주요 재산물 需要分析과 豫測

許 信 行
(한국농촌경제연구원 수석연구관)

〇…1978년은 우리가 미처 상상도 하지 못했던 축산물을 소비하여 이률…〇
〇…독발적인 수요증가라는 말로 표현하였고, 소고기 대치고기를 비롯…〇
〇…하여 분유까지 대량 수입하지 않을 수 없게 만들었고 금년의 수…〇
〇…요 분화는 다시한번 엑테를 불황으로 이끌고 말았다.
〇…장단기 축산물의 수요를 정확히 추정하는 길만이 안정된 축산을 이…〇
〇…록하는 기초가 없은 도달할 필요도 없다. 그간 각 연구기관의 축산…〇
〇…물 수요추정이 있었으나 이번 국내 가장 권위지인 계간 농촌경제에…〇
〇… 발표된 축산물의 수요추정을 게제하여 장단기 사업계획 수립에 도…〇
〇…음이 되도록 한다.

1. 문제점

1960년대 중반부터 우리나라 경제가 급속한 성장을 지속해 오자 소득증가에 힘입어 일반소비자는 소득탄성사가 높은 육류에 대한 소비량을 계속 증가시켜 오고 있다. 특히 최근 몇년동안에는 실제 육류소비가 예상 수요를 완전 상회하고 있어 정책입안자의 몫인 이 분야의 연구자들도 예상함이란여지에 의견을 같이 하고 있다. 이것은 결국 지금까지의 축산물수요분석이 어려운 점을 보완되었거나 혹은 미비하다는에서 기인된 문제로 본다.

보다 중요한 문제는 지금까지의 수요 분석 결과를 접어두고 앞으로 축산물 수요가 어떻게 변동될 것인가 하는 것이다. 정확한 수요 예측을 하기 위해서는 현실에 부합된 정확한 자료가 논리에 맞추어 분석되어야 하는데 실제로 우리나라 가축생산 및 육류소비에 대한 통계자료의 신뢰성이 매우 결여되어 문제가 되고 있다.

그리고 수요예측모델에서 제일 중요한 가정의 하나는 고려되지 않은 모든 요인이 파거와 같이 앞으로도 계속 변해질것이라는 전제이다. 그런데 오는 한국의 현실은 경제·사회·공공·제조가 급속히 변화하고 있어 지난 통계자료만을 가지고 미래를 예측하기에는 큰 무리가 아닐 수 없다.
또 다른 문제의 하나는 수요분석 모형에는 경제요인만을 포함시키고 있는데 이것은 이들 경제요인이 차용시장에서 비교적 자유롭게 작용하고 있다는 것을 전제하고 있다. 예를 들어 최고가격은 수로 최고가 수요가 공급에 의해서 결정되어 왔다고 보는 것인데 실제는 정부당국에서 값을 일정선 이하로 통제하여 있기 때문에 통제당한 최고가격이 설명해 줄 수 있는 범위로 통제를 받을만큼 제 약된다고 보아야 할 것이다.

이와같이 어려운 여건과 문제 속에서 어떻게 보면 다소 설득력 있고 현실성을 갖춘 수요분석이 가능하며 신빙성 높은 예측을 할 수 있는가 하는데에 본 연구의 초점을 맞추어 본다.

2. 연구목적

본 논문은 한국의 축산물당계발 정책 방안에 대한 연구의 일환으로서 행해진 것인데 우선 축산물수요에 미치는 요인분석을 하고 그 결과를 기초로 하여 수요량을 예측하는데 목적이 있다. 예상수요량을 다시 영향학생적으로 언어한 축산물수요량과 비교 적용시켜 나감으로써 축산제계의 효율적인 계절 방안에 필요한 정책요소를 제공하는데 부차적인 목적을 두고 있다.

3. 연구범위

몇 가지 먼저 제약이 주어지고 있는데 이들을 간단히 살펴보면 다음과 같다.

첫째 많은 축산물 가수맥 저작권마다 중요하다고 생각되는 최고가, 최저가, 말고가, 계란, 그리고 우유만을 분석대상으로 삼았다. 둘째 접근방법으로는 횡단분석(Cross Sectional Analysis)과 시계열분석(Time Series Analysis)의 두가지로 했는데 횡단분석에서는 중요한 가격변수가 거의 고정되어 비밀 뿐만 아니라 실제 조사비용도 많아 들어 손쉬운 시계열분석을 택하기로 했다. 셋째 관측기간은 자료가 가능한 1961년부터 1977년까지 17년으로 정함으로써 제절 자료보다는 난간자료를 이용하였다.

마지막으로 분석대상 지역에 관한 문제인데 소비형태가 다르다고 보아지는 도시와 농촌을 구별하여 별도로 다는 것이 보다 현실적인 것으로 믿어서 특별 소비량에 대한 자료가 지역별로 살펴져 있지 않아 국가전체적인 평균통계자료를 주로 하여 분석에 엮었다.

4. 선행연구

지금까지 상당수의 연구가 축산물수요 분석에 이루어져 왔다. 그 중 대표적인 보고서를 들면 국립농업경제연구소의 "농업계층 모델설성" KIST의 "종합적인 축산물의 생산계획과 수요량에 관한 조사연구" 그리고 KASS의 "Demand Price-Trade Model of KASM 3 : Technical Documentation"이다. 이 밖에도 농업협동조합중앙회 조사부와 가래적 그리고 사료협회와 같은 기관에서 산발적인 수요분석대지 예측에 대한 노력이 있었지만 집중적인 연구하기 보다는 비교적 단일적이 고 단순한 과학적 판단에서 제외한다.

위에서 언급한 세 연구가 모두 시계열자료를 이용하여 각 품목별 1인당소비량을 추측변수로 하고 해당물품의 가격과 대체가격 및 소득(GNP)을 독립변수로 삼은 점에 있어 유사하다. 그리고 모든 변수의 표준치를 log로 전환한 후 제 1차방정식을 이용하여 언어진 결과들을 보면 다음과 요약표를 과 같다.

그림에 이들 연구보고서가 제시하고 있는 몇 가지 취약점을 지적해 본다:

첫째, 몇 품목의 가격변수를 소비자가격대신 동가판매가격대지 도매가격을 이용 하고 있는데 부득이한 경우라고는 하지만 최소한 이로 인해 파생할지 모를 킹(bias)에 대해서 논의가 있어야 한다.

둘째, 한 보고서를 제외하고는 어류류육류와의 대체재료 취리시키지 않고 있는데 가구당 식품유량소비지출을 보면 육류가 11%이고 수산물이 9%로서 실제 이들간에는 많
연구

<table>
<thead>
<tr>
<th>구분</th>
<th>가격</th>
<th>KIST</th>
<th>KASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>최고 가</td>
<td>-0.641</td>
<td>-0.748</td>
<td>-1.60 (-1.40)</td>
</tr>
<tr>
<td>소득</td>
<td>1.174</td>
<td>1.32</td>
<td>1.40 (0.94)</td>
</tr>
<tr>
<td>서저 가</td>
<td>-0.359</td>
<td>-1.022</td>
<td>-1.0 (-0.50)</td>
</tr>
<tr>
<td>소득</td>
<td>0.649</td>
<td>0.640</td>
<td>0.55 (0.59)</td>
</tr>
<tr>
<td>난 고 가</td>
<td>-0.753</td>
<td>-0.711</td>
<td>-1.20 (-0.60)</td>
</tr>
<tr>
<td>소득</td>
<td>1.035</td>
<td>0.630</td>
<td>1.0 (0.40)</td>
</tr>
<tr>
<td>계 란</td>
<td>-1.146</td>
<td>-1.070</td>
<td>-0.30 (-0.40)</td>
</tr>
<tr>
<td>소득</td>
<td>0.935</td>
<td>0.403</td>
<td>0.40 (0.40)</td>
</tr>
<tr>
<td>우 유</td>
<td>-0.642</td>
<td>-0.857</td>
<td>-1.50 (-1.50)</td>
</tr>
<tr>
<td>소득</td>
<td>3.544</td>
<td>3.265</td>
<td>3.20 (3.00)</td>
</tr>
</tbody>
</table>

a) 국립농업경제研究所 *요청과제 설정 및 예산계획에 관한 조례* 1989, p. 50
b) KIST, *고아미네의 생태계 고찰* 1987, p. 202
c) KASS特別報告書 1977, p. 202

은 매치가 일어나고 있다. 따라서 어류 값을 빨 끓류소요부분도 큰 신속도를 갖기 힘들 것으로 본다.

세계 한 부문에서 고려되어야 할 변수가 바로 거나 또는 이에 포함되어 있는 변수라고 할지라도 재발자료가 지니고 있는 점은, 예를 들면 동물가격 숫자를 적절하고 이들이 수반할 수도 모른다는 편견(bias)의 방향을 제시함으로써 연구결과를 이용하는 사람들에게 편리하도록 제공하는 노력이 일반적으로 결여되어 있다.

5. 선포모형

축산물소비는 첫째 자체가격과 믿을만한 관계가 있을 것이다. 가격이 높으면 전체 사육고 억감이 많이 사육되는 상반 관계에 있다. 둘째 축산물소비는 가격의 값과 비례 관계에 있다. 최고가격이 워고가격보다 상대적으로 높으면 최고가격보다 워고가격을 더 많이 먹을 것이고, 반대로 최고 가격이 상대적으로 워고가격 과 높으면 최고가격을 더 많이 먹게 될 것이다. 이렇게도 마찬가지로 축산물보다 어류와가 싸운 어류를 보다 많이 먹게 될 것이다. 식품식물이 축산물중심으로 되어 있

는 서구와는 달리 우리나라의 경우 축산물과 어류와의 대체관계는 매우 크고 또 중요해서 축산물소요분석에서 어류값을 빼서는 안될 것이다. 세째로 축산물소비와 소득과는 매우 중요한 관계에 있다. 이들 축산물은 곡물의 비해 고급식품으로 인식되어 오고 있어 소득이 상승됨에 따라 축산물예로의 소비가 더욱 증가될 것이 예상된다. 네째로 기호인데 우리나라 불고기 및 불갑질요리 때문에 증가되고 있는 소고기 소비량은 결과 과소평가할 수 없는 것이다. 물론 기호가 1~2년 사이에 갑작스럽게 변하는 것은 아니지만 소고기 및 제고기가 시구에서는 강한 대체 관계에 있는 데도 우리나라에서는 대체성이 약하게 느껴지는 것과 기호로서 보아야 할 것이다. 다섯째 제도적 변화에 따라 축산물소비가 달라지는 경우를 생각할 수 있는데 가격에 대한 정부의 통제는 가격에 나타나 있다고 보아야 하겠지만 유통과정에 있어서 지나치게 행정적 의 개입이나 소비자 입장에서 점점 현저한 차이를 느낄 수 없는 수입업과 국내산 과의 가격차등의 값에도 제도적 변수가 가격을 통해 나타날 것으로 기대하기는 힘들다. 마지막으로 엉뚱은 불규칙하게 일어나고 있는 임의 변수를 (random shocks)를 들 수 있는데 이를 측정하기가 매우 곤란하다. 물론 이 외에도 수 많은 변수가 축산물소비에 직접 간접으로 영향을 미치고 있지만 이들을 다 포함시키기에는 현실적으로 어렵고 또 주요변수의 중요 성을 강조시킬 수 없지 않아 본 분석에서는 제외한다.

이용하게 될 통계자료를 일반 검토했지만 앞에서 언급한 축산물소요 관계를 가정 잘못 설명해 줄 수 있을 것으로 판단된 축산물 소요 함수는 다음과 같다.

\[
lnQ_t = \alpha + \beta_1 Y_t + \beta_2 P_{t-1} + \sum_{j=3}^{m} \beta_j P_{t-j} \quad \ldots \ldots \ldots \ldots \ldots (1)
\]
여기서,
\[Q_{it} = t \text{년도 } i \text{품목의 } 1 \text{인당 소비량} \]
\[Y_i = t \text{년도 } 1 \text{인당 가치분소득} \]
\[P_{it} = t \text{년도 } i \text{품목의 소매가격} \]
\[P_{it} = t \text{년도 } i \text{품목(주로 독립)의 소매가격} \]
\[\alpha = \text{상수} \]
\[\beta = \text{상수} \]

위에서 보는 바와 같이 모든 변수의 관측치를 자연단위 \(\ln \) 로 환산하여 1차방정식으로 표시한 이유는 이들 독립변수가 객관적 변수에 미치는 영향의 성격이 가감의 관계가 아니라 승계의 관계일 것이라는 전체 때문이다. 그리고 기호와 제도변화문제는 중요 한 변수라는 것을 인정하면서도 축정할 길이 없어 제외하였으나 이들 변수가 분석결과에 미칠 영향은 크게 제한하였다.

6. 자료비용

각 변수를 구체적으로 설명하면 다음과 같다.

중속변수:
\[Q_i = t \text{년도 } 1 \text{인당 쇠고기 소비량, } g \]
\[Q_i = t \text{년도 } 1 \text{인당 돼지고기 소비량, } g \]
\[Q_i = t \text{년도 } 1 \text{인당 치킨소비량, } g \]
\[Q_i = t \text{년도 } 1 \text{인당 원유소비량, } g \]
\[Q_i = t \text{년도 } 1 \text{인당 제본소비량, } g \]

독립변수:
\[P_{it} = t \text{년도 } 1 \text{인당 소매가격, } \text{원} \]
\[P_{it} = t \text{년도 } 1 \text{인당 제본가격, } \text{원} \]
\[P_{it} = t \text{년도 } 1 \text{인당 돼지고기, } \text{원} \]
\[P_{it} = t \text{년도 } 1 \text{인당 치킨가격, } \text{원} \]
\[P_{it} = t \text{년도 } 1 \text{인당 원유가격, } \text{원} \]
\[P_{it} = t \text{년도 } 1 \text{인당 제본가격, } \text{원} \]
\[P_{it} = t \text{년도 } 1 \text{인당 치킨가격, } \text{원} \]
\[P_{it} = t \text{년도 } 1 \text{인당 원유가격, } \text{원} \]
\[P_{it} = t \text{년도 } 1 \text{인당 제본가격, } \text{원} \]

7. 수요함수

앞에서 정립한 수요분석모형을 주축으로 하여 가능한 방위내에서 구해진 자료를 이용하여 계산한 결과는 다음과 같다.

(1) 쇠고기 수요함수 (관측수 \(n = 17 \))
\[\ln Q_{it} = 0.2774 - 0.8788\ln P_{it} + 0.5535\ln P_{it} \]
\[0.2498 \quad (0.4892) \]
\[+ 0.1298\ln P_{it} + 0.2058\ln P_{it} + 1.2005\ln Y \]
\[0.3167 \quad (0.1848) \]
\[0.2320 \quad (0.2320) \]
\[R^2 = .941 \]
\[D.W. = 2.026 \]

(2) 돼지고기 수요함수 (관측수 \(n = 17 \))
\[\ln Q_{it} = 3.0407 - 1.4743\ln P_{it} + 0.2166\ln P_{it} + \]
\[0.5630 \quad (0.2875) \]
\[0.5751\ln P_{it} + 0.1768\ln P_{it} + 1.0773\ln Y \]
\[0.3645 \quad (0.2127) \]
\[0.2671 \quad (0.2671) \]
\[R^2 = .764 \]
\[D.W. = 2.630 \]
(3) 담고기 수요함수 (관측수 n=12)
\[\ln Q_{dt} = 0.5239 - 0.2940 \ln P_r + 0.7333 \ln P_{st} + \left(0.2261 \right) \left(0.1890 \right) \]
\[0.2466 \ln P_{st} + 0.3942 \ln Y_t \left(0.3501 \right) \left(0.1532 \right) \]
\[R^2 = .970 \]
D.W. = 1.933

(4) 계란 수요함수 (관측수 n=13)
\[\ln Q_{it} = 2.9622 - 1.9172 \ln P_{rt} + 0.7880 \ln P_{it} \left(0.6557 \right) \left(0.3347 \right) \]
\[+ 1.0269 \ln Y_t \left(0.1564 \right) \]
\[R^2 = .908 \]
D.W. = 1.858

(5) 우유 수요함수 (관측수 n=16)
\[\ln Q_{mt} = 14.4748 - 0.5015 \ln P_{mt} - 1318.64 \left(\frac{1}{Y_t} \right) \left(0.2166 \right) \left(30.48 \right) \]
\[R^2 = .995 \]
D.W. = 2.454

주 : 각 계수 아례에 있는 () 속의 숫자는 표준오차 (standard error)임.

위에서 보면 바와 같이 각 수요 함수식에 몇개의 변수와 관측수 그리고 우유의 경우 분석모형 자체가 조정의 작업을 멈추지 않았다. 계량과 우유의 경우 대체로로서의 가능성이 올라간 채고기와 계란고기 그리고 담고기는 통계적으로 유의성이 없어 수요식에서 제외하였고, 우유와 어류는 매거간성이 희박하다고 생각되어 포함시켜지지 않았다. 담고기와 계란 그리고 우유의 수요방정식에서 관측수 가 계획했던 것보다 적어진 것은 1960년대 초기에 해당하는 자료가 이주 신발성이 없어 분석에 이용되지 않은 결과한 것이다. 그 뿐 우유의 수요방정식은 다소 변형된 이유

자체적 적각심사는 채고기의 경우 -0.88, 채고기 -1.47, 담고기 -0.29, 계란 -1.92, 그리고 우유가 -0.50으로서 계량과 채고기와 계란고기를 제외하고는 이들 소비가 가격에 민감한 반응을 일으키지 않는 것으로 보인다. 채고기와 계란고기 그리고 계란의 소비가 어류와 상호 배치관계가 있는 것으로 나타났는데 다른 모든 요인들이 변동하지 않는 상태 하에서 어류의 가격만이 10% 상승한다고 보았을 때 계란소비가 약 8% 높아진다고 보았음에 계란소비가 2.2% 높아진 것으로
<table>
<thead>
<tr>
<th>년도</th>
<th>1인당수요량</th>
<th>내수요량</th>
<th>1인당수요량</th>
<th>내수요량</th>
<th>1인당수요량</th>
<th>내수요량</th>
<th>1인당수요량</th>
<th>내수요량</th>
<th>1인당수요량</th>
<th>내수요량</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>2,595</td>
<td>95,968</td>
<td>3,721</td>
<td>137,610</td>
<td>2,030</td>
<td>75,073</td>
<td>119</td>
<td>4,401</td>
<td>7,903</td>
<td>292,269</td>
</tr>
<tr>
<td>1979</td>
<td>2,540</td>
<td>106,661</td>
<td>3,951</td>
<td>146,372</td>
<td>2,164</td>
<td>81,340</td>
<td>131</td>
<td>4,919</td>
<td>9,060</td>
<td>340,230</td>
</tr>
<tr>
<td>1982</td>
<td>3,738</td>
<td>147,102</td>
<td>4,777</td>
<td>187,989</td>
<td>2,597</td>
<td>102,200</td>
<td>176</td>
<td>6,926</td>
<td>12,783</td>
<td>503,049</td>
</tr>
<tr>
<td>1983</td>
<td>4,098</td>
<td>163,867</td>
<td>5,111</td>
<td>204,374</td>
<td>2,751</td>
<td>110,004</td>
<td>194</td>
<td>7,757</td>
<td>14,704</td>
<td>557,959</td>
</tr>
<tr>
<td>1984</td>
<td>4,496</td>
<td>182,708</td>
<td>5,459</td>
<td>221,843</td>
<td>2,915</td>
<td>118,460</td>
<td>213</td>
<td>8,650</td>
<td>15,364</td>
<td>624,362</td>
</tr>
<tr>
<td>1985</td>
<td>4,938</td>
<td>203,939</td>
<td>5,828</td>
<td>240,696</td>
<td>3,085</td>
<td>127,411</td>
<td>235</td>
<td>9,700</td>
<td>17,246</td>
<td>712,250</td>
</tr>
<tr>
<td>1986</td>
<td>5,411</td>
<td>227,083</td>
<td>6,208</td>
<td>260,531</td>
<td>3,257</td>
<td>135,686</td>
<td>257</td>
<td>10,768</td>
<td>18,347</td>
<td>769,969</td>
</tr>
</tbody>
</table>

가능하다. 반해어류량이 10% 하락하는 경우 이들 육류 및 계란소비는 앞에서 보인 페렌던런을 줄여놓고 이 축산품 소비가 어류로 대체될 것임을 보여주고 있다.

8. 수유예측과 타연두와의 비교
축산물의 수유추정을 위해서는 먼저 수유식에 포함된 각 독립변수들의 예상치가 정해져야 한다. 물론 이들 독립변수가 앞으로 어떻게 변할 것인가 하는 것은 여러가지 요인에 따라 다르겠지만 우선 생각해 볼 수 있는 방법론의 하나는 이들 독립변수가 과거의 추세선을 크게 벗어나지 않을 것이라는 가정이다. 아래의 가격 추세추정식을 보면,

1. 최고가격 P = 233.79 + 11.24X [1961]
(1974년과 1975년은 에너지위기 문제로 예외적인 현상이어서 제외시킴)

2. 최저가격 P = 125.99 + 11.7X [1961]

3. 탐고 가격 P = 364.23 + 14.06X [1961]
(1963년과 1974년은 동일한 이유로 제외)

4. 아로가격 P = 46.6 + 0.99X [1961]
(1974년과 1975년은 동일한 이유로 제외)

여기서 X는 년간으로 구분된 시간의 변수를 나타내고 있다. 그리고 계란의 실질 가격은 계속 하락되어 오고 있어 생산자 보호를 위해 1977년값에 고정시키 보았고, 우유가격은 어떤 추세를 찾기가 힘들어 1962년 이후의 년평균 가격상승율(1.46%)을 적용하였다. 1인당 GWP추정은 매년 경제상황을 10%로 가정하고 KDI에서 추정한 매년 인구증가율로 나눈 다음 1977년 GNP를 기준으로 산정하여 보았다.

이와같은 작업을 거쳐 얻어진 앞으로의 축산물 예상수요추정을 보면 표 2와 같다. 이들 수유예측값은 다른 수유연구결과와 평균보다 비교해 본 것이 그림 1에서부터 5개에 나타나 있다. 최고가추정은 KIST의 예측치와 그리고 탐고가는 KDI의치와 비슷하며, 최저가는 농수산부 축산전장 경계계획치보다 낮으나 다른 어떤 예측치보다 높고, 계란은 제일 높으며, 우유는 비교적 낮게 측정되었다.

9. 편리(bias) 문제
어떤 연구에서도 마찬가지겠지만 실제분석에서 제일 어려운 것은 추정하의 하나가 어떻게하면 편리(bias)를 최소한으로 줄일 수 있는가 하는 문제이다. 편리는 주로 포함되어야만 될 변수를 빼거나 포함되었다고 하면 라도 그 변수를 정확하게 나타내 줄 수 있는 자료가 결여되었거나 또는 이용된 방정식의 부적합성, 계산시설의 미비 등 많은 영역에서 발

- 69 -
생활할 수 있다. 어떤 분석에서 배포하고 있는 편지를 정확하게 측정할 수 없다고 할지라도 최소한 이들 평가 후분석결과가 어떤 방향으로 치우치게 되었는지를 살펴본은 분석 결과를 이용하는 사람들에게 유익할 수 있다. 그림 의미에서 앞에서도 적절했듯이 본 분석이 안고 있느냐도 모르는 편지문제를 다루어 보았다.

첫째, 쇼고기 및 돼지고기 수요분석에서 가격자료는 소매가격을 이용하였다. 그런데 그 동안 정부담보가 쇼고기 및 돼지고기값을 일정하게 고정시키려는 노력을 계속해 옴으로써 실제 이들의 수요에 정책변수가 많은 영향을 미쳐 왔는데도 이것을 측정할 것이 없어 통계적 쇼고기 및 돼지고기 가격 자료를 조정함이 없이 그대로 이용하였는데 이것은 가격탄생치를 크게 해주었을 가능성이 크다. 따라서 언어진 쇼고기 가격탄생치를 0.88보다 낮게 그리고 돼지고기 가격탄생치를 1.47보다 낮게 보는 것이 타당하다. 그리 고 쇼고기값과 유우가격이 통계상의 신빙성 때문에 제외되었는데 각 변수의 계수를 높이 편기 (upward bias)가 나게 해 주었을 가능
생이 크다.
둘째, 닭고기 수요분석에서는 어류가격, 계란가격, 그리고 우유가격이 역시 통계 상의 유의성 결여로 제외되었는데 이들안에 대체 성이 있다고 보는 경우 포함되어 있는 각 변수들의 계수가 위로 편기(upper bias)가 나타날 수 있으므로 각 탄성치는 일어진 수치보다 낮게 잡아야 타당하다. 그리고 닭고기 가격차로는 소매가격대신 농가판매가격을 이용했는데 중간유통마진의 음직임을 어떻게 보느냐에 따라 가격탄성치가 달라질 것이다.
세째, 계란의 수요분석에는 전체자료의 신빙성 때문에 취고기, 돼지고기 그리고 닭고기 가격들이 제외되어 각 변수들의 계수가 위로 편기(upper bias)를 가져왔을 것이다. 특히 계란의 공급수는 닭가리수와 밀접한 관계가 있으므로 계란가격탄성치에 큰 편기가 투입될 것이다. 따라서 계란가격탄성치 1.92는 이보다 훨씬 낮게 평가함이 바람직하다.
마지막으로 우유 수요분석인데 주요매매가 농가의 가격들을 독립변수에 포함 시켜 보았지만 통계적으로 설명이 안되어 우유 가격과 소득만을 보였다. 그러나 만일 우유소비가 우유를 마실때 응축매지 계란가격을 의식하고 대체소비품을 고려한다면 우유가격과 소득탄성치가 역시 위로 편기를 가졌을 것이

그림 3. 主要研究別 닭고기 需要統計 比較

그림 4. 主要研究別 鵝卵需要統計 比較
10. 국민소득과 동물성 단백질 취급

소득이 향상됨에 따라 동물성단백질섭취량은 일반적으로 증가하여가고 있는데, 한국은 이들 국가 전체의 평균수준에 상당히 미치고 있어 앞으로도 신중히 관찰되어야 할 것이다. 제일 먼저 소득이 증가하여 가세에 따라 다른 나라들과 비슷하게 육류를 먹을 것으로 보거나 또는 먹는 것이 좋아지고 보아 정책적으로 강화한다고 하면 앞에서 추정한 주요축산물 수요예측치는 낮은 것으로 보이 타당하다. 그림에 얼마나 그리고 어떻게 조정해야 할 것인가?

11. 잠정수요 상황

여기서 소득과 동물성단백질이 총단백질 섭취량에서 차지하는 비율과의 관계를 살펴보기 위하여 앞서 얻어낸 주요 축산물수요에 대한 여유있는 하나의 목표수치를 세워보고자 한다. 지난년 자료를 이용하여 얻어낸 단일 수요에측치를 앞으로의 목표지로 삼았다가 비교한 결과가 바람직으로서 생각하는 차로 내치하기 힘들지 않으므로 잠재적인 주요수요성을 평가하여 두었다가 수시 적응이 가능하도록 하는 데 목적을 두고 있다.

주요 선진국들의 자료를 이용하여 소득과 동물성단백질 비중과의 관계를 보면 그림 7과 같다. 1인당 국민소득이 50달러 선일때 주요 선진국들의 평균동물성단백질 섭취비율이 38%인데 한국은 21%이며, 1,000달러 선일 때 선진국의 경우 47%, 한국이 26%, 1,500

나 한국인이 우유를 주요 식료품의 하나로 생각해가는 과도기라고 본다면 현재 어떤 단안을 내리기로 힘들다.

문제는 이와같이 전기를 많이 안고 있는수요분석을 이용하여 추정해낸 앞으로의 수요추세치를 그대로 믿고 있어야 하는가에 있다. 이 점은 현재 선진국의 소비형태와 영양변에서 배포해 본 비교 접근법을 써 보았다.
그림 6. 主要國家들의* 國民所得과 動物性蛋白質攝取量과의 關係 b)

\[Y = 0.9046X^{0.5184} \quad (R = 0.804**, n = 51) \]

1人當國民所得(經常價格)

1. 主要國家—日本, 이태리, 전독, 베를린, 뉴질랜드, 그리스, 베네수엘라, 영국, 카나다, 미국.
2. 本報와 FAO 經濟合約會 1976年度 食品需給需衡留資料基礎로 하여 計算 및 分析한 것임.

그림 7. 主要國家들의* 1人當國民所得과 動物性蛋白質攝取量과의 相對的比率關係 c)

\[Y = 5.6036X^{0.3988} \quad (R = 0.792**, n = 88) \]

1人當國民所得(經常價格)

달러 선일에 54%와 31%, 2,000달러 선일에 59%와 35%로 한국이 선진국의 수준에는 미치지 못하지만 계속 상승하고 있다. 그랜데 우리나라에 있어서 과거와는 달리 몇가지 중요한 변화가 예상된다.

첫째, 공업화—도시화에 따라 많은 농촌인구가 도시로 유출될 것이다. 도시민이 농촌 사람보다 훨씬 많은 축산물을 소비하므로 (1976년 축산물에 대한 1 인당 소비저축액에 있어 농촌사람이 도시사람의 20%에 불과) 인구동향과로서 보다 많은 축산물의 소비가 예상된다. 둘째, 산업화의 도래상태를 고려한다면 앞으로의 소득증가분은 축산물의 소비에 보다 많이 저축될 것이 예상되는 소득

- 73 -
表 3. 動物性蛋白質 消費水準別 主要畜産物에 대한 1인당年間需 求推測量

<table>
<thead>
<tr>
<th>年度</th>
<th>動物性蛋白質 燃える</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>35.4</td>
</tr>
<tr>
<td>先進水準</td>
<td>64.0</td>
</tr>
<tr>
<td>1979</td>
<td>33.2</td>
</tr>
<tr>
<td>先進水準</td>
<td>61.0</td>
</tr>
<tr>
<td>1980</td>
<td>46.0</td>
</tr>
<tr>
<td>先進水準</td>
<td>65.0</td>
</tr>
<tr>
<td>1981</td>
<td>42.8</td>
</tr>
<tr>
<td>先進水準</td>
<td>60.0</td>
</tr>
<tr>
<td>1982</td>
<td>48.8</td>
</tr>
<tr>
<td>先進水準</td>
<td>63.0</td>
</tr>
<tr>
<td>1983</td>
<td>44.4</td>
</tr>
<tr>
<td>先進水準</td>
<td>61.0</td>
</tr>
<tr>
<td>1984</td>
<td>45.1</td>
</tr>
<tr>
<td>先進水準</td>
<td>60.0</td>
</tr>
<tr>
<td>1985</td>
<td>45.7</td>
</tr>
<tr>
<td>先進水準</td>
<td>60.1</td>
</tr>
</tbody>
</table>

12. 맛있는달

고도 경제성장으로 증가되는 소득에 힘입어 소득탄생력이 높은 축산물에 대한 소비가 계속 증가 상태에 있다. 그런데 축산물 소비 성향이 상대적으로 높은 도시인구가 계속 늘어나는 반면에 농촌인구는 감소하고, 최근 발생된 주요의 자급자립제가 도입된 상태에 있다고 볼 때 추가된 소득의 한계는 축산물에 더 작 것으로 믿어 압도적으로 축산물 수요는 과거추세를 벗어나리라는 가설하에서 본문에서 일었다.

1961년부터 1977년까지의 시계열자료를 이용하여 최고기, 평균기, 래프기, 홀기, 그리고 우유에 대한 수요를 분석했는데 얻어진 결과는 타연구에 대동소이하고 앞으로의 예측치를 산출한 다음에 주요 압력인 소비의 성향과 비교해 보았다. 그러나 앞에서 언급한 바와 같이 분석에 고려되지 않은 요인이나 상호에 있는 변수중에서도 자료의 선정성 때문에 없이를 예측하는데는 평가가 큰 것으로 생각되어 다른 접근법을 택해 보았다.

가격효과에 의한 축산물수요를 고정 시계 두고 소득과 동물성탄생력 성취효과의 관계 만을 분석 적용하여 잠정적인 축산물수요 유 동성을 일반수준과 선정수준으로 구분하여 임정의 고려의 제시하였다. 구체적인 가격 및 소득탄생력에 대한 분석결과와 수요 예측에는 본문에 있는 것으로 대체한 다.