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A UNIFIED APPROACH TO FIXED
POINTS OF CONTRACTIVE MAPS

By SeHIE PARK

1. Introduction .

A number of authors have defined various contractive type selfmaps of
metric spaces which are generalizations of the well-known Banach contraction.
In [20], Rhoades compared those contractive conditions and combined many
known fixed point theorems.

The techniques used there have been standard since Banach: place con-
tractive conditions on maps so that suitable iterations (orbits) give Cauchy
sequences; mtroduce a hypothesis of completeness in the range containing
those sequences, .so well as one of continuity of the maps at the limit
points, and another general fixed point (or coincidence) -theorem resilts.
The contractive conditions on maps have two roles: first, they assure that
certain .iterations are Cauchy; and second, they assure the uniqueness of
fixed point. However, for the first role it is sufficient to assume either that
the maps are ‘contractive over two consecutive elements of an orbit, so that
the orbit is asymptotically regular; or that the maps are contractive over
the closure of an orbit, so that its limiting orbital diameter is zerc,

Recently, Pal and Maiti [19] established fixed point theorems for maps
which are contractive over two consecutive elements of an orbit. However,
we show that their results follow essentially from a theorem of Edelstein
[6] and the Banach contraction principle. Motivated by this fact we show
that most of contractive conditions imply either. the orbit is asymptotically
regular or the limiting orbital diameter is zero, in which cases we have sim-
ple fixed point theorems containing many known results.

In Section 2, we show that if a contractive condition implies that given
orbit is asymptotically regular, then a ﬁxed point theorem w.r.z. the con-
dition is a consequence of our version ‘of Edelstein’s theorem.

In Section 3, we show that if a condition 1mplles that the llmxtmg orbital
diameter is zero, then a fixed point theorem w:7.z. the condition is a con-
sequence of a single result.
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In fact, our purpose is a unified approach to fixed point theorems which
generalize the Banach contraction principle, and, in Section 4, we show
that any fixed point theorem.w.r.¢. coniractive type maps satisfying one
of the contractive condltlons (1)~(24) and (26)~(49) in the list of Rhoades
207 and others in {57, [77, [8], [107, [16] (197, 0230 *and [24] follows from
the following basic principle:

Let f be a selfmap of a topological space and d a lower semicontinuous,
nonnegative real valued function defined on XXX such that d(x,y) =0 implies
x=y. If there exists uc X such that lim;d( fiu, fi*'u) =0 and if {fiu} has a
convergent subsequence with a limit §€X on which f is orbitally continuous,
tft‘en § is a fixed point of f.

2. For asymptotically regular orbits
"Let (X,d) be a metric space and f a selfmap of X. For u€X, the orbit
{u, fu, f?u, -} .of u generated by f will be denoted by O(x). The closure of
O will be denoted by -O..We say that f is orbitdlly continuous at §€X if
lim; f#a=¢ implies limgfistlu=f&. The space X is said to be f-orbitally
complete if every Cauchys equence contained in O(z) converges in X, for all
#< X. Following Browder and Petryshin [3], for a given z€X, we say
that the orbit O(x) is asymptotically regular -if lim; d (fiu, fi+lu) = 0
The following is the main result in this section.
THEOREM 1. Let f be a selfmap of a metric space (X,d). If '
. (i) there exists a point uc X such that'the orbit O(x) has a cluster point.é= X,
- (ii) f is orbitally continuous at & and f§, and
(111) f-satisfies
L ' d(xy y)>d(fx!fy)
Jor all z,y=fzc0 ), xiy, Co
then € 45 a ﬁxed point of f.

Proof Setting ¢;=d (f? ‘a, f '+1a), we have €i+15C;. Therefore, {c;} 1s mono-
tone decreasing and bounded also. Then ¢; — 1 as i — o, where I=inf{c;}.
Since a subsequence {fim}. converges.to §€X, . we have

RN Siettu=f (fim) <> fE
and - Firtu=f2( fe,ﬂu) — f2¢
as k—oo, because is orbitally contmuous at § and f& Thus we have
- i=limd(f'm, f "‘“u) 4 (&, &,
I=limyd (fis+tu, fis+%) =d(fE, %),
Suppose £#fE. Then we have
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d(f§, f%)<d(, ),

which is 1mp0551ble. Hence we have § =f&.

REMARK 1. For a map satxsfymg d(z, y) >d( f z, fy) for all 2 T, y€X, xiy,
the condition (i) is needed in order to ensure that every such f possesses a
fixed point (Rhoades [207], Theorem 2).

REMARK 2. In Theorem 1, if the inequality in (iii) holds for all z,y€ X,
x+y, then f has a unique fixed point. Hence, we obtain Edelstein’s theorem
on contractive maps [6]. Note also that if O(z) or X is compact, the con-
dition (i) is not necessary.

REMARK 3. Note that, in Theorem 1, O(«) is asymptotically regular. In
Theorem 1, d need not be a metric. If we assume that X is a topological
space, d is a lower semicontinuous, nonnegative real valued function
defined on XX X such that d(z,y)=0 implies 2=y, and § is a limit of
a subsequence of O(x), then Theorem 1 still holds.

Now we list some consequences of Theorem 1.

(1.1) Instead of (iii) in Theorem 1, Pal and Maiti( [197, Theorem 2)
considered. the following condition:
(iii)’ f satisfies one of the following inequalities for all x, ye€O(w), z#y.

(a) d(xafx) +d(yafy)<2 d(.’L‘, y),
(b) d(z, fz) +d(y, fy) <§ {d(z, fy) +d(y, fx) +d (z, »},

(© d(z, f2)+d (5, 15 +d(F2, ) <3 (2 ) +d(n f2)},

(@) d(fzf3)<max{d(z,9),d(z f2), d(3,f5), STd(z f3) +d (3, f2) T}
Note that (iii)’ implies (iii). Also note that Pal, Maiti and Achan (173,
Theorem 1) is a consequence of Theorem 1.

(1.2) Note that the inequality d(z, y) >d(fz, fy) in (iii) can be replaced
by any inequality in the contractive conditions (1)~(11) and (18)~(22) in
the list of Rhoades [207] without affecting the conclusion of Theorem 1,
since any of them implies

(22) d(fz,fy)<max{d(z,y),d(z, fz),d(y, f¥), [d(z,fy)+d(, fx)]/2}
for z+#y; and, for any z,y=fz, z*y, (22) is equivalent to

d(fz, fy)<max{d(z, y),d(z, fy)/2},

which reduces to our inequality d(z, ) >d(fz,fy).
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(1.3) Note also that any inequality in (14), (15), (23) of Rhoades [ 207]
also can be placed in (iii) instead of our inequality, since (14)=>(15)=>(23)

and (23) implies d(x, y) >d(fx, fy) for y=fx (See [20], p.269).

(1.4) The condition (iii) can be replaced by the contractive condition

of Wong [24]: .
Suppose that there exist functions «a;,1=1,2, 3,4,5, of (0, o) into [0, )

such that
(a) each «; is upper semicontinuous from the right;

(b) T3 a:(®)<t,t>0;
(c¢) for any distinct z,y in O(x),
d(fz, fy) <ayd(z, y) +asd(z, fz) +asd (3, fy) +ad(z, fy) *asd (3, fx)

where a;=a;(d(z,y))/d(x, ).
For, this condition 1mp11esq (iii) (See the proof of [247], Theorem 1).

(1.5) The contractive condition:
(a) given >0, there exists >0 such that

e<d(x,y)<e+o6 implies d{(fz,fy)<e,

considered by Meir and Keeler [16] also can be placed instead of the
inequality in (iii). It is shown in [25] that (a) is equivalent to the

following
(b) There exists a selfmap w of [0, 00) into [0, o) such that w(s)>s

for all s>0, w is lower semicontinuous from the right on (0, ) and
w(d(fz, fy))<d(z,y), z,yeX.

(1.6) Theorem 1 also contains results of Ciric ([51, Theorem 3), Husain
and Sehgal [8], Corollaries 1 and 2), and Taskovitz ([23], Theorem 2).
The following is a modification of Theorem 1 and extends the Banach

contraction principle.

THEOREM 2. . Let f be a selfmap of a metric space (X,d). If there exists
a point u€X and a A€[0,1) such that O(u) is complete and
™ d(fz,fy)<id(z,y)
kolds for any x, y=fx in O(u), then {f‘u} conver ges to some ée X, and

d(fu, &) <—iii7d(u-,fu) for i>1.

Further, if f is orbitally continuous at £ or zf (*) holds for any z,y in O(u),
then & is fixed under f.
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Proof. Since d(fiu, fitlu) <Ad(fi lu, fiu), we have
d(fiu, fi+lu) <Xd(u, fu) for i>1.
For any 4,j>1, we have
d(fiu, fitin) <d(fiu, frw)+ - - - +d(fu, f*u)
<d(fiu, fitn) - L+ A+ « - - +2Y
i, fitly) Sl__l—i_d( Fiu, Fi+1u)

< _i%d (u, fu).

This shows that {féu}is Cauchy and converges to some £E€X. By letting
j—oo in the above inequality, we have

d(fin, &) S{ordlu, fu) for 1.
Suppose f is orbitally continuous at &. Then fiu—t implies fit1g— fE. This
shows that £=f&. Suppose (*) holds for any x, yeO(z). Then

d(fitle, &) <Ad(f'u,§) .
for any i. This implies £=f&.

We list consequences of Theorem 2.

(2.1) Instead of the inequality d(fz, fy) <2d(z,y) in Theorem 2, Pal and
Maiti ( {19], Theorem 1) assumed that, for any two elements 2z, y€O(u),
at least one of the following is true. -

(1) d(z,fx)+d(y,fy) <ad(z,3), 1<a<l2, ,
i) d(z.f2)+d(5,f5) <Bl(n ) +d(n,fr) +d(z,5)}, F<B<
1<

(ii) d(z,fz)+d(3,fy)+d(fz, fy)<7id(z fy)+d(y fx)}, 1 <y
(iv) d(fz,fy) <omax{d(z,y), d (z, fz),d(, 1),
) Ll +d(y fx) 1}, 0<o<1.
Then as the authors showed in. [19], by takmg

Z-—Afmzp;{(x;jl, 2113_[31, —%—% 5}<

(NI

’

the inequality - . ,
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holds for all z, y=fz in any case (i), (ii), (iiD, and (1v) and f is orbi-
tally continuous at £=lim;fiy. This shows that Theorem 2 implies ({197,
Theorem 1). As was pointed out in [21], note also that the above contractive
condition of Pal and Maiti is independent of (24) in [207] (See [217, p. 42).

(2.2) The inequality d(Fz, fy) <Ad(xz,y) can be replaced by any inequality
in the contractive conditions (2), (4), (5), (7), (8}, (9), (11), (12), (14), (15),
(18), (19), (21) and (23) in [20] without affecting the conclusion of Theorem
2. For (23), see p.270 of [20]). It can be also replaced by the contractive

conditions of Wong [24].

(2.3) Theorem 2 also contains results of Cirié ([5], Theorem 1), Fisher
([7], Theorems 1 and 2), Jaggi ([10], Theorem 1), Pal and Maiti ([18],
Theorems 1 and 3), and Taskovitz ({23], Theorem 1).

So far we have shown that all fixed point theorems with respect to the
contractive conditions (1)~ (11), (14), (15) and (19)~(23) in the list of
Rhoades {207 are consequénces of Theorems 1 and 2. For other contractive
conditions, appropriate modification may work. For the contractive conditions
(26)~(36), (39), (40) and (43)~(48) in [20], we have the following
type of theorems.

THEOREM 3. Let f be a selfmap of a metric space (X,d). If for some p>0,
(1) there exists a point u=X such that the orbit O(u) under f* has a cluster
- poimt E€X, and .
(it) f satisfies - )
(28) d(z, »)>d(f?z, fty)
for all x,yeX, x+y, |

then & is a unique fized point of f.

Proof. Since f? is continuous, by Theorem 1, f? has a fixed point &,
and it is clearly unique. Now N '
ff—;f(fpé)‘;f’(ff)
shows that f& is also a fixed point of f2, whence we have E —‘f 5 It is clear
that f does not have another fixed point.

3. For orbits whose limiting orbital dikmeters are zero

Let f he a selfmap of a metric space (X, d). For each z€ X, let O(f)
denote the sequence of iterates of fu, that is,
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O(f*w)=Uz.{fw, »=0,1,2, - - ~ . .
where f%=u. In general, the sequence {diam O(f "y)} is' nonincreasiing and
has limit r(x)>0. Following Belluce and Kirk [17,[2] we call the-humber
r(u) (whlch may be inifinite)" the lzmztmg orbital diameter of f at u.

Now we have our main result in th1s seetion, which is motlvated by [9].
Let R, be the set of nonnegative real numbers. o

THEOREM 4. Let f be a selfmap of a metric space (X d) satzsfymg the
Sollowing conditions:
. (1) there is a uc X such that O(u) has a cluster point §€X and diam O (u)
<oo
(ii) there is an upper semicoutinuous map @: R+5->R+ whu:h is nondecreasmg
in each coordinate variable and satisfies the condition @(t,¢,¢,t,8)<t
for any t>0 and the inequality :

d(fz, fy) <p(d(z, »)d(z, fz),d (3, fy), d(x, fy), d(y, fx))

for all z,y€0(u).
Then & is a fixed point of f and fiu—E.

Proof. By virtue of (i), d,=diam O( f"u) is ﬁmte for each #. Smce Ont1
<6, for any n, {d,} converges to some 0=>0. If i,j>#n+1 then

d(fiua fju) <¢ (d(fi-lu’ fj—lu) » d(fi_lusfiu) ’ d(fj—lu,fju)’
d(f*'u, fiu), d(fi tu, fiu))
' _‘ <¢(5;l’ 5))} 5122 511’ 5‘11)’

and hence we have 0,41 <go(5,,, Oy Ons Oy 0,) for all =, whlch 1mphes o<
©(0,0,0,0,0) because of the upper semicontinuity of ¢. So we have 6=0,
that is, the limiting orbital diameter at z is zero. Therefore, {fi} is a
Cauchy sequence, and hence fiu —&. Now \

d(fiu, f€) <@(d(f 14, &), d(fi  u, fiu); d(E, £E),-
» d(fiu, £6),d(E, fiu)
<9, f£),d(&, f£),d(E, £6),d(E, £6)d, &, ££))

shows .that & —fé'
REMARK. Note that & ‘“f & assures that FlO@) is orbltally continuous at

£€0(x). If the inequality in (ii) holds for all z,y< X, then & is the unique
fixed point of f, and for any z€X, we have fiz —¢.

: Forﬁ-cbmplete metric 'space‘siwe have .the following consequence of Theorem
4, ‘ ' '
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THEOREM 5. Let f be a selfmap of a metric space (X,d) satisfying the
Jollowing conditions:
(1) there is a € X such that O(u) is complete and diam O(u)<oo.
(ii) there is an upper semicontinuous map ¢:R.*—R. which is nondecreasing
in each coordinate variable and satisfies the condition ©(t,t,t,t,t)<t
Sor any t >0 and the inequality
d(fz,fy) <o(d(z,»),d(z, fx), d(3, fy),d(z, f), d (3, fx))
Jor all z,y€0(u).
Then f has a fized point & and fiu— &.

REMARK. K X is f-orbitally complete and if the inequality in (ii) holds
for all £, y= X, then the fixed point is uinque and fiz — & for all z€ X. Hence
Theorem 5 extends a result of Husain and Sehgal [6.

We list some consequences of Theorem 5.

(5.1) If one defines
@ (1, T2, T3, T4 75) =2 Max {1, T, 23, Ty, Ts}
for some 2€[0,1), (ii) of Theorem 5 becomes the contractive condition (24)
of Rhoades [207]. Therefore it can be replaced by any of the inequalities in
the contractive conditions (1), (2), (4), (5), (), (8), (9), (11), (12), (14), (15),
(16), (18), (19), (21) and (23) in [20]. Note that the condition (24) was
first considered by Cirié [4] and Massa [15].

(5.2) Theorems 4 and 5 can obviously be extended to the correspording
contractive definitions involving some iterate of f. Therefore, instead of the
condition (24), we may also use the conditions (26), (27), (29), (30), (32),
(33), (34), (36), (38), (39), (40), (41), (43), (44), (46), (48), and (49) in
207 :

4. A unified appreach

In Section 2. we showed that Theorems 1 and 2 have many consequences
with respect to contractive conditions which imply that the orbits are asymp-
totically regular. On the other hand, in Section 3. Thorem 4 extends .the-
orems with respect to contractive conditions which imply that the limiting
orbital diameters are zero. In this section, we show that - the followmg
implies any of Theorems 1,2 and 4.

THEOREM 6. Let f be a selfmap of a topological .s}ace X and d a lower
semicontinuous, nonnegative real valued function defined on - XXX such that
d(z,y) =0 implies x=y. If there exists uc X such that lim; d(fiu, fi+ly) =0
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and if {fiu} has-a convergeni subsequence with a limit £ X on which f is
orbitally continuous, then & is a fixed point of f.

Proof. Suppose a subsequence {fiiu} of {fiu} converges to &. Since
lim; d(fiu, fi*'«) =0 and for any sufficiently large i there exists i, such that
#4=>i, we have

0=1Lim; d(fiu, fi*1u) =Yim; d( fisu, fis*'u) 2d(§, f&)

because fiu — &, fir'ly — f£ from the orbital continuity of f at &, and d is
lower semicontinuous. This shows that d (&, f&)=0.

In the proofs of Theorems 1 and 2, it was shown that O(x) is asymptot-
ically regular. Hence Theorems 1 and 2 follow from Theorem 6.

It is easy to see that any orbit whose limiting orbital diameter is zero is
asymptotically regular. Hence we have the following

COROLLARY. Let f be a selfmap of a topological space X and d a lower
semicontinuous, nonnegative real valued function defined on XXX such that
d(x, v) =0 implies x=y. If there exists ucX whose limiting orbital diameter
under f is zero and if & is a limit of a subsequence of {fiu}, on which f is
orbitally continuous, then & is a fized point of f.

Here the meaning of the limiting orbital diameter is properly modified.
Corollary contains Theorem 2.1 and 2.2 of Belluce and Kirk [2].

Now it remains to show that Theorem 4 follows from Corollary. In fact,
in Theorem 4, the limiting orbital diameter at « is zero, and it was noted
that £|O () is orbitally continuous at £€0 ()

Therefore, all of the mdin results of this paper are consequences of The-
orem 6.

5. Conclusion

So far from Theorem 6 we have derived that if f is a selfmap of a com-
plete metric space X satisfying one of the contractive conditions (1)~ (24),
(26)~(49) in [20] and some others in [5],(7],[87,[107,[16],[19], 23]
and [24], then f has a (unique) fixed point & and fiz — & for any z€X. In
certain cases, e.g. (24) and (49), there are also approximation formulas.

We now conclude this paper by indicating for further work.

(i) For the contractive conditions (50)~(74), (75)~(99) and (100) ~(124)
in [207, similar arguments to this paper may be possible.

(ii) For pairs of maps satisfying the contractive conditions (126)~(250)
in [20], some basic principle like our Theorem 6 may work.
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(iii) Some results in this paper can be rewritten - for spaces more general

than metric ones, e.g., L-spaces [12], generalized metric spaces [4], and
Hausdorff uniform spaces [227], and 2-metric spaces.

(iv) Extending Jungck’s generalization [11] of the Banach contraction

principle, some results in this paper can be extended to common fixed point of
commuting maps.

(v) Theorem 6 and its consequences may have some applications to Banach

spaces.
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