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Optimal Qutput P and PI Feedback for
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Abstract

For linear discrete-time time-invariant multi-input multi-output systems, a necessary condition

which an optimal output proportional feedback gains must satisfy is derived. Quadratic performance

index is used. The result is extended to the design problem for determining optimal output pro-

portional plus integral feedback gains. For illustration, an example problem is solved and discussed.

L Introduction

As the digital devices of various kinds are readily
available for use, the number of applications of the
digital computer as a control device is also increasing.
In fact, nearly all of the modern control algorithms
may be implemented by digital devices, such as
microcomputers, far more easily than by classical
analog devices.

For digital control systems, time must be quantized
and sampling is necessary. When the sampling period
is extremely small compared with the dominant time
constant of the closed loop system, we can approxi-
mate the discrete-time system as a continuous-time
version for control without resulting in any serious
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degradation of performance. In many cases, however,
it is impractical to make the sampling time very short,
and the performance of the sampled data system
depends on the sampling time. In some cases, even the
controllability may be lost by sampling [12], in
implementating digital controllers.

In this paper, the design of discrete-time output
proportional and output proportional plus integral
controllers is considered for linear time-invariant
It is well known [13] that the optimal
control law for quadratic criterion can be obtained

processes.

by employing feedback from all the states of the
system. In practical applications, all the state variables
are not always accessible. Even when all the states of
a system are accessible, some difficulties still remain
due to excessive instrumentation and cost require-
ments [11].
in which only constrained states are used in feedback.

Several authors suggested alternatives
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Levine and Athans [1] derived algebraic necessary
conditions to find optimal constant output feedback
gains for continuous multivariable systems control,
and computational considerations are given in [3],
[4], {71, [8] and [10]. Recently, Hutcheson [9]
obtained the same necessary conditions by direct
derivation. In [6], Berger formulated a discrete-time
output feedback problem and proposed an algorithm
for finding the controller gain matrix.

In section II, a necessary condition which is the
discrete version of the one in [1], is derived for
optimal constant output feedback control with respect
to a quadratic performance index. In section IIl, an
extension is made to optimal output proportional plus
integral feedback control. In this type of control, the
steady state error will go to zero in the face of arbitr-
ary large variations of uncertainties in the system
parameters, provided that the closed loop system
remains stable and the system is time-in-variant [11].
Finally an example problem is solved in section IV,

II. Optimal constant output proportional feedback.

Consider a linear time-invariant system whose n x 1
state vector x(k), m x 1 control vectoru(k), andrx 1
output vector y(k) are related by

x(k+1) = A x(k) + B u(k) -
y(k) = Cx(k) (2-2)

The performance measure is given as a standard

quadratic form
Jo = 1/2;2.;0[ x(¥) Qx(k)+uk) Ruk)]  (23)

where Q is a n X n symmetric positive semidefinite
matrix and R is a m x m symmetric positive definite
matrix.

It is well known[lsl

that, if all the components of
the state variables are abailable for feedback, equations

(2-1) and (2-3) result an optimal control of the form
uk) = -Gxk) (2-4)

where G is a real constant matrix with m rows and n
columns.

Now consider the constraint that the control law
u(k) be generated from output proportional feedback
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with time-invariant feedback gains. Then the control
law becomes

u(k) = -F y(k) (2-5)

or

uk) = - F Cx(k) (2-6)

where I' is a feedback matrix to be determined. By

substituting equation (2-6) into (2-1), one can get

x(k+1) = (A - BF(C) x(k), (2-7)
Furthermore
<K
xtk) = (A - BIFC)" x(o). (2-8)

Using equations (2-6) and (2-8), equation (2-2) be-
comes

z (A-BFO)'® (Q+C'F'RFC)

'
=1
Jo 2 x(0) °

. (A—BFC)k x(0)

= v tr] k?i’ (A-BFC)’¥ (Q+C'F'RFC) (A-BFC)X
=0

« x(0)x(0)'] (2-9)

When the system matrices (A,B,C) are given, J,
depends on F and «<(0). By using inital state averag-
ing, we may assume that E [x(o)x(o)’] = Xg. Here Xo
can be used as a design parameter, if the system tends
to be disturbed to some particular initial state. When
no such information is available, a simple and fre-
quently used way of eliminating the dependence on

the inital state is to choose
Xo = | (identity). (2-10)

From now on in this section, the following form
of J is used as a performance oriterion, if not stated
differently.

J=Yatr | k§ (A - BFCY'K (Q+C'F'RFO)
=0

(A - BFOX X ). (2-11)
Theorem II-1
Let F be an m X r constant matrix, and let
AF = A-~BFC. 212
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Assume that Af is asymptotically stable. In order for
F to be optimal with respect to equation (2-11), it

is necessary that
RFCLC' - B'MARLC =0 (2-13)

where L and M are respectively the unique symmetric

positive semidefinite solutions of

ApLAE - L = =X, (2-14)
ApMAL - M = - (Q+C'F'RFC) (2-15)
Proof:

Assume that there exists an F for which AF =
A-BFC is asymptotically stable. The necessary con-
dition for minimizing J is that

2l

= =0 2-16
SF (2-16)

Now let’s show that equation (2-16) implies equation
(2-13).
Note that, by choosing to the first order in e,
[A-B(F +eaF) C}¥ = (A - BFO)K
k-1 k-i-1 ~ i
-€ 2 (A - BFC) B AFC(A-BFC(C) (2-17)

Hence

JE+AF) - XF) = Y etr[. & 2 CAKX A KCFRAF
k5o | S &

= k-1
—L}:ZCA XA

) k (Q+C'F'RFC) AgEiBaF)

(2-18)

Using well-known Kleinman’s lemma [1],

and using 9 .E‘lf(i,k) = °Z° E f(i,k), one obtains
k=li=o i=o k=i+1

aJ o0 k Ik '
——=RFC(Z A_"X A C
oF CEAF XoAF )
2 . k-i-1
S BA' C'F'REC XAI
i=ok=1+1 (Q+ )AF c
(2-19)
By lettingj = k-i-1 otk = i+j+1
al NV ,
*a?= RFCLC - B MAFLC (2-20)

where

= k 'k
L k§0AF XoAp (2-21)

- o k 1.t k
M= Z Ap  (WCFRFOAL

& (2-22)

Lemma [I-2

If A is asymptotically stable, i.e. all the characteri-
stic values of A have moduli strictly less than 1, then
the discrete Lyapunov type equation (2-23) has a

unique solution P.

APA-P = -Q (2-23)

where A, P and Q are real n x n matrices with P and Q
symmetric.

Lemma II-2 can be easily proved from [2].

From equations (2-21) and (2-22), we can see that
L and M are at least positive semidefinite matrices. By
choosing a positive definite X» We can guarantee the
positive definiteness of L.

The equivalence of equations (2-14) and (2-15) and
equations (2-21) and (2-22) can be verified by direct
substitution of (2-21) and (2-22) into (2-14) and
(2-15) respectively, and by showing the uniqueness of
the solutions of the equations (2-14) and (2-15). The
uniqueness of the solutions of these equations is
shown in lemma II-2 given above. This completes the

proof of theorem 1I-1.

Remark 1.

Throughout this derivation, it is assumed that
a feedback matrix F which stabilizes AF exists. For
such F, J isfiniteand there existsan optimal F
which minimizes the value of J. If no such F exists

then the problem is meaningless.

Remark 2.

Equations (2-14) and (2-15) are in the form of
well known discrete type Lyapunov equations. This
conforms that AF is an asymptotically stable matrix,
if one of the following conditions is satisfied.

(i) For a positive definite X, there is a positive

definite matrix L which satisfies equation (2-14).
(ii) For a positive definite matrix Q+C'F'RFC, there is

a positive definite matrix M which satisfies equa-
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tion (2-15).
From equations (2-11) and (2-22), one can see that

mingJ (F) = % tr [MX ]

Remark 3.

Consider the relation between output feedback and
state feedback. State feedback control may be con-
sidered as a special case of output feedback control
such that C = I (identity)

With nonsigular matrix C, and positive definite

matrix L, equation (2-13) gives.

F = R! B'MAFC" (2-24)

Using equation (2-12), one can get equation (2-25)

from equation (2-24).

Ap = [L+BR?BM] 7 A (2-25)

Combing equations (2-15), (2-24), and (2-25), one can
obtain the following matrix Riccati equation for

discrete time systems.

M=Q+A [M*+BR*B]!A
Remark 4.

(2-26)

In theorem II-1, only a necessary condition is
derived and sufficiency is not proved. It is not clear
that the solution of equation (2-13) combined with
equations (2-14) and (2-15) is unique.

"IH.Optimal proportional-plus-integral feedback

In this section, an extension is made to a discrete
version of output PI feedback control.

For summing action of the output, let’s introduce
an augmented r x 1 state vector z(k). Then the system
can be described by

x(k+1) = Ax(k) + Buk) 3-1)
y(k) = Cx(k) (3-2)
z(k+l) = z(k) + y(k) 3-3)
To assure the open loop asymptotic stability of the

system including the augmented states, let
z(k+1) = (1-¢) z(k) + C x(k)

where ¢ is a small positive real number
v
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In PI control the u(k) is constrained in the form of
uk) = -Fp Cx(k) - Fi z(k) (34)

where Fp and Fj are m X 1 real constant matrices.
From equations (3-1) to (3-3), one can write the

open loop state equation as

Rk+1) = A X(Kk) + B uk) (3-5)
where
A O [B]
A= B=| | 1=1-e

[ L0,

LY
Combining equations (34) and (3-5), the closed loop

state equation can be written in the form of

[a-src -pr ]
X (k+1) = CX(K) (36)
L P
Let
Yk = C (k) G-7)
where
fyaw]  Tc 0]
Yk = ! C = }
Lz Lo 1]

F=[F :F
Let [ P i]

Now the performance criterion will be

l oo ! -~ jall ol SoRaNod - k -~ -~
f=nul Ay K (Q+OFRIC) AR 0 (0)']

(3-8)
where

A - BFC (3-9)
x(o)w

X(0) = (3-10)

|
[4 2(0) ]

As before, we may average the performance
criterion given by equation (3-8).

Let
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X, © 1

R0= E [{(0) X(0)] = j

0 z

0 J
. Toeo o
Q= }
Lo o]

If we assume that the augmented states are initially
at rest, Z, will be a null matrix. Otherwise we can use
Z, as a design parameter together with X .

When choosing a weighting matrix é, it is re-
commended to choose a nonnull Q,, especially when
C is a nonsingular matrix. If Qg is a null matrix and
C is a nonsingular matrix, we can minimize j by using
Fp only. In this case, Fj is a null matrix and integral
(summing) action do not affect the performance of
the system. However, in many cé‘\ses, there may be
step disturbances or uncertainties in system para-
meters. So if we want to keep the steady state error
at near zero, integral action should be added to the
controller. For this, Q; should not be a null matrix.

After averaging, equation (3-10) becomes,

P=wtr[ £ A.KO+FREG) AKX 1G-11)

kK=o F F “o

For system equations (3-5) and (3-7), and perform-
ance criterion given by equation (3-11), we can apply
Theorm 1I-1 to get a necessary condition that must
be satisfied by F for which J is minimum.

IV. Example

Consider a system repersented by

[8.0.1.1] [.0.0]
‘1230 ‘12
x(k+1) = Px(ky+ . k
1042 MO g5 W0
1210 7] L4 .0
[0 10 07
y(k) = tox(k)
L 0.0 0 L

Xo =diag[ 1 1 1 1] =1

To solve this example, gradient method is used, i.e.

Fk+l = Fk-akVJ(Fk)

where O is a positive real number.

1) Outpur proportional feedback
with Q = I (identity)

R=1

one can get,

F= | .21385

72245
14112

.29502

|

L
1=4.473.

2} Output PI feedback

withQ=diag{ 1 1 1 1 0 0 ]}

R =
Zo=0
. [ 9999 0
R 9999
one can get

ﬁ:{pp Fj] =1.21100 .71576 .18950 .49250
.14058 .29006 .09200 .25070

J = 4460

In this case, € is taken as only for

co
O 0.01-1
fast convergence. By doing this, the overall char-
acteristics do not change but the values of elements

of Fj are multiplied by 100.

3} Optimal state feedback control

Let C = I, with same A, B, Q, and R matrices as
in example 1). Then,

F o= ‘F.394s9 08079 09148 46657
| 17931 04466 21205 12382
T = 4.02 .

In the above example, the improvement of per-
formance by introducting integral action to output
proportional feedback control is rather small. But
in real applications, integral action may compensate
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the modeling errors and steady state disturbances and
will tend to make the steady state error go to near
zero which is not possible for output proportional
feedback control or optimal state feedback control.

V. Conclusion

Using the gradient of a standard quadratic per-
formance criterion, a necessary condition for optimal
output feedback gains is derived. Also, an extension
is made to discrete version of output proportional
plus iniegral feedback control. The PI control is
simple and practical, because there are no needs to
estimate or reconstruct the whole state, and because,
due to integral action, the steady state error will go to
zero, when there are errors in system parameters,
provided that the closed loop system remains stable

and time invariant.
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