Self-Sensitized Photooxygenation of Oxodipyrromethene

Yong-Tae Park

Department of Chemistry, Kyungpook National University, Taegu 635, Korea

(Received Nov. 26, 1979)

ABSTRACTS. Oxodipyrromethene was degraded by a self-photosensitized reaction, similar to the degradation of bilirubin by other investigators. Photo degradation of oxodipyrromethene was faster in methanol-\textsubscript{d}_4, in which the life time of singlet oxygen is longer, than in methanol. It was slower in a solvent which contained a singlet oxygen quencher. Moreover, the products from sensitized and unsensitized reactions are same.

RESULTS AND DISCUSSION

To observe the self-sensitizing action for oxodipyrromethene \(1 \), an appropriate concentration of the oxodipyrromethene \(1 \) (\(2.7\times10^{-3} \text{M} \)) with added radical inhibitor (DBP), singlet oxygen quencher (DABCO), or spin trapping agent (PBN) was prepared in methanol (2 ml)
Table 1. Percentage of oxodipyrrromethene 1 transformed with or without quencher vs. irradiation period.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Solvents</th>
<th>% Transformed*</th>
<th>% Transformed**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 min</td>
<td>60 min</td>
</tr>
<tr>
<td>MeOH (Control)</td>
<td></td>
<td>23.7</td>
<td>26.7</td>
</tr>
<tr>
<td>Methanol-d₄</td>
<td></td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>PBN⁺(4.5×10⁻⁴ M) MeOH</td>
<td></td>
<td>22.0</td>
<td>25.0</td>
</tr>
<tr>
<td>DBP⁺(1.5×10⁻³ M) MeOH</td>
<td></td>
<td>23.0</td>
<td>27.0</td>
</tr>
<tr>
<td>DBP⁺(1.5×10⁻² M) MeOH</td>
<td></td>
<td>23.0</td>
<td>27.0</td>
</tr>
<tr>
<td>DABCO⁺(1.5×10⁻³ M)</td>
<td></td>
<td>23.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

*Absorency differences. **% Transformed beginning after 10 min irradiation (after photoisomerization probably). ***50 min irradiation.
1 PBN (phenyl-t-butyl nitrore), DBP (di-t-butylphenol), DABCO (1,4-diazabicyclo 2,2,2-octane).

and 1 was irradiated by monochromatic light (at 417 nm, λmax of 1, Hg-lamp, 100 W). The appropriate results are summarized in Table 1.

The reaction rate was 3.3 times faster in methanol-d₄ than that in methanol. (It was 21 times faster in methanol-d₄ than in methanol when measuring the rates after 10 minutes of photoisomerization. The 3-oxodipyrrromethene 1 was photoisomerized to the E-isomer at the early stage of the reaction. These data indicate that ¹O₂ from self-sensitizing by the oxodipyrrromethene 1 was involved at the late stage in the reactions, since the life time of ¹O₂ is longer in methanol-d₄. The self-sensitized reaction was inhibited by 1,4-diazabicyclo 2,2,2-octane (DABCO), a ¹O₂ quencher in the latter stage of the reaction. At the beginning of the reaction, the rate was the same as in the control experiment, presumably because DABCO did not interfere with the initial photoisomerization. This behavior is consistent with the conclusion that the reaction is a self-sensitizing reaction.

Davidson and Trehewey recently reported that high concentration of DABCO (5×10⁻² M) quenches the excited singlet states of the dyes (RB, methylene blue). Thus, the concentration of DABCO should be lower than 5×10⁻² M. No appreciable effects of DBP (di-t-butylphenol), a radical inhibitor, and PBN (phenyl-t-butylnitrore), a spin trapping agent, were observed. Therefore, no radical intermediate appears to be involved.

For comparison of the product distribution of dye-sensitized and self-sensitized reactions, the following experiment was done. A sample of the stock solution of 1 (17 ml from 0.1 mg/100 ml MeOH) was diluted to 25 ml with methanol. The solution was irradiated with monochromatic light (at 417 nm, Hg-lamp) in long quartz cell (2 cm diameter, 10 cm long) for 50 hrs (90% reacted).

After evaporation of the solvent, analytical TLC gave Rf values in chloroform/ether (6:4) of 0.82, 0.79, 0.72, 0.65, 0.29, 0.16 and 0.09. The Rf values of 2, 3 and 4 are 0.65, 0.29 and 0.16 respectively.

The same pattern was observed for other developing solvents (e.g. ethylacetate). The products with Rf values of 0.82, 0.79, 0.72 and 0.09 have not yet been identified. The identified products, except 3, were also obtained from broad spectrum light irradiation of 1. The results are depicted as follows.
The stock solution of 1 (17 ml) containing 1 ml of rose bengal (RB) stock solution (2 mg/10 ml MeOH) was diluted to 25 ml with methanol. The solution was irradiated at 557 nm (monochromatic light, tungsten lamp, \(\lambda_{\text{max}} \) of RB) in a long quartz cell (2 cm diameter, 10 cm long) for 30 min (90% reacted). Analytical TLC gave \(R_f \) values of 0.83, 0.63, 0.31 and 0.16 in CHCl₃/Et₂O (6:4). The \(R_f \) values of 2, 3 and 4 are 0.63, 0.31 and 0.16 respectively. The same pattern was observed in other developing solvents (e.g., AcOEt). The compound of \(R_f = 0.83 \) has not yet been identified. The product distribution was simpler than that in the unsensitized reaction. However, the products (e.g., 2, 3 and 4) were the same as those in self-sensitized reaction.

When 17 ml of stock solution of 1, containing 0.05 ml of conc. \(\text{NH}_2\text{OH} \) and 1 ml of rose bengal stock solution (2 mg/10 ml) was diluted to 25 ml with methanol and irradiated at 557 nm (monochromatic light, tungsten lamp, 15 W) the above three products were identified in addition to three other products.

These results have three significant aspects. One is that the products of the sensitized photooxygenation of 1 were also obtained in the unsensitized photooxidation of 1 (with or with out conc. \(\text{NH}_2\text{OH} \)), indicating self-sensitized reaction. The second is that the aldehyde 3 was isolated (the isolated 3 gave an identical UV spectra to authentic kryptopyrrolealdehyde, \(\lambda_{\text{max}} \approx 315 \text{ nm} \)). The aldehyde 3 could not be detected in broad spectrum light irradiation of 1, possibly because the aldehyde 3 underwent further oxidation to give 4. The third is that the sensitizer, rose bengal, when it is irradiated, accelerates the photooxygenation 100 times.

(Come compare reaction time for 90% change)

The oxodipyrromethene 1 was photooxigenated by a self-sensitizing \(^2\text{O}_2 \) reaction, since (i) the reaction rate was 21 times faster in methanol-d₄ than in methanol when measuring the rates after 10 min irradiation (isomerization), (ii) DABCO, a singlet oxygen quencher, inhibits the latter stage of the photooxygenation reaction, but did not inhibit the early stage of the reaction, (iii) no effect of radical inhibition (DBP) and spin trapping agent (PBN) was observed, and (iv) the product distribution of the sensitized photooxygenation of 1 is similar to that of the unsensitized reaction.

EXPERIMENTAL

Solvents were reagent grade unless otherwise specified. Nuclear magnetic resonance spectra were measured in deuteriochloroform on a Varian A-60 Perkin-Elmer R-24 B. Visible and UV spectra were recorded on a Cary 14 spectrophotometer. Infrared spectra were obtained from samples in chloroform with a Beckman IR-8 spectrophotometer. Kinetic photooxygenation studies with quenchers were accomplished in uv cell (1 cm path, 2 ml) using 10 nm band pass monochromatic light from a Bausch and Lomb monochromator (Model 33-86-07) equipped with a 100 W super pressure Hg-lamp. Some preparative photochemical reactions were carried out with the above monochromator equipped with 100 W super pressure Hg-lamp or 15 W-tungsten lamp. The plates used for analytical thin layer chromatography (TLC) (20 cm × 5 cm) were prepared with ca. 1 g of
absorbent (0.05~0.2 mm silica gel F, M. Woelm, Eschwege) giving a layer thickness of 0.5 mm.

The oxodipyrromethene 1 was prepared by method of Lightner and Quistad10,11 in 52\% yield, m. p 238~240 °C (lit.11, 238\textdegree0 (d)): nmr (CDCl\textsubscript{3}), \(\delta\) 1.06 (t, 3 H, \(J=7.5\) Hz, CH\(_3\)), 1.13 (t, 3 H, \(J=7.5\) Hz, CH\(_3\)), 1.20 (t, 3 H, \(J=7.5\) Hz, CH\(_3\)), 2.13 (s, 3 H, CH\(_3\)~C=), 2.38 (s, 3 H, CH\(_3\)~C=), 2.43 (q, 4 H, \(J=7.5\) Hz, CH\(_3\)~C=), 6.10 (s, 1 H, CH=); UV (methanol), \(\lambda_{\text{max}}=417\) nm, \(\epsilon_{417}=3.6\times10^4\) (chloroform), \(\lambda_{\text{max}}=408\) nm, \(\epsilon_{408}=3.4\times10^4\); IR (cm\(^{-1}\), in CCl\(_4\)), 3410 (NH), 3000 (CH), 1670 (C=O), 1640 (C=C); (in KBr), 3400 (NH), 3200 (NH hydrogen bonded), 1650 (C=O), 1625 (C=C).

For analytical TLC studies, the authentic samples (e.g. 2, 4) were prepared by the preparative photooxygenation of 1.9 Spectroscopic (nmr, ir, mass spectra) and physical properties were identical with those of the compounds reported. Kryptopyrrole aldehyde (3) was also prepared by a Vilsmeier reaction on kryptopyrrole.12

REFERENCE

3. to be published
10. ibid., P. 81.