1. 동물용 항생물질의 생산실적 - 충결 (1975 ~ 1978)

최근 5년간의 실적이 살펴보면 (그림 1) 기하급수적인 생산량의 증가를 발견할 수 있다. (표 1) 5개년간 매년 평균 15%의 증가율을 보였다.

이것은 무엇을 의미하는가? 축산업의 발전 - 즉 영세적이고 소규모적인 축산으로부터 전문적이고, 기업적이고 대규모적인 축산업의 발전에 따른 필연적인 귀결인 것이다.

<table>
<thead>
<tr>
<th>연도별</th>
<th>생산량 (kg)</th>
<th>전년비 증가율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>8,106</td>
<td>100 %</td>
</tr>
<tr>
<td>1975</td>
<td>11,432</td>
<td>141 %</td>
</tr>
<tr>
<td>1976</td>
<td>26,806</td>
<td>234 %</td>
</tr>
<tr>
<td>1977</td>
<td>30,518</td>
<td>114 %</td>
</tr>
<tr>
<td>1978</td>
<td>56,096</td>
<td>184 %</td>
</tr>
</tbody>
</table>

그러면 표 2에서 78년도의 생산 내역을 살펴 보거나 하자.

아직도 주축을 이루는 케제는 테트라사이클린계이고, 바시트라신, 스트렙토마이신, 페니실린, 클로프라비니콜, 에리스로마이신, 타이로신 등의 생산량이 전체의 95%를 차지 하였고, 마크로라이드 (macrolide) 계 항생물질인 에리스로마이
표 2 78년도 항생물질제 생산실태

(단위 : 톤, 생산량(kg) 이상)

<table>
<thead>
<tr>
<th>항생물질제</th>
<th>생산량</th>
<th>비율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>태트라에이클로제</td>
<td>26,771</td>
<td>26.7</td>
</tr>
<tr>
<td>1. 옥시태트라에이클로제(OTC)</td>
<td>14,718</td>
<td>14.7</td>
</tr>
<tr>
<td>2. 클로로태트라에이클로제(CTC)</td>
<td>10,072</td>
<td>10.0</td>
</tr>
<tr>
<td>태트라에이클로제(CT)</td>
<td>1,981</td>
<td>1.9</td>
</tr>
<tr>
<td>비시트라신 (Bacitracin)</td>
<td>9,157</td>
<td>9.2</td>
</tr>
<tr>
<td>스트렙토마신 (Streptomycin)</td>
<td>7,392</td>
<td>7.3</td>
</tr>
<tr>
<td>피니실린 (Penicillin)</td>
<td>4,972</td>
<td>4.9</td>
</tr>
<tr>
<td>클로말피니톨 (Chloramphenicol)</td>
<td>3,2</td>
<td>0.3</td>
</tr>
<tr>
<td>에리스프라미신 (Erythromycin)</td>
<td>1,688</td>
<td>1.7</td>
</tr>
<tr>
<td>타이로신 (Tylosin)</td>
<td>1,334</td>
<td>1.3</td>
</tr>
<tr>
<td>비오마신 (Neomycin)</td>
<td>922</td>
<td>0.9</td>
</tr>
<tr>
<td>스파라미신 (Spiramycin)</td>
<td>757</td>
<td>0.8</td>
</tr>
<tr>
<td>로이코마신 (Leucomycin)</td>
<td>530</td>
<td>0.5</td>
</tr>
<tr>
<td>모멘신소드미움 (Monencin sodium)</td>
<td>300</td>
<td>0.3</td>
</tr>
<tr>
<td>바리나마신 (Virginomycin)</td>
<td>250</td>
<td>0.2</td>
</tr>
<tr>
<td>기타 (기타 8종)</td>
<td>214</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>항생물질제</th>
<th>생산량</th>
<th>비율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>물리스틴 (Colistin)</td>
<td>76</td>
<td>0.8</td>
</tr>
<tr>
<td>독사비중류 (Doxycycline)</td>
<td>51</td>
<td>0.5</td>
</tr>
<tr>
<td>염피실린 (Ampicillin)</td>
<td>45</td>
<td>0.5</td>
</tr>
<tr>
<td>스펙타노미신 (Spectinomycin)</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>리코마신 (Lincomycin)</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>오레알도마신 (Oleandomycin)</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>폴리미신 (Polymyxin)</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>리프라미신(SV) (Rifampicin SV)</td>
<td>0.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

전 총 | 56,145 | 100.0%

마리(良)당 항생물질 소비추정치

<table>
<thead>
<tr>
<th>소비량</th>
<th>한국 (78)</th>
<th>일본 (76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>탑수수</td>
<td>60,000,000</td>
<td>249,468,000</td>
</tr>
<tr>
<td>태지수</td>
<td>3,800,000</td>
<td>195,600</td>
</tr>
<tr>
<td>수용성 메이크업</td>
<td>54,364kg</td>
<td>292,387kg</td>
</tr>
<tr>
<td>수당 소비 추정치</td>
<td>0.85 g</td>
<td>1.17 g</td>
</tr>
</tbody>
</table>

※ 소비 추정치는 제조품의 품목을 제외하였음.

가재(25,871kg) 합계 54,364kg을 생산 하였는데 일본의 76년과(최근의 통계를 구할 수 없으므로 약간을 구함), 한국의 78년의 1수량 대략 추정치를 구하면 일본의 1.17g에 비해 천만 미달인 0.85g의 소비 추정치의 산출률을 알 수 있다.

기업의 영동업과 나농업의 발달에 따라 주사제 및 유방염치료제의 생산 실적은 매년 증가일로 예상되고 있다.

그림 2 수용생성제제 및 사료첨가제의 생산추세

<table>
<thead>
<tr>
<th>수용생성제제</th>
<th>28,493</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,000,000</td>
<td>18,502</td>
</tr>
<tr>
<td>10,000,000</td>
<td>6,913</td>
</tr>
<tr>
<td>3,960</td>
<td>9,590</td>
</tr>
<tr>
<td>3,960</td>
<td>9,590</td>
</tr>
<tr>
<td>1,17</td>
<td>1,888</td>
</tr>
<tr>
<td>477</td>
<td>151</td>
</tr>
</tbody>
</table>

그림 3 주사제 및 유방염치료제 생산추세

<table>
<thead>
<tr>
<th>주사제</th>
<th>3,117</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000,000</td>
<td>1,888</td>
</tr>
<tr>
<td>1,000,000</td>
<td>477</td>
</tr>
<tr>
<td>500,000</td>
<td>151</td>
</tr>
</tbody>
</table>
2. 문제점
가. 第一話
두어달전 어느날 오후 내게 한 양계인이 찾아와서 다음과 같은 얘기를 하였다.
자기의 양계를 시작한지 2년 정도 되고, 현재 2만수 정도를 키우고 있는데, 원인 모를 병에 걸려 약국에 가서 상의한 결과 100여마리의 야기를 사다 먹어도 낫지 않으므로, 연구소를 찾아온 내력을 얘기하였다.
나는 즉시 제약과 병원감정실에 안내를 하여주고 우선 일상 해부 검사를 받아보니 CRD라고 한다. 우리의 처방에 따라 약 20만원 정도의 비용으로 약물 치료 시작이 일어 있었다. 그는 응답하였다 약물 사용이 못하였던 것이다.
다. 第二話
대구 근교에 위치 250두를 키우는 "Y"라는 농장이 있는데 소독 및 방역과 절명 예방을 철저히 하므로 6년간 병이 발생하지 않았으며, 정비에도 사료에 황성제를 사용하지 않았다고 하였다.
다. 第三話
78년도 수의학회 및 동물약품 협회가 주최한 강의에서 박박사는 해태 및 충야지의 대장균중에 있어서 우리나라에서 가장 오래 쓰고 있고 가장 많이 생산되는 테트라사이클린계 90%의 내성을 가졌다고 소장한 보고를 하였다.
다. 결론
그런데 우리는 여기에서 취하하고 감싸고 옆하기 전에 각각 다른 3가지의 애기를 통고 그 속을 해부하여 보았다. 테트라사이클린의 효력이 실제로 약해진 것일까? 아침 저녁 그려지는지, 생각된다. 제 2회에서 말씀드린 Y농장에서 아스만 세균성 질병이 있었을 때 테트라사이클린을 뻗다 보면 아마도 거의 황성한 목적 내내의 효과를 거둘 수 있다고 믿는다.
제 3회의 무서운 결론은 무질서한 항생물질의 사용이 어떻게 되는가를 단적으로 증명하여 주는것이다 생각된다.
현재 우리나라에는 몇몇의 시험시설을 완비한데 제외하고는 가축의 질병을 치료하는데 완벽하게 과학적인 전단 및 감수성 시험을 거쳐 처방을 내려 주는 데는 어렵다고 생각된다. 이런 경우로 제 1회에서 말씀드린 과정이 초래 되었지만 비단 이런 경우가 여기에서만 끝나지 않아서 앞으로 이러한 비난의 피해를 입은 사람을 얼마나 많은지까? 그러므로 우리는 지금까지의 약물 사용을 정리하여 지금까지 시행한 결과를 조정하고 실천에 힘써야 하겠다.
여기에 투여되는 인간비 및 시설비를 두려워 하여 주목구구식의 "저방"이 لها 한때 병원비의 제도를 "양계인" 혹은 "양돈인"이 감수할 것인가?
하루 병원이 이런 시험의 유통과 환경 조성이 시급함을 축하한다.
3. 약제 감수성 시험법
항생물질 사용의 가장 기본적인 단계로서 그 출처를 설명하고자 한다.
가. 감수성(결핵성) 시험의 목적 항생물질에 대한 화학요법체가 항생물질의 약제 감수성을 조사하고 내성유무(결핵성)를 시험하는 것 "약제감수성시험 (Drug Sensitivity Test)"이라고 하며 대별하여 3가지 목적에 응용되게 된다.
첫째 임상에 응용하는 것으로서 질병을 일으킨 세균에 대하여 제일 적합한 약제를 선택하게 이용되며
둘째 병소(소각)로 부터 분리된 원인균의 역학적(생물학적) 조사에 응용되며
셋째로 새로 발견된 항생물질의 항균역(抗菌域)과 특성을 조사하여 약제를 개발
나. 시험의 종류 및 방법
취득법 및 확산법이 있으나 여기에서는
임상에 응용되는 확산법 (Diffusion method)
에 대해서만 기술 하기로 한다.

1) 감수성 디스크 (Disc) 법
가) 본법에 사용되는 디스크는 원형
여기에 항생물질을 함유시켜 포장한 것으로
로시 외국에서는 많이 생산되고 있다.
그러나 여기서 분명히 하여 들것은 이렇
게 생산되는 제품들이 '사람용'으로 만든
것으로서 동물용 항생물질이 빠져 있으므
로 실제 감수성 시험 성적을 내기에는 불
합리한 점이 있다. (예 타이로신, 스피라마
마이산 등)
나) 이들 디스크를 사용하여 병적재
료중에 포함되어 있는 세균의 감수성을
조사하는 데는 '접점법'과 '직접법'의 2
가지가 있다. 즉 접점법은 병소 (위장) 내
의 임상재료를 분리배지로서 순수분리 배
양한 후 그 접촉 (集落)을 감수성 시험에 사
용하는 것이다.
직접법이라고 하는것은 방소로 부터 분
리한 재료를 그대로 한전 배지에 도말 한
것으로서 그 위에 디스크를 놓아 배양하
는 방법이다. 어느 쪽의 경우에도 디스크
주위의 세균의 발육이 억제될 부분 (止止
이 섞여 미어 저환의 경계에 따라 절정
을 일으킨 세균에 대한 약제의 감수성의
정도를 알 수 있다.
직접법은 혼합 감염이 아닌 단일균에 의
한 가감물질 검사 재료로 할애에는 전적
법에 비하여 빠른 성적을 얻을 수 있기에 때
문에 사용을 요할 때까지는 교정까지의 시.
간을 단축할 수 있는 이점이 있으나 가감
물질 목록하는 병원균이 혼재 되어 있을
때는 간접법을 이용 하여야 한다.
다) 방법

① 한전영판 조제용 배지
하트, 인류준가 (Heart Infusion Agar)