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Optimal Control of a Nuclear Reactor with Distributed
Parameters-Part II: Approximate Solution by Using
Singular Perturbation Theory
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Abstract

A singular perturbation theory is applied to obtain an approximate solution for suboptimal
control of nuclear reactors with spatially distributed parameters. The inverse of the
neutron velocity is regarded as a small perturbing parameter, and the model, adopted for
simplicity, is a cylindrically symmet sical reacter whose dynamics are described by the one
group diffusion equation with one delayed neutron group. The Helmholtz mode expansion
is used for the application of the optimal theory for lumped parameter systems to the
spatially distributed parameter systems. An asymptctic expansion of the feedback gain
matrix is obtained with construction of the boundary layer correction up to the first

order.

1. Introduction

The one-group time dependent diffusion equation
describing the kinetics of the nuclear reactor has
a time-derivative term multiplied by a small coe-
fficient that is the inverse of the neutron veloci-
ty. This small parasitic coefficient (or singular
perturing parameter) is responsible for creating
a “stiff” system of differential equation in the
boundary layers at one or both ends of time in-
terval considered?. The exact closed-form solution
is developed for this singular perturbing system.
However, the machine calculation by this method
meets frequently the numbers associated with the
singular perturbing parameter whose magnitudes
exceed the limits acceptable to the computer. In
order to avoid this difficulty, the singular pertur-
bation approach has been developed to give an asy
mptotic series solution of each modal coefficient in
the Helmholtz modal expansion by Asatani and his
colleagues.® However, they limit their treatment

YEGR Ak EEH 3 - B

EGR : BBk Tk ETOR & 18
R HF 19805 2] 51

to control of reactor whose initial state is at the
steady state. Since the initial states in the general
optimization problems are the dynamic states,
their result are of very limited application.

In this paper, we develop the singular perturb-
ation approach for control of nuclear reactor
whose initial state is any dynamic state. The
paper should be read in conjunction of Ref. 3.
The authors will follow the notations of Ref. 3,
and equations given there will not be repeated

here unless it is necessary.

2. Derivation of Optimal Feedback Co-
ntrol for Each Helmholtz Mode

The state equation of the i'th Helmhcltz mode
and the corresponding i’th performance index in
the Helmholtz modal expansion for the control

problem in Ref. 3 are:
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where the subscript ¢ representing the modal or-
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der is omitted. .

Introducing the well-known Riccati-like decou-
pling in the optimal control theory of lumped
parameter system®, the following control law is
derived in the form of feedback type:
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where 2(0 is a solution of the matrix Riccati
differential equation,
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and where}(t) is a solution of the following

linear differential equation associated with the
Riccati equation derived above:
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leads the following Rigccati equations for each
element,
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These equations should Le solved under the
terminal conditions,

Rm=¢ an
and
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3. Construction of Asymptotic Expansions:

Applying the singular perturbation method
developed in the lumped parameter systems®, we

seek solutions of Eq. (9) for small e:;lj— in the form

bi=ki(t, ) =ki(t, ) +hi(e,©) 3 j=1,2,3 as
where t=(T—1)/¢. Here, k;(¢,¢) and hi(z,¢) repr-
esent the outer solution and the boundary layer
correction, respectively. The boundary laver cor-
rection can be neglected in the outer region®.
Both %;(t,¢) and hi(r,€) admit asymptotic expan-

sions in €, as € tends to zero, of the form
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Substituting Egs. (13)~(15) into Eg. (8) and
comparing the coefficients of like powers of ¢ up
to the first order, we have the following set of

equations in the outer region:
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where the terms in “[ J" are the known terms
in the preceding steps.

The boundary laver corrections '__Zo‘.h,-' ()€ can
be derived in the following manner. Substituting
Egs. (13)—(15) into the boundary layer eguation
which can be derived by transforming Eq. (9
with use made of the stretched coordinate =
(T—¢t)/e, we obtain the following boundary layer
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equations:
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The resulting recursive set of equations thus

becomes
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are the known terms in the preceding steps.

The solutions for these recursive sets of Egs.
{16) and (18) can be obtained in the following
way. The zeroth-order equation in the outer
region, Eq. (16),, we adopt

k2 (T)=g5 (20)
Then, Eq. (16)c can be solved, and £°(7) and
%:2(T) are obtained. Since the complete expansion
satisfies the original terminal condition, Eq.(11),
we can adopt the following terminal conditions
for the zeroth-order and first-order coefficients as

ES(T)+ho(O)=g5 j=1,2,3 @1
B (D) +A10)=05 j=1,2,3 (22)
where ; are given in Eq. (8) (g:=0). Since £,°(T)’
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are already determined, %,°(0) are also determined
thoroughly by Eq. (21) Then, k;°(z) are obtained
by Eq. (18),

The terminal conditions for the first-order
coefficients %;1(¢) and h;'(¢r) are determined as
follows, the procedure being peculiar to the sing-
ular perturbations. Since the boundary layer cor-
rections are assumed to be zero in the outer re-
gion, all A;7(z) are required to satisfy

lim A" (z) =0. 23)
The integration of the third equation of Eq. (18):
with use of Eq. (23) leads to

hat(c) = f ” es(z)dr. (24)

Then, the terminal of the first-order coefficient
of the outer expansion %,'(T) can bederived by

means of Egs. (22) and (24), resulting in
k(== e@d, (25)

under which £;}(#) can be solved thoroughly by
Eq. (16),. Then, we can evaluate each coefficient
of the first outer expansion at the terminal time
t=T. The values of the boundary layer correctors
at the terminal time 7=0 directly follow by using
the relation, Eq. (22),

R 0)=—kN(T), kA 0)=—k2(T) (26)
Thus, we can carry out the computation of the
first boundary layer correctors given in Eq. (18),

As to the linear differential equation for gj,
a similar procedure can be applied as follows. We
seek solutions of Eq. (10) in the form

£=8:,0=387 W+ @®] € @
where the coefficients g;"(f)and f;"(¢) represent the
slow mode valid in the outer region and the fast
dominant in the boundary layer, respectively. By
the simiar procedure for 2,7 (£) and ;" (), we obtain
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and where the terms in “[ ]”
terms in the preceding steps. The terminal cond-

are the known

itions are
&) +2(0)=—g; 24 @D
g (T) 4+ (0 =—q2 yu, (32)
£(T)+£i10)=0, (33)
22 (T) 22 (0)=0 . (34)

For the zeroth-order equation in the outer reg-
ion, we adopt

(1) =—gs ya @5)
Then, Eq. (28), can be solved, and consequently
g:°(T) are determined. Substitutions of g,°(7)
and g.°(T) into Egs. (31) and (32) determine f,°(0)
and f:°(0), respectively, and using these values,
Eq. (29), can be solved thoroughly.

The integration of the second equation of Eq.
(29), leads to

@ =["a@ds
since f2'(ec) =0 Then, g.'(7) can be determined
by Eq. (34) under which Eq. (28), can be solved

(36)

thoroughly. Accordingly, we can evaluate g,!(7T")
and g.'(7T), which, in turn, determine f,*(0) and

f2'(0) by Egs. (33) and (34), respectively. Thus,

we can carry out the computation of the first
boundary layer correctors given in Eq. (29),.

The above procedure determines the total sys-
tem of the zeroth and first orders completeiy. The
similar result can be derived for the higher order
systems by using the same algorithm. However,
the calculation is too cumbersome compared to
the exact closed-form solution given in Part I of

this paper.®
4. Remarks

We have derived an approximate solution of an
optimal problem, with a terminal cost, arising in
whose
initial The
method is based on the singular perturbation
theory. The sample results and comparisions with
in Part I will be

distributed parameter nuclear reactors
stateS are any dynamic states.

the exact closed-form solution

given in Part IIL
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