A CERTAIN POLYNOMIAL STRUCTURE

BY YONG BAI BAIK*

0. Introduction

K. Matsumoto[8] has introduced the pseudo-\(f \)-structure defined by a tensor field \(f \) of type \((1,1)\) satisfying \(f^3-f=0 \) and investigated the integrability conditions of the pseudo-\(f \)-structure. On the other hand, I. Sato [11] has studied an almost paracontact structure \((f, \xi, \eta)\) of the pseudo-\(f \)-structure of rank \(n-1 \). The purpose of the present paper is to introduce a pseudo-framed structure and to obtain the results analogous to the properties of a framed structure. In § 1 we introduce a pseudo-framed structure of rank \(r \) and give an example of a manifold with such a structure. This structure is a generalization of an almost product structure and almost paracontact structure.

In § 2 we study structures induced on a product manifold of two pseudo-framed manifolds and prove the manifold \(M \times \mathbb{R}^{n-r} \) has an almost product structure. In § 3 we define the normal pseudo-framed structure and prove that the product manifold of two normal pseudo-framed manifolds has a normal pseudo-framed structure.

1. Pseudo-framed structure

Let \(M \) be an \(n \)-dimensional differentiable manifold of class \(C^\infty \). If there exists a tensor field \(f \) of type \((1,1)\) of constant rank \(r \) satisfying the polynomial equation:

\[
f^3-f=0,
\]

then we call the structure a pseudo-\(f \)-structure of rank \(r \) and the manifold \(M \) pseudo-\(f \)-manifold of rank \(r \) ([8]). This structure is a generalization of an almost product structure \((r=n)\) and almost paracontact structure \((r=n-1)\) ([11]).

If we put

\[
s=f^2, \quad t=-f^2+I,
\]

where \(I \) is the identity transformation field, then we get

\[
s+t=I, \quad s^2=s, \quad t^2=t, \quad fs=f, \quad ft=0, \quad st=0.
\]

Received Jan. 7, 1980

*This research was supported by the Korea Science and Engineering Foundation.
The operators \(s \) and \(t \) acting in the tangent space at each point of \(M \) are therefore complementary projection operators and there exist complementary distributions \(S \) and \(T \) corresponding to the operators \(s \) and \(t \), respectively. Then the distribution \(S \) is \(r \)-dimensional and distribution \(T \) is \((n-r) \)-dimensional.

Let \(M \) be a manifold with pseudo-\(f \)-structure of rank \(r \). There exist \(n-r \) vector fields \(\xi_x \) spanning the distribution \(T \) and its dual 1-forms \(\eta_x \), where the indices \(x, y, z \) run over the range \(\{1, 2, \ldots, n-r\} \). Then we can put
\[
t = \eta_x \otimes \xi_x, \quad \eta_x(\xi_y) = \delta_{xy},
\]
where \(\delta_{xy} \) is the Kronecker’s delta, the summation convention being employed here and in the sequel. Therefore, for any vector field \(X \) we have
\[
(1.4) \quad sX = f^2X, \quad tX = \eta_x(X)\xi_x,
\]
from which
\[
(1.5) \quad f^2 = I - \eta_x \otimes \xi_x.
\]
From (1.3) and (1.5) we easily see that
\[
(1.6) \quad f^2 = 0, \quad \eta_x \circ f = 0.
\]
If there exist on \(M \) vector fields \(\xi_x \) and 1-forms \(\eta_x \) satisfying (1.4), (1.6) and (1.7), then the set \((f, \xi_x, \eta_x) \) is called a pseudo-\(f \)-structure with complementary frame, or simply, a pseudo-framed structure and the manifold \(M \) a pseudo-framed manifold.

Let \(M \) be a manifold with pseudo-framed structure of rank \(r \). Then there exists on \(M \) a Riemannian metric \(g \) such that
\[
(1.7) \quad g(X, \xi_x) = \eta_x(X),
\]
\[
(1.8) \quad g(fX, fY) = g(X, Y) - \eta_x(X)\eta_x(Y),
\]
for any vector fields \(X \) and \(Y \) on \(M \).

If we put
\[
(1.9) \quad F(X, Y) = g(X, fY),
\]
then we get
\[
(1.10) \quad F(X, Y) = F(Y, X),
\]
which shows that \(F \) is a symmetric tensor.

Now, as an example, we consider a submanifold \(N \) of codimension \(r \) of an \(n \)-dimensional almost product manifold \(M \) with structure tensor \((J, G) \). If \(B \) denotes the differential of imbedding \(i : N \rightarrow M \) and \(X \) and \(Y \) are any vector fields of \(N \), then the induced metric \(g \) on \(N \) is defined by
\[
(1.11) \quad g(X, Y) = G(BX, BY).
\]
We assume that the normal bundle of \(N \) is orientable. Then we choose mutually orthogonal unit vector fields \(C_x \) normal to \(N \).

The transformations \(JBX \) and \(JC_x \) can be expressed as
\[
(1.12) \quad JBX = BfX + \eta_x(X)C_x,
\]
\[
(1.13) \quad JC_x = B\xi_x + \lambda_xC_x,
\]
A certain polynomial structure

where \(f \) is a tensor field of type (1,1), \(\eta_x \) are 1-forms, \(\xi_x \) are vector fields and \(\lambda_x \) are scalar fields defined on \(N \).

We are interested in the antinormal submanifold, that is, \(\lambda_x = 0 \) in (1.14). Then computing \(J^2 BX \), we get

\[
BX = B f^2 X + \eta_x(f X) C_x + \eta_x(X) B \xi_x,
\]

from which, comparing tangential part and normal part,

\[
f^2 X = X - \eta_x(X) \xi_x, \quad \eta_x(f X) = 0.
\]

Similarly, computing \(J^2 C_x \) we get

\[
f \xi_x = 0, \quad \eta_y(f_x) = 0.
\]

Therefore the antinormal submanifold \(N \) has a pseudo-framed structure of rank \(r \).

2. Products of pseudo-framed manifolds

Let \(M(f, \xi_x, \eta_x) \) and \(\overline{M}(\overline{f}, \overline{\xi}_a, \overline{\eta}_a) \) be two pseudo-framed manifolds of ranks \(r \) and \(\overline{r} \), respectively, where the index \(x \) runs over the range \(\{1, \ldots, n-r\} \) and the index \(a \), runs over the range \(\{1, \ldots, n-\overline{r}\} \). Now, we introduce a pseudo-framed structure on a product manifold \(M \times \overline{M} \) as follows.

For a vector field \((X_p, \overline{X}_\overline{p}) \) of the product manifold \(M \times \overline{M} \) at a point \((p, \overline{p}) \), we shall denote \(X_p + \overline{X}_\overline{p} \). We identify \(X \in \mathcal{T}M \) with \(X \in \mathcal{T}(M \times \overline{M}) \) by

\[(2.1) \quad \bar{X}_{(p,\overline{p})} = (X_p, 0_\overline{p}) = X_p + 0_\overline{p},\]

where \(0_\overline{p} \) is the zero vector of \(\overline{M} \) at \(\overline{p} \). If \(\pi : M \times \overline{M} \to M \) and \(\overline{\pi} : M \times \overline{M} \to \overline{M} \) are projections \(\pi(p, \overline{p}) = p \) and \(\overline{\pi}(p, \overline{p}) = \overline{p} \), respectively, then \(\pi_* \bar{X} \in \mathcal{T}(M \times \overline{M}) \) by

\[(2.2) \quad \bar{X}_{(p,\overline{p})} = (0_p, \overline{X}_\overline{p}) = 0_p + \overline{X}_\overline{p}.
\]

Differentiable 1-forms on \(M \) and \(\overline{M} \) are identified with 1-forms on \(M \times \overline{M} \) in the same way. If \(w \) and \(\overline{w} \) are 1-forms on \(M \) and \(\overline{M} \), respectively, then a 1-form \(\bar{w} \) is defined on \(M \times \overline{M} \) by

\[(2.3) \quad \bar{w}_{(p,\overline{p})} (X_p, \overline{X}_\overline{p}) = w_p(X_p) + \overline{w}_{\overline{p}}(\overline{X}_\overline{p}).
\]

Now, for any vector fields \(X \in \mathcal{T}M_p \) and \(\overline{X} \in \mathcal{T}\overline{M}_\overline{p} \), if we put

\[(2.4) \quad F(X, \overline{X}) = (fX, f\overline{X}),
\]

then \(F \) defines a linear map of tangent space \(\mathcal{T}(M \times \overline{M}) \) onto itself. From the last equation, we get

\[(2.5) \quad F^2 = (I, \overline{I}) - (\eta_x \otimes \xi_x, 0) - (0, \overline{\eta}_a \otimes \overline{\xi}_a),
\]

where \(I \) and \(\overline{I} \) are identity tensor fields of \(M \) and \(\overline{M} \) respectively. From (2.5) we get

\[(2.6) \quad F^3 - F = 0,
\]

and \(F \) has rank \(r + \overline{r} \). If we put

\[
E_x = (\xi_x, 0), \quad E_{n-r+a} = (0, \xi_a), \quad w_x = (\eta_x, 0), \quad w_{n-r+\overline{p}} = (0, \overline{\eta}_\overline{p}),
\]

\[
E_{n-r+a} = (0, \xi_a), \quad w_{n-r+\overline{p}} = (0, \overline{\eta}_\overline{p}),
\]

\[
E_{n-r+a} = (0, \xi_a), \quad w_{n-r+\overline{p}} = (0, \overline{\eta}_\overline{p}),
\]
from which
\[w_x(E_y) = (\eta_x(\xi_y), 0), \quad w_{n+r+a}(E_{n+r+b}) = (0, \xi_a(\eta_b)). \]
Then (2.5) can be written by
\[F^2 = I - w_A \otimes E_A, \]
where \(I = (I, I) \) and \(A, B = 1, 2, \ldots, n + n - r - \bar{r} \).
Moreover we get
\[FE_A = 0, \quad w_A F = 0, \quad w_A (E_B) = \delta_{AB}. \]
Thus we have

Theorem 2.1. Let \(M(f, \xi, \eta) \) and \(\bar{M}(\bar{f}, \bar{\xi}, \bar{\eta}) \) be pseudo-framed manifolds of ranks \(r \) and \(\bar{r} \), respectively. Then the product manifold \(M \times \bar{M} \) carries a pseudo-framed structure \((F, E_A, w_A)\) of rank \(r + \bar{r} \).

Let \(R^m \) be an \(m \)-dimensional Euclidean space. Then \(R^m \) has a trivial pseudo-framed structure \((0, \partial/dt^a, dt^a)\). Hence by Theorem 2.1 we can introduce a pseudo-framed structure on \(M \times R^m \) given by
\[F(X, \lambda^a d/dt^a) = (fX, 0), \]
where \(\lambda^a \) are real valued functions on \(R^m \). Then we have
\[F^2 = (I, I) - (\eta_x \otimes \xi_x, 0) - (0, dt^a \otimes d/dt^a). \]
Thus we have

Corollary 2.2. Let \(M(f, \xi, \eta) \) be a pseudo-framed manifold of rank \(r \) and \(R^m \) an \(m \)-dimensional Euclidean space with trivial pseudo-framed structure \((0, \partial/dt^a, dt^a)\). Then the product manifold \(M \times R^m \) has a pseudo-framed structure \((F, E_A, w_A)\) of rank \(r \) given by (2.9).

Let \(M(f, \xi, \eta) \) and \(\bar{M}(\bar{f}, \bar{\xi}, \bar{\eta}) \) be two pseudo-framed manifolds of dimensions \(n, \bar{n} \) and ranks \(r, \bar{r} \), respectively, where we assume that \(n - r = \bar{n} - \bar{r} \). For any vector fields \(X_p \in TM_p \) and \(\bar{X}_p \in T\bar{M}_p \), we define a linear map \(J \) of tangent space \(T(M \times \bar{M})_{(p, \bar{p})} \) onto itself by
\[J(X, \bar{X}) = (fX + \eta_x(\bar{X})\xi_x, \bar{f}\bar{X} + \eta_x(X)\bar{\xi}_x). \]
Then we have
\[J^2 = (I, I), \]
which shows that \(J \) is an almost product structure.

Thus we have

Theorem 2.3. Let \(M(f, \xi, \eta) \) and \(\bar{M}(\bar{f}, \bar{\xi}, \bar{\eta}) \) be two pseudo-framed manifolds. Then the product manifold \(M \times \bar{M} \) has an almost product structure \(J \) defined by (2.10).

Now, since \(R^{n-\bar{r}} \) has a trivial pseudo-framed structure \((0, \partial/dt^{\bar{a}}, dt^{\bar{a}}), \) \((t^\bar{a})\) being the coordinate in \(R^{n-\bar{r}} \), we can introduce an almost product structure \(J \) on a product manifold \(M \times R^{n-\bar{r}} \). If we put
A certain polynomial structure

(2.12) \[J(X, \lambda \xi_x d/dt^2) = (fX + \lambda \xi_x \eta_x(X) d/dt^2), \]
then we have \(J^2 = (I, I) \).

Thus we have

THEOREM 2.4. Let \(M(f, \xi, \eta) \) be a pseudo-framed manifold of rank \(r \). Then the product manifold \(M \times R^{n-r} \) has an almost product structure \(J \) defined by (2.12).

Finally, we prove the following:

THEOREM 2.5. Let \(M(f, \xi, \eta) \) be a pseudo-framed manifold of rank \(r \). If the induced almost product structure \(J \) on \(M \times M \) is integrable, then the pseudo-framed structure \(f \) is integrable.

Proof. For any vector fields \(X \) and \(Y \) on \(M \times M \), we define an induced almost product structure \(J \) on \(M \times M \) as follows:

(2.13) \[J(X, Y) = (fX + \eta_x(Y) \xi_x, fY + \eta_x(X) \xi_x). \]

Then the integrability condition of the induced almost product structure \(J \) on \(M \times M \) is given by

\[
\begin{align*}
&[J(X_1 + X_2, J(Y_1 + Y_2)] - J[J(X_1, X_2), Y_1 + Y_2] \\
&- J[J(X_1 + X_2, J(Y_1 + Y_2)] + [X_1 + X_2, Y_1 + Y_2] = 0,
\end{align*}
\]

for any vector fields \(X = X_1 + X_2 \) and \(Y = Y_1 + Y_2 \) on \(M \times M \). By a direct computation we see that the above condition is equivalent to the following:

(2.14) \[
\begin{align*}
&[f, f](X_1, Y_1) + [f X_1, \eta_x(Y_2) \xi_x] - f[X_1, \eta_x(Y_2) \xi_x] \\
&+ [\eta_x(X_2) \xi_x, f Y_1] - f[\eta_x(X_2) \xi_x, Y_1] - \eta_x([f X_2, Y_2] + [X_2, f Y_2]) \xi_x \\
&- \eta_x([\eta_x(X_1) \xi_x, Y_2] + [X_2, \eta_x(Y_1) \xi_x]) \xi_x + [\eta_x(X_2) \xi_x, \eta_x(Y_2) \xi_x] = 0,
\end{align*}
\]

(2.15) \[
\begin{align*}
&[f, f](X_2, Y_2) + [f X_2, \eta_x(Y_1) \xi_x] - f[X_2, \eta_x(Y_1) \xi_x] \\
&+ [\eta_x(X_1) \xi_x, f Y_2] - f[\eta_x(X_1) \xi_x, Y_2] - \eta_x([f X_1, Y_1] + [X_1, f Y_1]) \xi_x \\
&- \eta_x([\eta_x(X_2) \xi_x, Y_1] + [X_1, \eta_x(Y_2) \xi_x]) + [\eta_x(X_1) \xi_x, \eta_x(Y_1) \xi_x] = 0.
\end{align*}
\]

Now, putting \(X_2 = Y_2 = 0 \) in (2.14) and (2.15) we obtain

(2.16) \[[f, f](X_1, Y_1) = 0, \]

(2.17) \[\eta_x([f X_1, Y_1] + [X_1, f Y_1]) \xi_x = 0. \]

Again putting \(X_1 = \xi_x \) and \(Y_1 = \xi_x \) in (2.17), we get

(2.18) \[[\xi_x, \xi_x] = 0. \]

Putting \(Y_1 = \xi_x \) in (2.16), we get

(2.19) \[f[X_1, \xi_x] = [f X_1, \xi_x]. \]

Taking account of (2.18), (2.17) can be written by

(2.20) \[\eta_x([f X_1, Y_1] + [X_1, f Y_1]) = 0. \]

Using (2.18), (2.19) and (2.20), the integrability conditions (2.14) and (2.15) are expressed as follows:

(2.21) \[[f, f](X_1, Y_1) - \eta_x([\eta_x(X_1) \xi_x, Y_2] + [X_2, \eta_x(Y_1) \xi_x]) \xi_x = 0, \]
Again putting $X_1 = \xi_x$ and $Y_1 = \xi_x$ in (2.21), we get
\begin{equation}
[\eta_x, [\xi_x, Y_2] + [X_2, \xi_x]] = 0.
\end{equation}
Similarly we obtain
\begin{equation}
[\eta_x, [\xi_x, Y_1] + [X_1, \xi_x]] = 0.
\end{equation}
Then (2.21) and (2.22) are written by
\begin{align*}
[f, f](X_1, Y_1) &= 0, \quad [f, f](X_2, Y_2) = 0,
\end{align*}
which shows that the pseudo-framed structure f is integrable.

3. Normal pseudo-framed structure

In the previous section, we have seen that the induced almost product structure J on $M \times R^{n-r}$ is defined by
\begin{equation}
J(X, \dot{X}) = (fX + \dot{X}) \xi_x, \quad \eta_x(X) d/dt^x
\end{equation}
for any vector field X on M and real-valued functions λ^x on R^{n-r}. We shall consider the case that the induced almost product structure J is integrable.

DEFINITION. If the induced almost product structure J on $M \times R^{n-r}$ is integrable, we say that the pseudo-framed structure (f, ξ_x, η_x) on M is normal.

Denoting by N^A_{BC} the components of the Nijenhuis tensor $[J, J]$ (X, Y), N^A_{BC} is given by
\begin{equation}
N^A_{BC} = J^E_{A \partial E} J^C_{E \partial D} J^B_{D \partial C} - J^E_{A \partial E} J^C_{E \partial D} J^B_{D \partial C} + J^E_{A \partial E} J^D_{C \partial D} J^B_{B \partial C} - J^E_{A \partial E} J^D_{C \partial D} J^B_{B \partial C},
\end{equation}
where the indices A, B, C, \cdots, run over the range \{1, 2, \cdots, 2n-r\}.

Considering the Nijenhuis tensor $[J, J]$ of J, they computed $[J, J](X + O, Y + O)$, $[J, J](X + O, O + d/dt^x)$ and
\begin{equation}
[J, J](O + d/dt^x, O + d/dt^x),
\end{equation}
which rise to five tensors given by
\begin{align*}
N^1(X, Y) &= N^{ij}_{jk} = [f, f](X, Y) + d\eta_x(X, Y) \xi_x, \\
N^2(X, Y) &= N^{ij}_{jk} = (L_f \eta_x)(Y) - (L_f \eta_x)(X), \\
N^3(X, U) &= N^{ij}_{ja} = (L_{\xi_x} f)(X), \\
N^4(X, U) &= N^{ij}_{ja} = -(L_{\xi_x} \eta_x)(X), \\
N^5(U, V) &= N^{ij}_{xy} = L_{\xi_x} \xi_y,
\end{align*}
for any vector fields X and Y on M and U, V on R^{n-r}, where L_X denotes the Lie derivative with respect to X. The pseudo-framed structure (f, ξ_x, η_x) is normal if and only if $N^1 = 0$, that is,
\begin{equation}
N^1(X, Y) = [f, f](X, Y) + d\eta_x(X, Y) \xi_x = 0.
\end{equation}
We see that the trivial pseudo-framed structure $(O, d/dt^x, d/dt^x)$ is normal. Now, we prove the following.

THEOREM 3.1. Let M and \overline{M} be manifolds with normal pseudo-framed
structures. Then the pseudo-framed structure of the product manifold $M \times \overline{M}$ is normal.

Proof. Let $M(f, \xi_x, \eta_x)$ and $\overline{M}(\overline{f}, \overline{\xi}_\alpha, \overline{\eta}_\alpha)$ be pseudo-framed manifolds of ranks r and \bar{r}, respectively. By Theorem 2.1 $M \times \overline{M}$ carries a pseudo-framed structure of rank $r + \bar{r}$ given by (2.4.). Then we compute

$$[F, F](X + \overline{X}, Y + \overline{Y}) = [F(X + \overline{X}), F(Y + \overline{Y})] - [F(X + \overline{X}), Y + \overline{Y}]$$

$$= [F(X + \overline{X}, F(Y + \overline{Y})] + F^2[X + \overline{X}, Y + \overline{Y}]$$

$$= [(f + \overline{f}, f + \overline{f}, f + \overline{f}, f + \overline{f} - f + \overline{f}, f + \overline{f}, f + \overline{f}), f + \overline{f}, f + \overline{f}]$$

$$= [F(X + \overline{X}, f Y + \overline{f} Y] + F^2[X + \overline{X}, Y + \overline{Y}]$$

$$= ([f X, f Y], [\overline{f} X, \overline{f} Y]) - ([f X, Y], [\overline{f} X, \overline{f} Y])$$

from which

(3.4) $[F, F] = ([f, f], [\overline{f}, \overline{f}]).$

Moreover

$$d\omega_A(X + \overline{X}, Y + \overline{Y}) E_A = \{(X + \overline{X}) \omega_A(Y + \overline{Y}) - (Y + \overline{Y}) \omega_A(X + \overline{X})$$

$$- \omega_A([X + \overline{X}, Y + \overline{Y}])\} E_A$$

$$= (X \eta_x(Y) - Y \eta_x(X) - \eta_x([X, Y]) \xi_x$$

$$+ (\overline{X} \overline{\eta}_\alpha(Y) - \overline{Y} \overline{\eta}_\alpha(X) - \overline{\eta}_\alpha([\overline{X}, \overline{Y}]) \overline{\xi}_\alpha,$$

from which

(3.5) $d\omega_A \otimes E_A = (d\eta_x \otimes \xi_x, d\overline{\eta}_\alpha \otimes \overline{\xi}_\alpha).$

From (3.4) and (3.5) we get

(3.6) $N^1(F) = (N^1(f), N^1(\overline{f})),$

which shows that $M \times \overline{M}$ has a normal pseudo-framed structure.

Lemma 3.2. If a pseudo-framed structure (f, ξ_x, η_x) is normal on M, then we have

1. $d\eta_x(X, \xi_y) = 0,$
2. $[\xi_x, \xi_y] = 0,$
3. $f[X, \xi_x] = [f X, \xi_x],$
4. $d\eta_x(f X, Y) - d\eta_x(X, f Y) = 0.$

Proof. Putting $Y = \xi_y$ in (3.3), we get

(3.7) $- f[f X, \xi_y] + f^2[X, \xi_y] + d\eta_x(X, \xi_y) \xi_x = 0.$

Taking the inner product of the left hand side of the equation by ξ_x, we obtain

(3.8) $d\eta_x(X, \xi_y) = 0.$

Secondly, Putting $X = \xi_x$ and $Y = \xi_y$ in (3.3), and using (3.8) we get

(3.9) $[\xi_x, \xi_y] = 0.$

Thirdly, from (3.7) and (3.8) we get
\[(3.10)\quad f[X, \xi] = f^q[fX, \xi] - [fX, \xi] - \eta_x([fX, \xi]) \xi_x = [fX, \xi],\]

with the help of (3.8). Fourthly, Putting \(Y = fY\) in (3.3), we get
\[
[fX, f^2Y] - f[fX, fY] - [fX, f^2Y] + f^2[X, f Y] + d\eta_x(X, f Z) \xi_y = 0,
\]
from which, taking the inner product of the last equation by \(\xi_x\)
\[
\eta_x([fX, f^2Y]) + d\eta_x(X, f Y) = 0,
\]
or
\[(3.11)\quad \eta_x([fX, Y]) - fX(\eta_x(Y)) + d\eta_x(X, f Y) = 0.
\]
On the other hand, by the definition of \(d\eta_x\) we get
\[(3.12)\quad fX(\eta_x(Y)) - Y(\eta_x(fX)) - \eta_x([fX, Y]) - d\eta_x(fX, Y) = 0.
\]
Adding the last two equations we have
\[(3.13)\quad d\eta_x(X, f Y) - d\eta_x(fX, Y) = 0.
\]
By the definition of Lie derivative, (1), (2), (3) and (4) are equivalent to \(N^2 = 0\), \(N^5 = 0\), \(N^3 = 0\) and \(N^2 = 0\), respectively.
Thus we have also the following (cf. [11]): If a pseudo-framed structure is normal, that is, \(N^1 = 0\), then we have
\[
N^2 = N^3 = N^4 = N^5 = 0.
\]

Finally, we prove the following.

Theorem 3.3. Let \(M(f, \xi, \eta)\) be a manifold with normal pseudo-framed structure of rank \(r\). If \(f\) and \(\eta\) are Killing tensors, the structure tensors \(f\), \(\xi\) and \(\eta\) are covariantly constant, that is,
\[
\nabla_X \xi = 0, \quad \nabla_X \eta = 0.
\]

Proof. Since \(\eta\) are Killing forms we get
\[
(\nabla_X \eta) (Y) + (\nabla_Y \eta) (X) = 0,
\]
from which
\[(3.14)\quad d\eta_x(X, Y) = -2(\nabla_Y \eta)(X) - 2g(X, \eta_x(Y)).
\]
By the normality \(N^3\) vanishes identically, that is, \(L_\xi f = 0\), and hence we get
\[
(L_\xi F)(X, Y) = (L_\xi g)(X, f Y) = 0,
\]
from which
\[
(\nabla_\xi F)(X, Y) = (\nabla_X F)(Y, \xi) + (\nabla_Y F)(X, \xi).
\]
Since \(F\) is a Killing tensor, we get
\[(3.15)\quad (\nabla_\xi F)(X, Y) = 0.
\]
Since \(f\) is a Killing tensor, by the normality \(N^3 = 0\), we get
\[
0 = (\nabla_\xi f)(X) - (\nabla_X f)(\xi) = (\nabla_X \xi)(f) = (\nabla_X \xi)(f).
\]
Hence if \(X\) is orthogonal to \(\xi_x\), then we can put \(X = fZ\) for some \(Z\) and we obtain
\[
d\eta_x(X, Y) = -2g(X, \eta_x(Y)) = -2g(fZ, \eta_x(Y)) = -2g(Z, f(\nabla_Y \xi))(Y, \eta_x(Y)) = 0.
\]
Thus, from (3.8) we have
\[(3.16)\quad d\eta_x = 0.
\]
A certain polynomial structure

From (3.14) we get

\[\mathcal{V}_x \eta_x = 0, \]

from which

\[\mathcal{V}_x \xi_x = 0. \]

On the other hand, by the normality and (3.16) we get

\[(\mathcal{V}_f X f) Y - (\mathcal{V}_x f) X - f(\mathcal{V}_x f) X + f(\mathcal{V}_y f) X = 0. \]

Since \(f \) is a Killing tensor, we get

\[- (\mathcal{V}_Y f) X + (\mathcal{V}_y X f) Y - 2 f(\mathcal{V}_x f) Y \]

\[= - (\mathcal{V}_f X f) + f(\mathcal{V}_x f) X + (\mathcal{V}_x f) Y - f(\mathcal{V}_x f) Y - 2 f(\mathcal{V}_x f) Y = 0, \]

from which \(f(\mathcal{V}_x f) Y = 0. \)

Applying \(f \) to the last equation, we get

\[(\mathcal{V}_x f) Y - \eta_x((\mathcal{V}_x f) Y) \xi_x = 0, \]

from which we have

\[\mathcal{V}_x f = 0. \]

References

8. K. Matsumoto, *On a structure defined by a tensor field f of type (1,1) satisfying f^2−f=0*, Bull. Yamagata Univ., 1(1976), 33–47.
11. I. Sato, *On a structure similar to almost contact structures*, Tensor, N.S., 30(1976), 219–224

Busan National University