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A UNIFIED· APPROACH TO FIXED
POINTS OF CONTRACTIVE MAPS

By SEHIE PARK

1. Introduction
A number of authors have defined various contractive type selfmaps of

metric spaces which are generalizations of the well-known Banach contraction.
In [20J, Rhoades compared those contractive conditions and combined many
known fixed point theorems.

The techniques used there have been standard since Banach: place con­
tractive con~ti9nson·maps so that suitable iterations (orbits) give Cauchy
sequences; introduce a hypothesis of completeness in the range containing
those sequences, .so well as one of continuity of the maps at the limit
points, and another general fixed point (or coincidence} theorem reswts..
The contractive conditions on maps have tWO roles" fitst, they assure that
certain iterations are Cauchy; and second, they assure the uniqueness of
fixed point. However, for the first role- it ~ sufii~t·to assume e~er that
the maps are ·contractive over two co~tive·elem~ts of an orbit, so that
the orbit is asymptotically regular; or that the maps are contractive over
the closure of an orbit, so that its limiting orbital diameter. is ~ro..·

Recently, Pal and Maiti [19J established fixed, point theorems for maps
which are contractive over two conseCutive eleinEmts of an orbit. However,
we show that their results follow essenti8lly· from a theorem ·~f Edelstein
[6J and the Banach contraction principle. Motivated byth~-iact, we"show
that most of contractive conditions imply either. the orbit is asymptotically
regular or the limiting orbital diameter is zero, in which cases we have sim­
ple fixed point theorems containing many known results.

In Section 2, we show that if a contr:act~ve. condition implies that given
orbit is asymptotically regular, then a fixed point tPeorem tv. r. t. the COn­
dition is a consequence of our version'of Edelstein'~ theorem.

In Section 3, we' show that if a condition implies that the limitmg orhitai
diameter is zero, then a fixed point theorem ud·. t. the condition is a con­
sequence of a single result.
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In fact, our purpose is a unified approach to fixed point theorems which
generalize the Banach contraction principle, and, in Section 4, we show
that any fixed point th~rem,.w. r~ t. ,cp~1!actiye tn>e maps satisfying one
of the contractive conditions 'O),.,:;(u) ~d (26);"';(49)in the list of Rhoades
[20J and others hi [5]; [7], [8], [lOJ, [16J; [i9J, [23J; 'and [24J follows from
the following basic principle:

Let f be a selfmap of a topological space and d a lower semicontinuous,
nonnegative real valued function defined on XXX such that d(x, y) =0 implies
x=y. If there exists uEX such that limid(fiu,fHlu) =0 and if {jiu} has a
convergent subsequence with a limit eEX on which f is orbitally continuous,
then e is a fixed point of f.
",' .

Proof. Setting ci=tl(fiu,f'+lu), we have. CHI ~Ci. Therefore, {ei} is mono­
tone decreasing and bound~ also. Then Ci -1 as i - QQ, where l=inf {ei}.
Since a subsequence {liIU} " COD,v~rgesAo .eE}(, : we have

jil:+lu f(jil:U) "++efe
and f'1:+2u, f2(fil:+IU) -)pe

as k~oo, because is orbitally ooritinuous at e and fe. Thus 'we have
. l=limJt4(f'~,fil:+lu)-- d(!;,fl;).

1"" limi d(jil:+1u, jil:~2u,) =d(fe,j2e)~

Suppose t; =/:.je. Then we have
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d(j~, j2~)<d(~, f~),

which is impossible. Bence we have ~ = f~.

REMARK 1. For a map satisfying d(x, y) >d(fx, fy) for all x, yEX, X::FY,
the condition (i) is needed in order to ensure that every such f possesses a
fixed point (Rhoades [20J, Theorem 2).

REMARK 2. In Theorem 1, if the inequality in (iii) holds for all X,'yEX,
X::F y, then f has a unique fixed point. Hence, we obtain Edelstein's theorem
on contractive maps [6J. Note also that if O(u) or X is compact, the con­
dition (i) is not necessary.

REMARK 3. Note that, in Theorem 1, O(u) is asymptotically regular. In
Theorem 1, d need not be a metric. If we assume that X is a topological
space, d is a lower semicontinuous, nonnegative' real . valued function
defined on XXX such that d(x, y) =0 implies x=y, and ~ is a limit of
a subsequence of O(u), then Theorem 1 stfllholds.

Now we list some consequences of Theorem 1.

(1. 1) Instead of (iii) in Theorem 1, Pal and Maiti ([19J, Theorem 2)
considered the following condition:

(iii)' f satisfies one of the following inequalities for all x,yEO(u), X::Fy.

(a) d(x,fx) +d(y,fy) <2 d(x, y),

(b) d(x,jx) +d(y,fy)< ~ {d(x,jy) +d(y,fx) +d (x, y)},

(c) d(x,fx) +d(y,fy) +d(jx,fy) < ~ {d(x,fy) +d(y,fx)} ,

1 .
(d) d(fx,fy) <max {d(x,y), d(x,fx), d(y,fy) , 2[d(x,fy)+d(y,fx)J}.

Nofe that (iii)' implies (iii). Also note that Pal, Maiti and Achari ( [17J,
Theorem 1) is a consequence of Theorem 1.

(1. 2) Note that the inequality d(x, y»d(fx,fy) in (iii) can be replaced
by any inequality in the contractive conditions (1)'"'-'(11) and (18)'"'-'(22) in
the list of Rhoades [20J without affecting the conclusion of Theorem 1,
since any of them implies

(22) d(fx,fy) <max {d(x, y), d(x, fx) , d(y,fy) , [d(x,fy) +d(y,fx)]/2}
for x*y; and, for any x, y=fx, x*y, (22) is equivalent to

d(jx,fy) <max {d(x, y), d(x,fy) /2},

which reduces to our inequality d(x, y) >d(fx,fy).
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(1. 3) Note also that any inequality in (14), (15), (23) of Rhoades [20J
also can be placed in (iii) instead of our inequality, since (14):;?(15):;?(23)
and (23) implies d(x,y»d(fx,!y) for y fx (See [20J, p.269).

:..

(1. 4) The condition (iii) can be replaced by the contractive condition
of Wong [24J:

Suppose that there exist functions ai, i=l, 2, 3,4,5, of (0,00) into [0,00)
such that

(a) each ai is upper semicontinuous from the right;
(b) E~=l ai(t)<t, t>O;
(c) for any distinct x, y in O(u),

d(fx,fy) ~ald(x,y) +a2d(x, fx) +asd(y,fy)+a4d (x,fy) +asd(y,fx)
where "ai "ai(d(x,y»/d(x,y). "

For, thisronditionimp!ies; (iii) (See the proof of [24J, Theorem 1).

of the
to the

(1. 5) The contractive condition:
(a) given e>O, there exists 0>0 such that

e~d(x,y)<e+o implies d(fx,fy)<e,

by Meir and Keeler [l6J also can be placed instead
in (iii). It is shown in [25J that (a) is equivalent

considered
inequality
following

(b) There exists a selfmap w of [0,00) into [0,00) such that w(s) >s
for all s>O, w is lower semicontinuous from the right on (0,00) and

w(d(fx,fy» ~d(x, y), x~ yEX.

(1.6) Theorem 1 also contains results of Ciric ( [5J, Theorem 3), Husain
and Sehgal [8J, Corollaries 1 and 2), and Taskovitz ([23J, Theorem 2).

The following is a modification of Theorem 1 and extends the Banach
contraction' principle.

THEOREM 2. " Let f be a selfmap of a m.etric spa,ce (X, d). If there exists
a pointuEX and a A~[O, 1) such tha~ O(u) i$ complete and

(*) d(fx,fy) ~A d(x, j)

holds for any x, y fx in O(u), then ffiu} converges to some eEX, and

d(f'u,~)~ 1~A d(u;fu) for i~ 1.

Further, if f is orbitally continuous at ~ or if (*) holds for any x, y in O(u),
then ~ is fixed under f.
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Proof. Since d(fiu,Ji+lu) ~U(fi-lU,fiu), we have

d-(fiu,Ji+lU) ~;"d(u,Ju) for i>1.
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For any i,j~l, we have
d(jiu,Ji+ju) ~tl(fiU,Ji+1u)+ ... +d(fi+j-lu,fi+ju)

~d(fiu,Ji+1u)· (1+1..+ ••• +Aj-l)

I-Ai (. "1) 1 d(f' f' 'I )I-A d f'u, f'+u ~ I-A 'u, IT u

Ai
~ 1-1.. d(u,lu).

This shows that, {fiu} is Cauchy and converges to some eEX. By letting
j-HXJ in the above inequality, we have

d(fiu, e) ~ Il..
i

I.. d(u,fu) for i~l.

Suppose I is orbitalIy continuous at e. Then f'u-e implies ji+1u_ Ie. This
shows that e=Ie. Suppose (*) h~lds for any x, yEO(u). Then

d (fi+lu, fe) ~A d(f'u, e)

for any i. This implies e Ie.

We list consequences of'Theorem 2.

d(lx,Jy) ~A.d(x,y)
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holds for all x, y fx in any case, (i),. (ii), (iii), and (iv), and f is orbi­
tally continuous at ~=limifiu. This" shows that Theorem 2 implies ([19J,
Theorem 1). As was pointed out in [21J, note also that the above contractive
condition of Pal and Maiti is independent of (24) in, [20J (See [21J, p. 42).

(2.2) The inequality d(Jx,fy) sA. d(x" y) can be replaced by any inequality
in the contractive conditions (2), (4), (5), (7), (8), (9), (11), (12), (14), (15),
(18), (19), (21) and (23) in [2OJ without affecting the conclusion of Theorem
2. For (23),' see p.270 of [20J. It can be also replaced by the contractive
conditions of Wong [24J.

(2.3) Theorem 2 also contains results of Ciric '([5J, Theorem 1), Fisher
([7J, Theorems 'I and 2), Jaggi ([1OJ, Theorem 1), ,Pal and Maiti ([18J,
Theorems 1 and 3), and Taskovitz ([23J, Theorem 1).

So far we have shown that all :fixed point theorems with respect to the
contractive conditions (1)",(11), (14), (15) and (19)",(23) in the list of
Rhoades' [20J are consequences of Theorems 1 and 2. For other contractive
conditions, appropriate modification may work. For' the contractive conditions
(26)",(36), (39), (40) and (43)"'(48) in [20J,. we have the following
type of theorems.

THEOREM 3. Let f be a sellmap of a metric space (X, d). If for some p>O,
(i) there exists a point uEX such that the orbit O(u) under IP has a cluster

point ~ E X, and
(ii) f satisfies

(28) d(x,y»d(IPx,fPy)

for all x,yEX, x=i=-y,

then ~ is a unique fixed point of f.

Proof. Since Ii' is continuo.us, by Theorem 1, fP has a ~d point ~,

and it is clearly unique. No~. ,
f~ 'j(fi'~) 'fP(f~)

shows that f~ is also a fu:ed Point of f P, whence we have ~ f~. It is clear
that f does not have another fixed point.

J. F-or orbits whose limiting orbital diameters are zero

Let f 00 a selfmap of a metric space (X, d). For each uEX, let O(f"u)
denote the sequence of iterates of t"u, that is,
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OUnu) = U4~" {flu}, n=O, 1, 2, . . ."

where fOu=u. In general, the sequence {diam o(Jnu)} is' nonincreasiDg and
has limit'r(u)';;;';O.- Following'Belhice alid Kirk [1J,[2] we call the;llumber
r(u) (which may be iiffiniter the limitin'g'brbital diameter of f at u.'

.~ . '. .

Now we have our main result in this section, which is motivated by [9J.
Let R+ be the set of nonnegative real numbers.

THEOREM 4. Let f be a selfmap of a metric space (X, d) satisfying the
following conditions: "'

. (i) there is a uEX such that O(u) has a cluster point ~EX and dian) O(u)
<00. . '

(ii) there is an upper semicontinuous map cp:R+5~R+ which isnondecreasing
in each coordinate variable and satisfies the condition cp(t, t, t, t,t)<t
for any t>O and the inequality

d(fx,fy) --::;cp(d(x, y)d(x,fx), d(y,fy), d(x,fy), d(y,tx»

for all x,yEO(u).
Then ~ is a fixed point of f and jiu->~.

Proof. By virtue of (i), an = diam OUnu) is finite for each n. Since an+I
--::;0n for any n, {on} converges to some 0~0. If i,j~n+1 then

d(Jiu,jiu) --::;cp(d(ji-1u,ji-1U), d(fi-lu,jiu), d(f j-1u,jiu),
d(fi-lu,jiu), d(fi-Iu,jiu»

s;,,([J(.J..no on,- Q~. o-,.,fJ-,.),

and hence we have On+l.s;,cp(anoOnoonoonoon) for all n, which implies a--::;
cp(o, 0, 0, o,~) because of the upper ~micontinuity of cpo So we have 0=0,
that is, the limiting orbital diameter at u is zero. Therefore, {jiu}. is a
Cauchy sequence, and hence jiu --+ ~. Now •

d(jiu,f~) --::;cp(d(ji-1u, ~), d(ji-1u,Jiu); d(~,f~),
d(ji-1u, f~), d(~, jiu)

--::;q;(d(~,f~), d(~, f~), d(~, f~), d(~,f~)d, (~, f~»

shows, that ~ . f~.

REMARK. Note that ~ f~ assures that fIO(u) is orbitally continuous ~t

eEO(U). If the inequality in (ii) holds for all x,yEX, then eis the unique
fixed point of f, and for any xEX, we have jix --+~.
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THEOREM 5. Let f be a selfmap of a m!!tric space (X, d) satisfying the
following conditions:

(i) there is a uEX such that O(u) is complete and diam O(u) <00.
(ii) there is an upper semicontinuous map cp:R+s-R+ which is 1lO1ldecreasing

in each coordinate variable and satisfies the condition tp(t, t, t, t, t) <t
for any t>O and the inequality

d(fx,/y) "';;'tp(d(x, y), d(x,fx) , d(y,fY) , d (x, fy), d(y,/x»

for all x, yEO(u).
Then f has a fixed point e and fiu - e.

REMARK. H X is f-orbitally complete and if the inequality in (ii) holds
for all x, yE X, then the fixed point is uinque and fix - efor all xE X. Hence
Theorem 5 extends 'a result of Husain and Sehgal [6J.

We list some consequences of Theorem 5.

(5.1) If· one defines

cp(Xh X2, X3, X4' xs) =.:t max {Xh X2, X3, X4' xs}
for some AE[O, 1), (ii) of Theorem 5 becomes the contractive condition (24)
of Rhoades [2OJ. Therefore it can be replaced by any of the inequalities in
the contractive conditions (1), (2), (4), (5), (7), (8), (9), (11), (12), (14), (15),
(16), (18), (19), (21) .and (23) in [20J. Note that the condition (24) was
first considered by Cirie [4J and Massa [15J.

(5. 2) Theorems 4 and 5 can obviously be extended to the corresponding
contractive definitions involving some iterate of f. Therefore, instead of the
condition (24), we may also use the conditions (26), (27), (29), (30), (32),
(33), (34), (36), (38), (39), (40), (41), (43), (44), (46), (48), and (49) in
[20~.

4. A unified. approach

In Section 2.' we showed that Theorems 1 and 2 have many consequences
with respect to contractive conditions which imply that the orbits are asymp'
totically regular. On the other hand, in Section 3. Thorem 4 extendsthe~

orems with respect to contractive conditions which imply that the limiting
orbital diameters are 'Zero. .In this ·section,we show· that the follOWing
implies any of Theorems 1, 2 and 4. .

THEOREM 6. Let f be a self~p of a "~opdogical space X and d a l~er
semicontinuous, nonnegative real.valued function defined on XXX such that
d(x, y) =0 implies x=y. If there exists uEX such that lim; d(liu, jiHU) =0
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and il {jiu} has -a con:vergent subsequence with a limit ~E X on which I is
orbitally continuous, then ~ is a fixed point 01 I.

Proof. Suppose a subsequence {jiiU} of {jiu} converges to ~. Since
limi d(fiu,ji+Iu) =0 and for any sufficiently large i there exists i l such that
il~ i, we have

O=limi d(jiu, ji+lu) =limk d(jiiu, Jii+IU) ~d(~, f~)

because fiiu -~, fii+lu - I~ from the orbital continuity of I at ~. and dis
lower semicontinuous. This shows that d(~. I~)=0.

In the proofs of Theorems 1 and 2. it was shown that O(u) is asymptot­
ically regular. Hence Theorems 1 and 2 follow from Theorem 6.

It is easy to see that any orbit whose limiting orbital diameter is zero is
asymptotically regular. Hence we have the following

COROLLARY. Let I be a sellmap 01 a topological space X and d a lower
semicontinuous, nonnegative real valued lunction defined on. XXX such that
d(x, y) =0 implies x=y. II there exists uEX whose limiting orbital diameter
under I is zero and if ~ is a limit 01 a subsequence 01 {Jiu}. on which I is
orbitally continuous, then ~ is a fixed point 01 I.

Here the meaning of the limiting orbital diameter is properly modllied.
Corollary contains Theorem 2. 1 and 2. 2 of Belluce and Kirk [2J.

Now it remains to show that Theorem 4 follows from Corollary. In fact,
in Theorem 4, the limiting orbital diameter at u is zero, and it was noted
that fIO(u) is orbitally continuoUs at ~EO(u)

Therefore, all of the main results of this paper are consequences of The­
orem 6.

5. Conclusion

So far from Theorem 6 we have derived that if I is a selfmap of a com­
plete metric space X satisfying one of the contractive conditions (1)""(24),
(26),,-,(49) in [20J and some others in [5J, [7J, [8J, [10J, [16J, [19J, [23J
and [24J, then I has a (unique) :fixed point ~ and fix -+ ~ for any xEX. In
certain cases, e. g. (24) and (49), there are also approximation formulas.

We now conclude this paper by indicating for further work.
(i) For the contractive conditions (50)"-'(74), (75)"-'(99) and (100)""(124)

in [20J, similar arguments to this paper may be possible.
(ii) For pairs of maps satisfying the contractive conditions (126)"-'(250)

in [20J, some basic principle like our Theorem 6 may work.
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(iii) Some results in this paper can be- rewritten - for spaces more general
than metric ones, e. g.• L-spaces [12J, generalized metric spaces [4J, and
Hausdorff uniform spaces [22J, and 2-metric spaces.

(iv) Extending Jungck's generalization [l1J of the Banach contraction
principle, some results in this paper can be extended to common fixed point of
commuting maps.

(v) Theorem: 6 and its consequences may have some applications to Banach
spaces.
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