Heparin - Protamine Sulfate 상호작용의 실험적 연구

김치경 · 이홍균

Abstract

The Experimental Study of Heparin-Protamine Sulfate Interaction

Chi Kyung Kim and Hong Kyun Lee

Heparin would have been used for preventing clotting of blood during extracorporeal circulation and subsequent use of protamine sulfate and made possible the neutralization of heparin. This procedure has been adopted for eliminating one of the great causes of bleeding, especially in cardiac surgery.

In this experiment, the hypocoagulability of blood induced by heparin followed by neutralization with treatment of protamine sulfate were estimated by the Lee-White clotting time (CT), partial thromboplastin time (PTT) and protamine titration test.

The results were as follows:

1) Comparision of clotting time between the heparinized (2.0 mg/kg) and non-heparinized dogs was done using CT and PTT of the blood. In heparinized group (Group I), the CT lasted infinitively and prolongation of PTT (4 times than normal) until 60 minutes. The CT (2 times) and PTT (3 times) has been shortened after 90 minutes, however they returned to normal limit level within 180 minutes.

2) The determination of appropriate ratio of heparin and protamine in vivo were performed. The group II (heparin 2.0 mg/kg, protamine 1.0 mg/kg) revealed rapid decrease of CT and PTT, but returned to normal after 120 minutes. The group III (heparin 2.0 mg/kg, protamine 2.0 mg/kg) returned rapidly to normal within 15 minutes. The group IV (heparin 2.0 mg/kg, protamine 3.0 mg/kg) recovered its normal level after 60 minutes. The group V (heparin 2.0 mg/kg, protamine 4.0 mg/kg) recovered its normal level after 90 minutes.

3) In the combined experimental study in vivo and vitro, the protamine titration test was done using the dog which were given 2.0 mg/kg and 3.0 mg/kg of heparin, respectively and coagulation time were checked after 15, 30, 60 and 120 minutes. The complete neutralization was showed to be heparin-protamine ratio of 1:1 to 1.5.

4) In vitro study, fresh blood were drawn into known amount of heparin content (20, 40, 60 and 100/ug per 1 ml of blood) syringe, thereafter protamine titration test was done. In all cases, the complete neutralization was found in heparin-protamine ratio of 1:0.85 to 1.5.

5) It was found by the present experiment that the ideal heparin-protamine ratio was 1:1 within 60 minutes and 1:0.5 after 60 minutes for avoiding the serious side effect due to overadministration of protamine sulfate.

* 홍부외과학 교수
** 본 논문의 연구는 가톨릭중앙의료원 학술연구 조성비로 이루어졌음.

Department of Thoracic and Cardiovascular surgery, Catholic Medical College, Seoul, Korea

비 리 말

heparin은 일상적으로 혈전중개 및 치료에 사용되는 항응고제이며 protamine-sulfate는 heparin의 중화제로 사용되고 특히 심장외과 영역에서는 인공심폐기구를 사용한 체외순환시에 필요한 약재들이다.

인공심폐기구에 의한 체외순환시에는 혈액을 인공포로내로 유도하여 산소를 착취한 후 혈관에 의하여 생명공학적으로 관합시킴으로써 적절하지 않으나 체외순환의 혈액에 응고될 수 있다. 따라서 이를 방지하기 위하여 heparin을 투여하여, 체외순환 종료후, heparin에 의하여 응고성을 없은 혈액응고성 회복과 속도가 빠르치는 것을 목적으로 protamine sulfate를 사용한다. 그러나 heparin 및 protamine을 다량 사용한 경우에는 여려가지 부작용이 초래된다.

이러한 heparin과 protamine의 상관관계에 비추어 저자는 heparin에 의하여 응고성을 없은 혈액에 protamine을 하여 도입하면 충혈 그리고 정화하게 그 응고성이 회복되느냐를 검사하기 위하여 주입된 heparin에 대해서 protamine에 의한 혈액응고성의 시간적 회복과 heparin에 대한 protamine의 저정중화력을 검사하였다.

재료 및 방법

실험동물은 체중 10 ~ 20 kg의 건강한 한국산 장장을 압수구분없이 사용하였다.

심혈관은 2.5% pentobarbital sodium(Nembutal)을 체중 kg당 30 mg를 전복정맥에 주사하여 절단시 치료로 기판내대관을 시행한 후 “Harvard dual plese control respirator pump”로 100% 산소와 투기를 1:1비율로 환기시켰다. 마취 후 체 heck 및 약제투여를 용이하게 실시하기 위하여 양축 내복직장력을 행하여 불리에 편의 카베르를 유지하였다.

실험은 아래와 같이 생체실험군, 생체-심혈관 실험군 및 심혈관실험군으로 나누어 시행하였다.

A. 생체실험군

심혈관은 25 마리를 사용하였다. 제1군은 체중 kg당 2.0 mg의 heparin을 주입한 후 15,30, 45, 60, 90분 간격으로 측정하여 CT와 PTT를 측정하여 heparin의 반감시간을 판찰하였다. 제2군은 heparin에 대한 protamine의 항응고성을 알기 위하여 체중 kg당 1.0 mg의 protamine을 정주한 후 위와 같은 시간 간격으로 측정하여 CT와 PTT를 측정하여 시간경과에 따른 혈액응고성회복을 판찰하였고, 제3군은 protamine을 체중 kg당 2.0 mg, 제4군은 3.0 mg, 제5군은 4.0 mg으로 위와 같은 방법으로 관찰하였다.

B. 생체-심혈관실험군

순환혈액 내에서 heparinized 혈액의 heparin과 protamine의 저정중화력을 심혈관에서 측정하기 위하여 실험은 15 마리를 사용하였다.

 처음 5 마리는 체중 kg당 2.0 mg의 heparin을 정주한 후 10, 30, 60, 120 분 후 체험하여, protamine titration test를 이용하였다. 즉, 0.1 cc 종류에 0.5, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 400, 1000 μg의 protamine이 포함된 시험관 13개에 채혈한 혈액을 각각 1 cc씩 분주한 후 응고시간을 측정하였다.

다음 5 마리는 체중 kg당 3.0 mg의 heparin을 정주한 후 10, 60 분 후 체험하여 protamine titration test를 실시하였고, 나머지 5 마리는 체중 kg당 2.0 mg의 heparin을 정주한 후 1시간 경과후, 체중 kg당 1.0mg의 heparin을 추가 주사한 후 10, 60 분 후 체험하여 protamine titration test를 실시하였다.

C. 심혈관실험군

심혈관내에서 heparin과 protamine의 저정중화력을 구하기 위하여 5마리 개에서 시행하였다. 증류수 0.5 cc에 heparin이 각각 300, 600, 900, 1500 μg가 포함된 주사기에 혈액 15, 20 cc를 체험하여 heparin과 혈액을 충분히 혼합함으로서 혈액 1 ml당 heparin 20, 40, 60, 100 μg를 각각 포함시켜 한 후 protamine titration test를 실시하여 저정중화력을 측정하였다.
A. 생체실험군

실험 제1군에서는 heparin 부여 후 CT는 정상치(450.8 ± 3.11초)보다 지연되어 60분까지는 편찰시각 2시간까지는 응고되지 않았으나 그 후 90분에는 720.8 ± 3.11초, 180분에는 459.4 ± 2.70초로 정상회복되었다(표1). PTT는 heparin 정주후 정상치(14.6 ± 0.54초)에서 129.2 ± 3.20초로 지연되고 그 후 점차 회복되어 180분에는 15.6 ± 0.54초로 거의 정상치에 가깝게 회복되었다(표2).

제2군에서는 heparin 정주후 CT는 응고되지 않았지만, protamine을 제중 kg당 1.0mg을 정주하면 15분 후에는 860.0 ± 15.3초로 회복되고, 120분에는 정상회복되었다(표1). PTT도 heparin 정주후 121.4 ± 1.84초로 지연되고, protamine 정주후 15분 후에 21.0 ± 2.28초로 회복되며 180분에 15.2 ± 0.44초로 정상으로 회복되었다(표2).

제3군에서는 heparin 정주후 CT가 응고되지 않았으나 제중 kg당 2.0mg의 protamine 정주후 15분에 452.20 ± 30.3초로 정상회복되었고(표1), PTT도 140.4 ± 9.93초로 16.2 ± 1.30초로 급격히 정상회복되었다(표2).

제4군에서는 heparin 정주후 CT가 응고되지 않았으나 제중 kg당 3.0mg의 protamine 정주후 15분에 497.8 ± 3.11초로 회복된 후, 45분에는 450.2 ± 4.14초로 정상회복하였고(표1), PTT도 protamine 부여 후 134.2 ± 5.45초로부터 15분에 15.8 ± 1.02초로 정상회복하였다(표2).

제5군에서는 heparin 정주후 CT가 응고되지 않았으며 제중 kg당 4.0mg의 protamine 정주후 15분 후에

표 1. Administration of heparin(2.0mg/kg) and neutralization with protamine sulfate in vivo.
(Using L-W coagulation time; second, ×; no clot)

<table>
<thead>
<tr>
<th>Group does of protamine(mg/kg)</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes after heparin injection</td>
<td>0</td>
<td>1.0mg/kg</td>
<td>2.0mg/kg</td>
<td>3.0mg/kg</td>
<td>4.0mg/kg</td>
</tr>
<tr>
<td>Control</td>
<td>450.8 ± 3.11</td>
<td>445.0 ± 9.20</td>
<td>449.8 ± 6.49</td>
<td>447.6 ± 4.56</td>
<td>432.0 ± 8.22</td>
</tr>
<tr>
<td>Heparin(2.0mg/kg)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>15</td>
<td>×</td>
<td>860.0 ± 15.3</td>
<td>452.0 ± 3.03</td>
<td>497.8 ± 3.11</td>
<td>573.2 ± 1.00</td>
</tr>
<tr>
<td>30</td>
<td>×</td>
<td>785.0 ± 16.1</td>
<td>450.1 ± 3.08</td>
<td>458.8 ± 2.23</td>
<td>567.2 ± 8.34</td>
</tr>
<tr>
<td>45</td>
<td>×</td>
<td>705.6 ± 7.19</td>
<td>449.2 ± 5.76</td>
<td>450.2 ± 4.14</td>
<td>464.8 ± 4.98</td>
</tr>
<tr>
<td>60</td>
<td>×</td>
<td>559.6 ± 1.34</td>
<td>456.4 ± 5.41</td>
<td>451.0 ± 4.41</td>
<td>441.8 ± 8.60</td>
</tr>
<tr>
<td>90</td>
<td>720.8 ± 3.11</td>
<td>511.4 ± 3.32</td>
<td>450.0 ± 7.03</td>
<td>449.2 ± 4.65</td>
<td>433.8 ± 8.57</td>
</tr>
<tr>
<td>120</td>
<td>513.0 ± 6.16</td>
<td>461.2 ± 8.97</td>
<td>451.4 ± 4.77</td>
<td>450.8 ± 1.64</td>
<td>430.4 ± 8.11</td>
</tr>
<tr>
<td>180</td>
<td>459.4 ± 2.70</td>
<td>440.0 ± 8.39</td>
<td>451.4 ± 6.34</td>
<td>448.8 ± 4.71</td>
<td>433.6 ± 7.47</td>
</tr>
</tbody>
</table>

표 2. Administration of heparin(2.0mg/kg) and neutralization with protamine sulfate in vivo.
(Using PTT; second)

<table>
<thead>
<tr>
<th>Group does of protamine(mg/kg)</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes after heparin injection</td>
<td>0</td>
<td>1.0mg/kg</td>
<td>2.0mg/kg</td>
<td>3.0mg/kg</td>
<td>4.0mg/kg</td>
</tr>
<tr>
<td>Control</td>
<td>14.6 ± 0.54</td>
<td>14.0 ± 0.70</td>
<td>14.0 ± 0.70</td>
<td>14.8 ± 0.84</td>
<td>15.2 ± 0.83</td>
</tr>
<tr>
<td>Heparin(2.0mg/kg)</td>
<td>129.2 ± 3.20</td>
<td>121.4 ± 1.81</td>
<td>140.4 ± 9.93</td>
<td>134.2 ± 5.45</td>
<td>113.4 ± 5.02</td>
</tr>
<tr>
<td>15</td>
<td>125.6 ± 4.15</td>
<td>21.0 ± 2.23</td>
<td>16.2 ± 1.30</td>
<td>18.0 ± 1.22</td>
<td>21.6 ± 1.14</td>
</tr>
<tr>
<td>30</td>
<td>91.2 ± 2.58</td>
<td>20.0 ± 1.58</td>
<td>15.6 ± 0.89</td>
<td>17.6 ± 1.14</td>
<td>21.2 ± 0.83</td>
</tr>
<tr>
<td>45</td>
<td>74.8 ± 3.83</td>
<td>18.6 ± 1.14</td>
<td>15.4 ± 0.54</td>
<td>16.2 ± 1.09</td>
<td>15.6 ± 0.89</td>
</tr>
<tr>
<td>60</td>
<td>58.0 ± 2.34</td>
<td>18.8 ± 1.00</td>
<td>14.8 ± 0.83</td>
<td>16.0 ± 1.05</td>
<td>15.8 ± 0.83</td>
</tr>
<tr>
<td>90</td>
<td>41.4 ± 1.07</td>
<td>19.0 ± 1.00</td>
<td>14.4 ± 1.67</td>
<td>15.8 ± 1.02</td>
<td>15.4 ± 0.89</td>
</tr>
<tr>
<td>120</td>
<td>18.2 ± 1.30</td>
<td>16.2 ± 0.44</td>
<td>14.2 ± 0.44</td>
<td>15.6 ± 0.89</td>
<td>15.6 ± 0.54</td>
</tr>
<tr>
<td>180</td>
<td>15.6 ± 0.54</td>
<td>15.2 ± 0.44</td>
<td>14.6 ± 0.89</td>
<td>14.9 ± 0.89</td>
<td>15.4 ± 0.44</td>
</tr>
</tbody>
</table>
573.2 ± 1.00 초로 회복되었고, 60분후에는 441.8 ± 8.60초로 정상회복되었고 (표 1). PTT도 protamine투여 후 113.4 ± 5.02초로부터 21.6 ± 1.14초로 회복된 후, 60분후에는 15.6 ± 0.89초로 정상회복되었다 (표 2).

B. 생체·시험관실험군

순환혈액액에 채중 kg 당 2.0 mg의 heparin을 정주하여 혈액 1ml 당 26μg정도의 heparin이 포함되게한 군에서는 heparin 정주후 10분후에 25 ~ 35μg의 protamine에서, 30분후에는 20 ~ 30μg에서, 60분후에는 15 ~ 30μg에서는, 120분후에는 10 ~ 20μg의 protamine의 농도에서 중화되어 5분간에 용고되었고 시간경과에 따라 10분후에는 10 ~ 100, 30분후에는 10 ~ 100, 60분후에는 5 ~ 100, 120분후에는 0 ~ 100μg의 protamine 농도에서 완전중화되어 용고되었다 (표 3).

순환혈액액에 채중 kg 당 3.0mg의 heparin을 정주하여 혈액 1ml 당 39μg의 heparin이 포함된 군에서는 heparin 정주후 10분후에 30 ~ 40μg의 protamine에서 중화되었고, 60분후에는 25 ~ 35μg에서 중화되고 heparin을 채중 kg 당 2.0 mg을 정주한 후 1시간 후에 추가로 heparin을 채중 kg 당 1.0 mg을 정주한 군에서는 10분후에 25 ~ 40μg의 protamine에서 중화되고, 60분후에 20 ~ 35μg의 protamine에서 중화되었 다(표 4).

C. 시험관실험군

혈액 1ml 당 20μg의 heparin이 포함된 군에서는 5분안에 20 ~ 35μg의 protamine으로 중화되어 용고되었고, 10분안에는 15 ~ 45, 15분안에는 15 ~ 45, 20분 후에는 10 ~ 100μg에서 중화되었다. 혈액 1ml 당 heparin이 40μg 포함된 군에서는 5분안에 35 ~ 50의 protamine에서 중화되었고, 10분안에는 30 ~ 50, 15분안에는 30 ~ 100, 20분후에는 25 ~ 100μg에서 중화되어 용고되었다. 혈액 1ml 당 60μg의 heparin 이 포함된 군에서는 5분안에 50 ~ 100, 15분안에 40 ~ 100, 20분안에 40 ~ 200μg의 protamine에서 중화되어 용고되었다. 혈액 1ml 당 100μg의 heparin이 포함된 군에서는 5분안에 100, 15분안에 100 ~ 200μg의 protamine에서 중화되었다.

<table>
<thead>
<tr>
<th>Table 3. Heparin (2.0 mg/kg) administration in vivo, and protamine neutralization using protamine titration test in vitro. O; clot, x; no clot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes after heparin injection (μg/ml)</td>
</tr>
<tr>
<td>CT(min.)</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
표 4. Comparison study of initial 3.0 mg/kg heparin dose and initial 2.0 mg/kg heparin, after one hour additional 1.0 mg/kg heparin dose in vivo and protamine titration test in vitro.

<table>
<thead>
<tr>
<th>does of protamine (μg/ml)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes after heparin injection</td>
<td>CT(min.)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>30</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>30</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>30</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

μg의 protamine에서 중화되어 응고되었다(표5).

고 안

개심술에서 인공심장기를 사용할 때 heparin은 혈액 응고를 방지하기 위하여 주어진다. 그리고 채혈순환 중류시에는 protamine를 주여하여 heparin의 항응고 효과를 중화시키고 혈액을 중화시켜 높은 protamin이 존재하며 protamine 자체의 항응고 효과를 나타낸다(Allen, 1947).

또한 antithrombin에 의한 thrombin의 흡수를 purified human protein preparation을 이용하여 thrombin-antithrombin 복합체가 형성되어 heparin 존재시에는 응고가 일어나나 protamine sulfate가 이것을 방해하여 heparin 중화작용이 나타난다고 보고한 바 있다(Robert, 1974).

heparin 존재시 protamine를 주여하면 일반적 경황은 protamine의 혈액순환이 결합하는 것 보다는 오히려 heparin과 먼저 작용하여 heparin의 항응고 효과를 중화시키고 만약 중화시키고 난은 protamin이 존재하면 protamine 자체의 항응고 효과를 나타낸다.

heparin은 1916년, McLean에 의하여 간단한 항응고 효과가 있음을 발견하였고 heparin의 항응고효과는 혈 장내에 존재하는 heparin-cofactor라는 물질의 존재에 의해 발생한다고 1939년에 Birckhons 등이 보고한 바 있고, 1950년에는 Lytton이 혈장내의 antithrombin activity와 heparin-cofactor가 밀접한 관계가 있다는 것을 지적하였다. 이러한 학자들은 heparin과 anti-thrombin이 thrombin을 중화시키는 속도를 50~100 배 정도 높이기되어 항응고작용을 나타내었다고 시사하였으며, 그 후 1968년에 Abildgaard에 의하여 입증되었다.
표 5. Heparin in vitro and protamine titration test in vitro. 0; clot, x; no clot.

<table>
<thead>
<tr>
<th>dose of protamine (µg/ml)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>dose of heparin (µg/ml)</td>
<td></td>
</tr>
<tr>
<td>CT(min.)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>20</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>30</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>40</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>60</td>
<td>x</td>
</tr>
<tr>
<td>100</td>
<td>x</td>
</tr>
</tbody>
</table>

Ferguson, 1940). Cecil (1953)에 의하면 protamine은 thromboplastin 생산 및 축도를 저하시키다고 보고 한 바 있으며 매우 높은 농도의 protamine은 fibrino -
gen의 함량을 일으키고, 비교적 낮은 농도에서는 fibrino -
plastic 작용을 갖고, blood thromboplastin의 생산이
나 축도를 측정시키거나 thromboplastin 형성에는 영향이
없다. 비교적 높은 농도에서는 blood thromboplastin,
prothrombin 과 calcium 사이의 작용을 방해한다.

개심술에서 인공심폐기를 사용할 때 일반적으로 사용
하는 heparinization 소견질병화가 없는 것은 heparin
에 대한 개개인의 반응이 많은 변동을 갖기 때문이다.
개심즉시에 출혈을 방지하기 위해서 투여한 heparin을
prothrombin 으로 중화시키는데, 이 중화정도를 알아내는
whole blood coagulation time, partial thromboplastin
time, ground-glass coating time, 및 thrombin
clotting time test가 있으나 이들이 수술실내에서 실시
키 어렵고, heparin reversal 평가가 제한되기로 최근에
는 이를 복용하여 혈액응고시각을 평가의 activated
recalcification time test (BART)로 추체한 보고가
있고 (Robert H., 1976), activated coagulation time
(ACT)가 흔히 이용되고 있다 (Hattersley, 1966).

일반적으로 heparin을 protamine 으로 중화시 hepa-
rin 양의 1 ~ 2배의 protamine을 주는 것이 원칙이
며 만약 CT가 정상으로 회복되지면 더 많은 양의 pro-
tamine 을 주는 것으로 되어 있다.

본 실험에서 heparin 양에 0.5, 1, 1.5, 2배의 pro-
tamine을 주어 실험하였으며 가장 적합한 것이 1배로
추정되었다.

Parkins (1949) 등의 보고에 의하면 시험관내 중화시
heparin 양의 100 ~ 150%의 protamine이 필요하고, 생
체내에서는 중화시 heparin 양의 60 ~ 80%의 pro-
tamine이 필요하다고 보고한 바 있으며, 본 실험과 비
교해 볼 때 거의 비슷한 결과를 보이고 있다. 인체실
점에서는 heparin 50 mg을 주사한 후 1시간 후에는 정
상 CT보다 4배정도 연장되었다가 차차 단축하여 3시
간후에 정상으로 회복되었고 50 mg heparin 주사후,
15분후에 protamine을 15 ~ 25 mg 주사하면 CT가
정상으로 회복되지 못하고 40 ~ 50 mg을 준 경우에는
CT가 5분만에 정상회복을 보고한 바 있다 (Parkin
et al. 1949). Murray N. (1959) 등에 의하면 주어진
heparin을 완전중화하는데 필요한 protamine 양은 heparin의 75% 정도이고 heparin투여 후 1시간 후에는 effective heparin level이 빠르게 감소하기 때문에 protamine은 주어진 heparin의 50%를 투여한 후 1.5배의 protamine 투여를 75%에서는 완전중화가 일어나, 정상 activated coagulation time (ACT)를 나타내나, 25%에서는 좀 더 많은 양의 protamine 투여 후 완전중화를 보고한 바 있다 (Kenneth L., 1975).

본 실험에서는 heparin을 체중 kg 당 2.0 mg 투여 후 1시간 경과까지는 응고가 안되고 약 90분 후에는 CT가 2배, PTT가 4배로 증가되며 3시간 후에는 CT, PTT 모두 정상치로 회복될 것을 보였다. heparin : protamine 비율을 1:1 투여하면 약 15분 경과 후 CT, PTT 모두 정상치로 회복되었으나 1:0.5 비율에서는 CT 및 PTT가 지연되나 약 1시간 후에는 정상치로 회복되었으며, 1:1.5 및 1:2에서는 CT, PTT가 약간 지연된 후 60, 90분 후에는 정상화되었다. 그리고 생 체 및 시험관 실험에서는 투여된 heparin 양의 80 ~ 130%의 protamine에서 완전중화를 보였고, heparin 투여 후 1시간 후에는 50%의 protamine 투여로서 완전중화되었다. 시험관 실험에서는 100 ~ 150%의 protamine에서 완전중화를 보여 생체 실험보다 약간 많은 protamine 치료 효과를 보이고 있다.

본 실험의 protamine에 의한 부작용은 발견할 수 없었으며 응고가 지연된 방법에서는 CT test가 시간적으 로 PTT test보다 더 예민하게 반응하는 것을 볼 수 있었다.

몇 음을 알게 되었습니다.

계통 이용한 동물실험을 통하여 heparin을 투여하여 응고성을 얻은 혈액에 protamine sulfate를 0.5배에서 2배까지 비율로 증가시키면서 응고심화를 관찰하였으며, 생체 실험, 생체-시험관 실험 및 시험관 실험을 실시하여 생체와 시험관에서의 서로 다른점에 관찰하였다.

1) heparin을 투여한 군에서는 혈액응고시간 및 partial thromboplastin time은 heparin 투여 후 혈액응고 시간에 따라 현저한 차이를 보였다.

2) heparin을 투여한 군에서는 혈액응고시간 및 PTT가 180분 후에도 모두 정상화되었다.

3) heparin 투여 후, 60분 후에서는 1:1, 60분 후에는 1:0.5의 heparin-protamine 비율에서 혈액응고 시간과 PTT가 가장 적절 정상으로 회복되었다.

4) 시험관 실험에서는 heparin-protamine 비율이 1:0.85에서 1:1.5로 생체혈청군보다 약간 연장되어 있 다.

5) 실험 결과로 protamine sulfate를 과도한 투여 후 발생 이 예측되는 부작용을 피하기 위한 가장 이상적인 heparin-protamine 중화비율은 heparin 투여 후 60분이내 에는 1:1이고, 60분이후에는 1:0.5가 가장 적합함을 밝혀왔다.

REFERENCES

