PERIODIC MAPS ON PRODUCT 3-MANIFOLDS WHICH ARE ISOTOPIC TO THE IDENTITY

KYUNG WHAN KWUN¹⁾ AND FRANK A. RAYMOND¹⁾

1. Introduction

Let F be a closed surface not homeomorphic to the 2-sphere or the projective plane. Let h be a periodic homeomorphism of $F \times S^1$ onto itself of a prime period p such that h is isotopic to the identity. Two such h_1 and h_2 are called equivalent if there are a homeomorphism $g: F \times S^1 \to F \times S^1$ and an integer i, 0 < i < p, such that $h_2^i = g^{-1}h_1g$. Our result is the following.

THEOREM. With F, h and p as above, (1) if F is not a Klein bottle, or F is a Klein bottle and p is odd, then h has no fixed point and (2) if h has no fixed point, h is equivalent to $1_F \times \beta$, where β generates the standard free Z_p action of S^1 .

Simple examples show that Part (1) is false for F=a Klein bottle and p=2.

2. The proof of Part (1)

Suppose h has a fixed point $x_0 \in X = F \times S^1$. Let $q: R^3 \to X$ be the universal covering map and $y_0 \in q^{-1}(x_0)$. Let $h: (R^3, y_0) \to (R^3, y_0)$ be the periodic homeomorphism of period p such that qh = hq. First, $h^*: \pi_1(X, x_0) \to \pi_1(X, x_0)$ is an inner automorphism such that $(h^*)^p = \text{identity}$. Since there is no nontrivial inner automorphism of $\pi_1(X, x_0)$ of a finite order if F is not a Klein bottle and no nontrivial inner automorphism of an odd order if F is a Klein bottle, it follows that $h_* = \text{identity}$. Then it further follows that h fixes $q^{-1}(x_0)$ pointwise. Therefore if $C \subset X$ is the component of the fixed point set of h containing x_0 , then $q^{-1}(C) = \tilde{C}$ is pointwise fixed under \tilde{h} . Since \tilde{C} is both open and closed in the fixed point set \tilde{U} of \tilde{h} and \tilde{U} is acyclic, $\tilde{C} = \tilde{U}$. Then C and X are both $K(\pi_1(X), 1)$ spaces, C = X and h = identity. This contradiction proves Part (1).

Received August 14, 1979

¹⁾ Supported in part by National Science Foundation.

3. The proof of Part(2) for $F \neq a$ Klein bottle

Since the conclusion for $F=S^1\times S^1$ follows from a result [1] of Hempel, assume $F\neq S^1\times S^1$.

Now use q for the orbit map $F \times S^1 \to Y$ of the free Z_p action generated by h. Consider the exact sequence

$$1 \longrightarrow \pi_1(X, x_0) \xrightarrow{q_{\#}} \pi_1(Y, y_0) \xrightarrow{\alpha} Z_p \longrightarrow 0,$$

where $x_0 \in X$ and $y_0 = q(x_0)$. Choose $g \in \alpha^{-1}(h)$, where h is regarded as a generator of Z_p , the group of covering transformations. Identify $\pi_1(X, x_0)$ with its image under q_* . Then the conjugation of $\pi_1(X, x_0)$ by g is an inner automorphism of $\pi_1(X, x_0)$. Hence g can be chosen to commute with every element of $\pi_1(X, x_0)$. In this case g^p lies in the center of $\pi_1(X, x_0)$, a cyclic group $\pi_1(S^1)$ generated by, say t, where $\pi_1(X, x_0)$ is identified as before with $\pi_1(F) \times \pi_1(S^1)$.

Suppose $g^p = t^k$. Since $\pi_1(Y)$ has no nontrivial element of a finite order, $p \nmid k$. There exist integers x and y such that px + ky = 1. Then

$$t=t^{px}\cdot t^{ky}=t^{px}\cdot g^{py}=(t^x\cdot g^y)^p$$
.

By replacing h by h^y , we may assume $(t^xg)^p=t$. Further replacing g by t^xg , we have $g^p=t$. Then $\pi_1(Y,y_0)\simeq\pi_1(F)\times Z$ and q_* can be considered as $1_{x_1(F)}\times r$, where $r(t)=g^p$, g generating Z. Since Y is irreducible, it follows from the fibering theorem [2] of Stallings, $Y\approx F\times S^1$ and considering the covering transformations of q, Part (2) follows in this case.

4. The proof of Part(2) for F=a Klein bottle and p=2

Let $q: (F \times S^1, x_0) \to (Y, y_0)$ be the orbit map of Z_2 action generated by h. Again we identify $\pi_1(X, x_0)$ with $q_*(\pi_1(X, x_0))$. Explicitly write $\pi_1(X, x_0) = \pi_1(F) \times \pi_1(S^1), \pi_1(F) = |a, b: bab^{-1} = a^{-1}|$. Consider the exact sequence

$$1 \to \pi_1(X, x_0) \xrightarrow{q_*} \pi_1(Y, y_0) \xrightarrow{\alpha} Z_2 \to 0.$$

Choose $g \in \alpha^{-1}(h)$ so that g commutes with every element of $\pi_1(X, x_0)$. g^2 is in the center of $\pi_1(X, x_0)$ and $g^2 = b^{2k}t^r$, where t generates $\pi_1(S^1)$. r is odd as $\pi_1(Y, y_0)$ has no element of a finite order. If r = 2m + 1, replace g by gt^{-m} and assume $g^2 = b^{2k}t$. Then $\pi_1(Y, y_0) = \pi_1(F) \times G$, where G is the cyclic group generated by g. Consider $\pi_1(X, x_0)$ as the direct sum of $\pi_1(F)$ with the cyclic group generated by $b^{2k}t$. By Stallings again $Y \approx F \times S^1$ and q_* represents the product $(1_F \times \beta)_*$, β the double covering of S^1 over S^1 . This time of course the $\pi_1(S^1)$ portion of $\pi_1(X, x_0)$ is generated by $b^{2k}t$. The automorphism of $\pi_1(X, x_0)$ sending a to a, b to b and t to $b^{2k}t$ can be seen to be induced by a homeomorphism of X onto itself:

5. The proof of Part(2) for F=a Klein bottle and p odd

Again consider $q:(X,x_0)\rightarrow (Y,y_0)$ and the exact sequence

$$1 \to \pi_1(X, x_0) \to \pi_1(Y, y_0) \to Z_p \to 0.$$

Use the same notations as in Section 3. Then $g^{\mu}=b^{2k}t^{r}$.

Case 1. (p,r)=1. There exist integers x and y such that px+ry=1. Then $t=t^{px}\cdot t^{ry}=t^{px}(g^pb^{-2k})^y$ and $(g^yt^x)^p=b^{2ky}t$. Replace h by h^y and assume $(gt^x)^p=b^{2ky}t=b^{2k'}t$. Finally replace g by gt^x and assume $g^p=b^{2k'}t$. Consider $\pi_1(X,x_0)$ as the direct sum of $\pi_1(F)$ and the cyclic group generated by $b^{2k'}t$ and $\pi_1(Y,y_0)$ as the direct sum of $\pi_1(F)$ and the cyclic group generated by g. Again we see that g is equivalent to g. Again we see that g is equivalent to g. Part (2) for the case now follows.

Case 2. r=mp for some integer m. Replace g by gt^{-m} and get $g^p=b^{2k}$. A trick similar to one in Section 3 allows us to assume k=1. Consider $\pi_1(Y, y_0)$ as the direct sum of $\pi_1(S^1)$ with

$$G=|a,b,g: ag=ga, bg=gb, b^{-1}ab=a^{-1}, g^{p}=b^{2}|.$$

G is isomorphic to

$$\overline{G} = |x, y: y^{-1}xy = x^{-1}|$$

under the isomorphism η sending a to x, g to y^2 and b to y^p . η^{-1} sends x to a, y to bg^{-m} , p=2m+1. Then the subgroup of G generated by a and b corresponds to the subgroup of \overline{G} generated by x and y^p .

Then again $Y \approx F \times S^1$ and q is equivalent to $\gamma \times 1_{S^1} : F \times S^1 \to F \times S^1$, where $\gamma : F \to F$ is the p-fold covering whose group of covering transformations is generated by h described below.

Consider the Klein bottle as the quotient space of $S^1 \times R$, $S^1 = \{z \in C \mid |z| = 1\}$, under the identification $(z, t) = (\bar{z}, t+1)$. The equivalence class of (z, t) is denoted by [z, t]. $h([z, t]) = \left[z, t + \frac{2}{p}\right]$.

The conclusion. There remains to show that $1_F \times \beta$ is equivalent to $\gamma \times 1_{S^1}$. Consider $F \times S^1$ as the quotient of $S^1 \times R \times R$ under the identification $(z, t, s) = (\bar{z}, t+1, s)$, where (z, t, s) = (z, t, s+1). The class of (z, t, s) is denoted by [z, t, s]. Under this notation, we wish to show h_1, h_2 are equivalent, where $h_1[z, t, s] = \left[z, t, s + \frac{1}{p}\right]$ and $h_2[z, t, s] = \left[z, t - \frac{p-1}{p}, s\right]$.

Consider $g: F \times S^1 \to F \times S^1$ given by g[z, t, s] = [z, pt + (p-1)s, t+s]. It is easy to check that g is a well-defined homeomorphism and $g^{-1}h_1g = h_2$. This completes the proof.

References

- 1. John Hempel, Free cyclic actions on $S^1 \times S^1 \times S^1$, Proc. Amer. Math. Soc. 48(1975), 221-227.
- 2. John Stallings, On fibering certain 3-manifolds, Topology of 3-manifolds, Prentice Hall (1962), 95-100.

Seoul National University and Michigan State University, Seoul National University and University of Michigan