K.(i2().2 (02 (), v{)] for all i=1,+-, N, then the feedback
Strackslharg strategies with Player 2 as leader, [2°(i),2.°(:}], i=1,---, N, are also feedback
equilibrium sofutions.

(1) K X.(&) and Y,(,«()) are singleton sets and
K\[i2@),u(®), #6Gu@)]<Kiliz(@),0,5(w°@)] for all i=1,-», N, then the feedback

Stackelberg strategies with Player 1 as leader, [2:°(d),»\°(:)], i=1,--, N, are also feedback
equilibrium solutions.

PROQF : The proof follows the same lines as Theorem 3.
COROLLARY 7 : If either condition (1) or (II) of Theorem 6 is satisfied and if [u,* (i}, v,°() ]
is equal to [2.2(2),w.°(#)] for all i=1,--, N, then
(D) =2 @) =u* (), i=1, -, N, (30
and .
v (D) =2 @)=v*(), i=1, -, N, (31)
where [«*(2),»*({#)] is the feedback equilibrium solution at the i-th stage game.
PROOF : The proof follows directly from Theorem 6.

We shall illustrate the foregoing discussions by a simple multistage game.
EXAMPLE 2 : Consider the following 3-stage linear system with quadratic payvoff functions.
The evolution of the state of the system is determined by linear difference equaticns

z2({+ D)=z +u(i)+v(@), i=1,2,3, =2(1}=3

The cost functions for Players 1 and 2 are
3
Ji= % iz (i+ 132+ b (§)? 4 cov (1)
and

F=E drlirD et Hw ()Y

respectively, where the parameters of the system a;,b;,¢i,di e and f: are assumed to have the
following values.

- Parameters
1 | 3] 4] ¢| 2] 3] 3]
2 3|.a] 2] 3] 4] 2
3 | a] 2] 4] 4 | 2| 4

Each player wishes to minimize his cost function and all system parameters are assumed to
be known to both players. Both u{f) and »(f) are assumed to belong to sets U: and V: where
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U=l Jald)| <5}, i=1,2,3
Vi= (@) 1 o] <5}, =1,2,3.
This game can be solved using the method of Example 1 and dynamic programming. The
following table summarizes the feedback Stackelberg solutions with Player 2 as leader for each
stage game.

j Stages(?) \ [2°(), 0:2(i)] ‘l Wi ‘ W) |

| 1 L [~1.0, ~1.0] l‘ 12 \ 9
2 ‘, -+ -1] \l 1.0 l 1.0

R IR

1t is easy to verify that all conditions of Theorem 6 are satisfied. Thus, the feedhack Stacke-
jberg solutions are also feedback equilibrium peints. These scluticns ¢an te skewn to catisfy teth
conditions of equations (2) and (3).

. CONCLUSION

In this rager, sufficient ccrditicrs for a Stackelberg strategy to coircice with an eguilitrirm
point are presented. In gemeral it is simpler to derive a Stackelberg strategy tham zn ecuilitrivm
roint. Thus, if the ccst furncticrs satisfy thece sufficient cenditicns, the equilibrivm peint czn te
derived using the Stzckelberg scluticn arprcech. The discussicns ¢n the relaticnship between
equilibrium points and Stackelberg strategies will arplv equally well to differential gemes.
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