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Nomenclature R, =bubble wall radius at zero time, m
= . Rt =bubble wall radial velocity, m/s
A =proprtionality constant defined by Eq. .. ) " ) y, m/ .
) R =hubble wall local radial acceleration,
.y m/s?
A, =A for atmospheric datum T ! K
=temperature,
Dy =thermal diffusivity of liquid, m?/s P L .
. T (2) =saturation temperature corresponding
Hye =latent heat of vaporization, J/kg liquid (oo 1) K
to liquid pressure p(eo,t),
K =thermal conductivity of liquid, w/mK d P p .
. . T, =initial isothermal liquid temperature
P.r(T)  =saturation pressure corresponding to

. (boiling point plus superheat), K
the temperature 7, N/m’
Tu(t) =temperature at the bubble wall, K
P(co, ), P..=liquid pressure at great distance from

Tost =minimum T just after main pressure
the bubble boundary, N/m?

drop in flashing experiment, K

P.r(t) =pressure in the liquid at the bubble .
b d N/m? ¢ =time, s
coundary, m*® . L - .
’ u(r, t) =radial liquid velicity at a distance
P.(t) =the equilibrium vapor pressure for the

r2R from the center of the bubble
temperature T.(¢) at the bubble boun- .

. radius R, m/s
dary, N/m*

. . 0.(8) =radius function (at T=T.) defined
R(#) =bubble wall radius at time t, m
Re(t) - P d by Eq.(21)
(t =equilibrium radius corresponding to R .
: N P o 05 (£) =radius function(at T=T,) defined by
temperature and pressure at infinity,
. ) Fa. (26)
ie. at p{oe, t) and T, m
oL =density of liquid, kg/m?®
j— ai F <7 - - 3
* A3 d, f\l‘%I}’ﬁ}-% 3 %ﬁ}.;}_ v =dengity of vapor, kg/m
**Professor, Dept. ¢f Mech. Engineering, Univer- o =surface tension, N/m

sity of Toronto,
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1, Introduction

When a liquid is subjected to a sudden
below the
corresponding to its

pressure reduction to a value
saturation pressure
temperature, the liquid bscome superheated
and some of the liquid flashes to vapor as
a new equilibrium two-phase system of
saturated liquid and vapor is approached.
This phenomenon has been given various
names in the literature, such as spontaneous
boiling, internal boiling, homogeneous boil-
ing, and flashing (1).

Because of its direct interest in many
engineering applications such as throttling
valve design, in pressure vessel dump opera-
tions, in desalinization equipment design
and related studies of cavitation and nucleate
boiling (2), studies on bubble growth during
flasing and related research have been con-
tinuously conducted by many investigators
in the past.

The + essential physical features of the
bubble dynamics were discussed in the work
of Plesset and Zwick (3, 4). Several authors
(5~10) have since presented other mathema-
tical models of bubble growth. Most of
these models are in substantial agreement in
spite of differences in approach taken. Howe-
ver, these models, except for the one prese-
nted by Theofanous et al. (11) are restric-
ted to constant liquid pressure cases. Theo-
fanous presented a theoretical treatment
which permits the numerical evaluation of
the growth characteristics for constant and
for time-dependent pressure in the liquid.

Analysis of flashing experiments conduc-
ted by Hooper et al. (12,13) showed that
actual bubble growth, in general, takes place

in variable liquid pressure ficlds. This result
led Hooper et al. (12,13) to re-evaluate the
Plesset and Zwick constant pressure model
and to derive an analytical model of the
bubble growth which applies to variable
They obtained a bubble
which applies both for
constant and variable pressure cases, stated

liquid pressure.
growth formula,

in terms of a region defined by a lower and
upper bound, referred to subsequently as the
previous correlations.

It is clearly desirable, however, to have
an explicit expression in the form of a single
cquality for the bubble radius as a function
of time. This paper presents such an explicit
bubble growth formula which applies both
for constant and variable liquid pressure
fields. The present model is based in part
on the previous variable pressure bubble
growth correlation (12,13) and in part on
the asymptotic solution offered by Plesset
and Zwick (4).

2. Theory and Correlations

2.1 Physical Model and Assumptions

In general, the physical model upon which
the constant pressure bubble growth theories
ar:s based consist of a spherical vapor bubble
which has uniform temperature and pres-
sure; the temperature of the vapor is that
of the liquid at the bubble wall, and the
pressure is the equilibrium vapor pressure
for that temperature. In addition, the effects
of viscosity and compressibility are negle-
cted both in the vapor and in the liquid.

In the present derivation the usual assum-
ptions which are listed in reference(13) are
also retained with the exception that a time
variable liquid pressure is permitted as in
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the correlations of referneces (12) and (12).
The variable pressure in the present deriva-
tion is the liquid pressure, which is assumed
to vary as a continuous and well behaved
function of time. The most important of
the usual assumptions are of uniform condi-
tion within the bubble, constant vapor den-
sity for a given test, saturation at the bub-
ble wall although the bubble wall temper-
ature is variable, and latent heat as the

only sink for the heat transfer.

2.2 Implicit Variable Pressure Bubble Growth

Correlation

In an analogous procedure to that used by
Plesset and Zwick, it may be shown for
the variable pressure case, combining the
Rayleigh equation, Kelvin’'s equation, and
the linearized Clausius-Clapeyron equation

that (12) (equation A-7-in the Appendix):

o[ RO E () + 270 |= o1 AT () = T4

25 Re(2)

TR [1' TRy (1)

where

__~ H »
A= =D @)

The difference from the constant pressure
case resides in Rg(¢) which is the radius of
an equilibrium bubble which could exist at
infinity. In the constant pressure case R (f)
=R, and the surface tension term eventually
becomes negligible, but for variable pressur:
it is a function of time.

In the derivation of the previous correla-
tion Hooper et al. (12) adapted the approxi-
mate expression for the temperature at the

bubble wall given by Plesset and Zwick (3)
as

e

This solution is immediately 2pplicable to
the variable pressure case since it was deri-
ved without considering pressure, i.e. the
input pressure is independent of the initial
isothermal temperature for the superheated
case. Of course 7.(¢) is different in the
variable and constant pressure cases since
R() in Eq.

An integro-differential equation,

(3) is different.
which
governs the bubble growth under variable
liquid pressure, is obtained when Eq. (3) is
introduced into Eq. (1).

Plesset and Zwick (4) give the following
expression for the leading term in the asy-
mptotic velecity:

3\ Kp(To—-T,) 1
R=(3) HypDpe 872 W

Equation (4) is an asymptotic solution of
the equation given by Plesset and Zwick(4);

ml)‘m A (RE(OR2() ) =A(Tu—T0)
. 20 R, =
e R ®

An equivalent expression to Eq. (3) for the

present variable pressure case is

1

5 R(t) RO )=AT ()T

LRE(t) oG RﬁEQ ] (6)
Equation (6) can be reduced to the from of
Eq. (1). It should be noted here that one of
the differences between Eq. (5) and Eq. (6)

lies in the following terms:

A —

§j =P, (To)—P.. (7)

0

where P. is treated as a constant. Whereas
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7?%&)7 in Egs. (6) and (1) is given by
25 —Ploo
“R;(W—Psa,(To) P(oo, 1) (8)

where p(oo,?) is a time dependent variable
in the present variable pressure case. Equ-
ation (8) represents a hypothetical equilib-
rium vapor bubble radius at r=o0, and Eq.
(8) is the Kelvin’s equation applied at infi-
nity.

The superheat term (T,.,—7T,) in Eq. (5)
is a constant value for constant pressure
bubble growth theory, while for the present
variable pressure bubble growth theory the
superheat (7,()—7,) in Eq. (6) is a time
dependent variable.

In summary, R, and (T,—7T,) in Eq. (5)
are constants whereas Rz(¢) and [T, (¢) —T,]
in Eq. (6) are time dependent variables.

In the following derivation, Eq. (4) will
be used instead of Eq. (3).
this is as follows:

The reason for

When Eq. (3) is used a variable pressure
bubble growth formula is not readily obtai-
nable in the form of equality. Hence a more
simplified and adaptable form of a tempera-
ture equation will be obtained from Eq. (4)
with a slight modification to make it app-
licable to variable pressure cases.

Note that the superheat term (7,—7,) in
Eq. (4) is constant value for constant pres-
sure cases, whereas it is a variable for
variable pressure cases. Therefore, in order
to make Eq. (4) to be applicable to variable
pressure cases, one can modify Eq. (4) as

Roy=(2) "Bl O) L @)
The bubble radius R(¢) which grows from

time, 0 to time, ¢, in consequence of the

evaporation taking place continuously, is i
now simply the integral over all the range *

of the function given by Eq. (9). That is,
Eq. (9) can be integrated to obtain

t, ~[3\1? b
j R(x)dx_<_ﬂ.> H,0.D.77

0
tTo—T,
PEAR SRS (10)

Integrating the left-hand-side of Eq. (10),
we obtain an implicit variable pressure bub-

ble growth formula as
_ ~ 3.. 1/2 kL
RO-RE(§) e

t T =T, (x

o
where (T,—T,(x)) can be obtained from Eq.
(1) as

2 Re(x)
sy -5 I a

To-Tu() = | —od R Rio + 3 o))

2.3 Explicit Variable Pressure Bubble Growth Cor-
relation

From Eq. (1) the bubble growth is taken
as “quasi-asymptotic” when surface tension
and inertial effects are negligible compared

with thermal diffusion effects. That is,

rewriting Eq. (1) as

s 3 .2 .
p[RORO+IRW) , aip) )T

20/ Ra(0) 25/ Re (@)
Re(t)
tl-Fym 1)
When
Re(t)
R <0,1 (14)

the surface tension effects are taken as
negligible. Also, when

o RORW+ 3R]

20/ Rg(?)
the inertial effects are taken as negligible.
When both conditions of Eqs. (14) and (15)
are simultaneously satisfied the bubble

<0.1 (15)



100 Moon-Houn Chun and F.C. Hooper

growth is said to be “quasi-asymptotic”.
To derive an explicit correlation, rewrite
Eq. (12) using Egs. (14) and (15) as

- ~__ 20 5
0 o)

From the Clausius-Clapeyron equation
Poui(To) = P (T) = p1 A(To~T) an
Applying Eq. (17) at infinity,
P..(To)—P(eo, =0 /A(T=T,()1 (18

Using Eqs. (8) and (18) in Eq. (1), we
obtain
o RO RO + 252 <t>]+ 2

=0 AT () =Ts(®)] (19)
For quasi-asymptotlc growth inertia and
surface tension are negligible, so Eq. (19) is
approximately.

T,(t)= T(1)

(for quasi-asymptotic growth) (20)
where T, () denotes the variable tempera-
ture of the liquid at the bubble wall, and
T4 (¢) denotes the variable saturation tempe-
rature corresponding to the liguid pressure
Poo,t).

Following the same procedure as in the
derivation of implicit correlation, but using
Eq. (20) for quasi-asymptotic growth, we
obtain an explicit variable pressure bubble
growth formula as

R(t) —R,> <i> ke

il H, 0,0,
¢ To—T,(x
R @

where To—T,(x) can be obtained from Eq.
(18) as

14
To—T
0 5 (%) = L'4

TP (To) =P (o0, %)) (22)
2 4 Comparison w th Previous Correlations

The previous implicit and explicit bubble

growth correlations are shown here for dis-

cussion: Both lower and upper bounds of
the previous implicit correlation (12) is

R(t)—R, .
== =3 (23)
here
k ! —T.(x
¢, () = D, 1L/2H jo—'(t_x)lr(/p—dﬁc
i ( ﬁ') se (24)

The previous explicit correlation (12), on
the other hand, is given by

R(t)— -
1<——0" U) = (25)
where
— k CTa=T(x)
0,(t) = - ( S
(To—T.(x)) in Eq. (24) and (Te—T,{x)] in

Eq. (26) are given by Eqs. (12) and :(22)
respactively.

When the present correlations, i.e., Egs.
(11) and(21) are compared with the previous
correlations we note the following: Pressent
correlations has the same form as the previ-
ous correlations, and they differ only in
their numerical coefficients and the deno-
minator inside the integral. It may also be
noted that the geometric mean value of the
lower and upper bounds of the previous
(1x3)*=(3)* give the
same numberical coefficient as the present

correlation, i.e.

correlation.

The treatment in the present derivation,
however, differs from the previous correla-
tion in szveral respects: Most significant of
these is the replacement of a solution stated
in terms of a region defined by lower and
upper bounds as in the previous correlations
In the
derivation of the previous correlations (12)

by a locus defined by an equality.

a tomperature equation for the bubble wall
given by Plesset and Zwick(3) was adapted
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and solved in the form of lower and upper
bounds. In the present work an asymptotic
solution for constant pressure taken from
plesset and Zwick (4), instead of a tempe-
rature equation, was modified to make it
applicable for variable pressure cases and
used in the solution.

2.5 Final Form of Present Correlations

As noted above, present correlations differ
in the functional form of the denominator

inside the integral, i.e. present correlation
has x“* whereas the previous correlation has
(t—x)12 Noting that .in the present deri-
vation a more simplified and adaptable form
of a temperature equation derived from the
asymptotic solution of Plesset and Zwick
(4) is used whereas a temperature equation
for the bubble wall given by Plesset and
Zwick (3) was employed in the previous
correlation, the functional form of (t—=x)!7?
is considered to be more accurate than x!72
In order to examine which of the two
functional forms gives a better agreement
with the experimental results, the two anal-
ytical bubble growth curves, one obtained
from Eq. (21) and the other modified form
of Eq.

(t—x)12,
experimental radius versus time curves: The
results showed that the modified form gives
a better agreement with the experimental
results than the Eq. (21). [Based on this
reasoning, x'7% in Egs. (11) and (21) is re-
placed by (¢—x)!7? subsequently. Final forms
of ths pressat imnlicit and explicit correla-

(21) where x'/? is replaced by

are compared with the actual

tions then become as follows:

3\ 172 k
RO-R=(7) " g

J- t IO—-T.,(."Cde . (27)
0

(fjx)"f72

and
3\ 12 2
R(t)—Ry= <“> ke
@ AT Hppy D72
! TO_‘Tb(x)
O_Q_x)l/z dx (28)

where (Ty,—T,(x)] and (To—T,(x)] are given
by Egs. (12) and (22) respectively. Another
plausible reason for the above modification
may also be found from the fact that the
geometric mean value of the lower and upper
bounds solution of the previous correlations
gives the same results as stated above.

2.6 Implicit and Explicit Correlation Criterjon

A monotonically increasing radius was
required in the derivation of the previous
implicit variable pressure bubble growth
correlation as a sufficient but not a neces-
sary condition. In the derivation of the
previous explicit bubble growth correlation
(12), however, it was also required that the
inertia and surface tension effects are
negligible in comparison with the thermal
diffusion effects. The same conditions were
also required in the derivation of the present
correlations. Therefore, the criteria listed in
reference (12) with respect to the region of
validity of the model should be satisfied in
the present case as well.

3, Comparison with Experimental Results
and Discussions

A comparison of the present explicit bu-
bble growth model is made with the expe-
rimental superheat which was fitted with
an analytical expression by Hooper et al.
(12). Also,
superheats corresponding to truly quasi-asy-
mptotic growth, out of a total of 61 expe-

two experimental cases with

rimental results analysed in reference (13),
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have been selected and fitted with simple
analytical expressions. The corresponding
analytical quasi-asymptotic bubble growth
curves are compared with those of actual
experimental radius versus time curves, and
with the model presented by Plesset and
Zwick. In Figs. 1-3 the lower curves were
obtained by the present correlations from
the upper curves, which were fitted to tem-
perature data converted from the observed
pressure variations (13).

In the accompanying Figs. 1-3 note how
much better the variable pressure theoretical
bubble radius predictions agree with the
experimental radius than do the predictions
of the constant pressure theories. Also note
that the Plesset and Zwick constant pres-
sure theory based on the atmospheric blow-
down pressure (the overall superheat) is
greatly in error for the given experimental
variable superheat cases, while based on the
minimum pressure (the optimum superheat)
is much closer, but does not give as good
agreement as does the variable pressure
bubble growth theory (the instantaneous
superheat).

The various “superheats” used in the pre-
sent work are defined here for -clarity:
Actual superheat is the temperature diffe-
rence between the existing temperature at
a point and the saturation temperaturc
corresponding to the existing pressure at the
point. Instantaneous superheat is the tempe-
rature difference between the initial tempe-
rature at a point and the saturation tempe-
rature corresponding to the existing pressure
at the point. Overall superheat is the tem-
perature difference between the initial tem-
perature at a point and the saturation tem-
perature corresponding to the blowdown

pressure in the flashing experiments. The
optimum overall superheat, on the other
hand, is the difference between the initial
isothermal liquid temperature and the satu-
ration temperature corresponding to the
minimum liquid pressure during the initial
pressure drop in flashing experiments provi-
ded that this pressure is not unreasonably
different from the average pressure during
the measured bubble growth interval.

[R-P)n(e20 = 512

Fig. 1. Comparison of analytical and experi-
mental curves of superheat and bubble
growth.

Fig. 2. Comparison of analytical and experi-
mental curves of superheat and bubble
growth.
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Fig. 3. Comparison of analytical and experi-
mental curves of superheat and bubble
growth.

4. Summary and Conclusions

The bubble growth correlation for variable
liquid pressure developed in the present
work is based on the previous variable
pressure “bubble growth correlations given
by Hooper et al. (12) and on the asymptotic
solution for constant pressure given by Ples-
set and Zwick (4).
differ from the previous correlations in

Present correlations
several respects: The most significant of
these is the replacement of a solution stated
in terms of region defined by a lower and
upper bound as in the previous correlation
by one in the form of a single equality.
The lower and upper bound solutions of the
previous correlations (Egs. 23 and 25) have
numerical coefficients of 1 and 3 respectively.
On the other hand, the present correlation
(Egs. 27 and 28) has a numerical coefficient
of (3)'* which is equal to the geometric
mean value of the lower and upper bound
coefficients.

The implicit correlation is, in reality, an
< ttempt to test the theory and assumptions
of the mathematical model by comparing
behavior

On the
other hand, the explicit correlation is an
effort to predict the bubble growth indepen-
dently of experimental measurements of its
growth (13).

The present implicit correlation is appli-

experimentally observed bubble
with the predictions of the model.

cable for any type of growth and requires
no restriction except for the sufficient but
not necessary condition of monotonically
increasing radius. The present explicit cor-
relation is applicable for quasi-asymptotic
and monotonically increasing bubble radius,
Therefore, when the application of the pres-
sent explicit correlation is to be made it is
necessary to examine the conditions for qu-
asi-asymptotic growth in accordance with
the surface tension and interia criterion
equations to locate and exclude those times
when these criteria are violated.

In summary, the present explicit correla-
tion is applicable for obtaining an anlytical
expression for bubble growth if the pressure
behavior (or its corresponding superheat
behavior) is expressible analytically. Also,
it can be applied to obtain a numerical so-
lution giving radius versus time for the

bubble growth when only the pressure time
history and intial temperature readings are

taken.
Appendix: Derivation of Equation (1)
From the Rayleigh equation,

p R R (1) + 2R (&) J=Pur (t) =P (o0, 1)
{(A-1)
From the Kelvin equation (at the bubble
wall),

Pu(t) =P..(t) ~ 405 (A-2)
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Also, from the Kelvin equation (applied at
infinity),
P (To) = P(o0, ) = 27 (A-3)
Re(f)
From the Clausius-Clapeyron equation,
Po(t) = Pour(To) =pA(TW(8) =To)  (A-4)
where 4 is given by Eq. (2). Note that the
continuity equation has already been incor-
porated in the Rayleigh equation.
Combining these equations in a single equ-
ation, substitute Eq. (A-4) in Eq. (A-2),

Put () =pLALT o () = To) 4 P (T0) =57

(A-5)
Substituting Eq.(A-5) in Eq. (A-1),

,oL[R @) R+ % R (t)}:pL;"{[Tw 6y =T4)

: __20 _ -
—r'P:al(To) K(l) P(OO, t) (A 6)
Finally, substituting Eq. (A-3) in Eq.

(A-6) and rearranging,

[ ROR®+ 38 0) J=pi AT (1) = T)

S0 (1-

Re () N

RO (A7)
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