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INFINITESIMAL VARIATIONS OF INVARIANT
HYPERSURFACE OF A P-SASAKIAN MANIFOLD

By Koz MATSUMOTO

0. Introduction .

An infinitesimal variation of an invariant submanifold of a Sasakian manifold
which carries it into an invariant submanifold is said to be invariant. An
infinitesimal variation is said to be f-preserving when it is invariant and
preserves the induced tensor field f;7 of type (1,1) on the invariant submani-
fold of a Sasakian manifold ([5]). K. Yano, U-H.Ki and J.S.Pak ([5])
proved that an infinitesimal fibre-preserving invariant conformal variation of a
compact orientable invariant submanifold of a Sasakian manifold is necessarily
f-preserving. '

The main purpose of the present paper is to study infinitesimal variations
of invariant hypersurfaces of a P-Sasakian manifold and to prove theorems
analogous to those proved in [5].

In preliminary §1 we state some properties of invariant hypersurfaces of a
P-Sasakian manifold. In §2, we derive fundamental formulas in the theory
of infinitesimal variations and study invariant variations of hypersurfaces of
a P-Sasakian manifold. In §3, we shall define f—preserving variations of
invariant hypersurfaces of a P-Sasakian manifold. In the last §4, we shall
study invariant conformal variations and prove that an invariant conformal
fibre-preserving variation of a compact orientable hypersurface of a P-Sasakian
manifold is necessarily isometric and hence f-preserving (see Theorem 4. 3).

Throughout this paper, we assume that manifolds are orientable and every
geometric object is differentiable.

1. Invariant hypersurfaces of a P-Sasakian manifold .

Let M* be an n-dimensional P-Sasakian manifold covered by a system of
coordinate neighbourhoods {U, z%} and (¢4 &% ;, £,2) the set of the structure
tensors of M", where here and in the sequel, the indices v, g, ... , A run over
the range{l, 2,...,2}. Then we have by definition

Tg; 1—g 1_1,] 7 7]745 =()
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( ) { ¢T T=0’ ﬂ'f 7'—:_:1
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1.3 V7 5= (=gt ) S (—85+ 7697,
where ¢,/=V &, 7,=g,£" and the operator I/, is the covariant differen-
tiation with respect to g,; ([3]).

Let M*»t be an (n—1)-dimensional Riemannian manifold covered by a
system of coordinate neighbourhoods {V, 59} and isometrically immersed in
M" by the immersion [ : M*!— Mr, where here and in the sequel, the
indices &,7, ..., A run over the range {1,2,...,n—1}. We identify (M=)
with M * 1 and represent the immersion by z'=2z1(y?). If we put B=0;2*
(0;=9/y"), then B are n—1 linearly independent vectors of M?” tangent to
M~-'. Denoting by g;; the Riemannian metric of M*~! we have g;;=g..B;*B/
since the immersion is isometric. We denote C* a unit normal to M*L

The van der Waerden-Bortolotti covariant derivatives of B and C* are
respectively given by

V,—B,—‘=8jB,~‘+1’,’7,,Bj’B,J'—I"J-",-B,,i,

¥ Ci=d,C*+ I ,B,Cr,
and the equation of Gauss and Weingarten are respectively
(1.4) V;BA=h;C?, V;C*=—hiB#,
where I, and I'j*; are the Christoffel symbols formed with g,; and gj;
respectively and k;; denote the components of the second fundamental tensor
of M»1 and kf=hjg*, g% being contravariant components of the metric
tensor of M*L

A hypersurface M*! is called an invariant hypersurface of a P-Sasakian
manifold M=* if the tangent space at each point of M*! is invariant under
the action of ¢, Thus for an invariant hypersurface M*~1, we have
1.5 6By —f B3 $,/Cr=0Ck
f; being a tensor field of type (1,1) and 8 a scalar field of M*"1.

On the other hand, we put
(1.6) S~fiB -+ uCA,
where f7 and x are a vector field and a scalar field of M»~! respectively.

Now applying the operator ¢;* to the first equation of (1.5) and using
(1.1) and (1.6), we have
1.7 Fifii=6i~fif%  ufi=0,
where f;=f%g;;. Applying the operator ¢y’ to the second equation of (1.5)
and using (1.1) and (1.6), we get

1.8) fifi=1—p2,  p+6=1
Transvecting (1.5) with 7, and taking account of (1.5), we find
(1' 9) fj’.f;=09 W=O.

By virtue of the second equation of (1.7) and (1.8), we have
(1.10) p(1—%) =0.
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In the sequel, we consider the case of x¢=0, that is the P-Sasakian struc-
ture vector &2 is tangent to the hypersurface. Then (1.6) and (1.8) can
be written as

(1. 11) Sl=fiB,';{,

(1.12) fifi=1,

respectively.

Also transvecting (1.2) with B;B/?, we get
(1.13) gufift=g;i—7fifi.

Next, differentiating the first equation of (1.5) covariantly along M*~1, we
can find

(1.14) Vifi=(—gsj+ fufy) i+ (—0¢+ fif®) fj
(1. 15) fjlhl,'=hji -

We have from (1.15)

(1.16) fihi=fihy;,

that is, the tensor field f;/h;; is symmetric with respect to the indices j and i.
Differentiating the second equation of (1.5) covariantly along M®! and
taking account of x£=0, (1.5) and (1.15), we have

1.17) 0=1.

Also differentiating (1.12) covariantly along M*1, we get
(1.18) Vifi=fi,

(1.19) hj; f=0.

Thus from (1.7), (1.9), (1.12), (1.13), (1.14) and (1.18), we have

PROPOSITION 1.1. Let M™! be an invariant hypersurface of a P-Sasakian
manifold M?", then the tensor field (fj, f%, fi gji) is @ P-Sasakian structure
on M*1,

It is known that on a P-Sasakian manifold M*-! the following identity
is valid ([17):

(1. 20) Kip—K;mii f™ fri= (a—3) g jn— 2n—5)f; fo—F Fir»
where K;;;* and K;; denote the curvature tensor and the Ricci tensor with
respect to g;; respectively and f=f;=trace(f;’)

2. Invariant variations of invariant hypersurfaces

Let M ! be an (n—1)-dimensional invariant hypersurface of an n-dimen-
sional P-Sasakian manifold M”. We consider an infinitesimal variation of
M=1 in M* given by

@ P=22+v(y)e,
where ¢ is an infinitesimal. Putting B;*=0;7%, we have
(2.2) BA=Bi+ (@Y,

which are n—1 linearly independent vectors tangent to the varied hypersurface
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at (z¥). We displace B back parallely from (7% to («®) and put them B,
then we have A
E,‘Zzﬁil“‘lv,,ly :z:—{-*bE)v”E,-“s .
Thus putting 6B;*=B*— B, we obtain

(2.3) 0B =V v9e,
neglecting terms of order higher than one with respect to &, where
(2- 4) V ,-v‘=3,—v‘+[’ ”I”Bivvu_

Hereafter, we always neglect terms of order higher than one with respect
to ¢.

On the other hand, if we put
(2.5) v*=vBtaC?,
v’ and «a being a vector field and a scalar field of M* ! respectively, (2.4)
can be written as

(2. 6) Vj?)x = (Vjv"—-ahj") B,‘Z“l‘ (V,a-l—hj,-v‘) C3,
Substituting (2.6) in (2.3), we have
:(2. 7) 5Bj‘=[:(l7jvi——ahji) Bil—l“ (V,a-ljhj,-v") Clj-

We now assume that the infinitesimal variation (2.1) carries an invariant
hypersurface into an invariant hypersurface and call such a variation an
infinitesimal invariant variation. For an infinitesimal invariant variation,
$,(z+ve) Bj* are linear combination of B;* and vice versa.

Now we can show that
@28) ¢+ Br=[d2 40 Ob DB+ Ph)e]
| Lt i o —ab ) —f (o —ahs)

— (o fi+f =20 f1f;FHVEIBA — {ff Wia+hyof) +af;} Cle.
where C* denotes a unit normal to the varied hypersurface and v;=v*gy;.
Thus using (1.15) and (2.8), we have

THEOREM 2. 1. Iz order for an infinitesimal variation of an invariaat

hypersurface of a P-Sasakian manifeld te be invariant it is mnecessary and
sufficient that

2.9 FEW i+ hyo®) +af ;=0
or i
(2. 10) f;lV 10!+ h,-;v’=0.

Transvecting (2.9) with % and using (1.9) and (1.13), we have
(2.11) a=0,
Thus we have

THEOREM 2.2. If an infinitesimal variation of an invariant hypersurface of
a P-Sasakian manifold is invariant, then the in finitesimal variation is tangen-
tial.
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. When the tangent space at a point (z*) of a hypersurface and that at the
corresponding point (#?) of the varied hypersurface are always parellel, the

variation is said to be parallel ([5]). The following lemma was proved by
K. Yano: _

LEMMA 2.3 ((4]). In order for an infinitesimal variation (2.1) of a
hypersurface to be parallel, it is necessary and sufficient that
(2. 12) Vjtx-i—hj;vi:O.

Thus we have from Theorem 2.1 and Lemma 2.3

COROLLARY 2.4. In order for ainfinitesimal parallel variation of an invariant
hypersurface of a P-Sasakian manifold to be invariant, it is necessary and
sufficient that the variation is tangential.

Next, applying the operator d to gj;=g,.B;*B;* and taking account of g,
=0 and (2.7), we have

2.13) 0gji= WV jui+V0;—2ahy;) e,
from which
2.14) Ogii=— (Vivi+Vivi —2ahii)e.

An infinitesimal variation for which dg;;=0 is sald to be isometric ([4]).
We put

(2, 15) f}hi= (BJ-E,-‘I—}—IT,,"# (x—l—ve) Ejin“) Ehz
and
(2-16) 5[1] ;_I'Jz FJ i

where I';*; denote the Christoffel symbols of the varied hypersurface. Then
we can find by straightfoward computation
2.17) oI #;,=[ (V¥ iv*+ Ko, v° B Bi#) B+ hj; Tha4-ho') ],
where K,,* is the curvature tensor with respect to g,;. By virtue of the
equations of Gauss and Codazzi, (2.5) and (2.6), (2.17) can be written as
(2.18) oI ;=L (77 "+ Kyjitot) e— (7 (ahy) +7 i (ahj) —F i (ak;;)} gthe.
An infinitesimal variation for which 07';%,=0 is said to be affine.
Since an infinitesimal isometric variation is affine, for an infinitesimal
isometric variation, we have from (2.18)
(2.19) ViV iont+ Kijio*— (ki) + 7 (akj) —Vi(ah;)} =
from which
(2.20) 7y jo;+ Kot — 25 ; (ak) — 7 (ak)} =0,
where h=trace (h;%). :
Substituting (1.20) in (2.20), we have
(2.21) Vi joi+ {Kpsmf 5f -+ (n—3) gai— (2n—5) fofi—ffu} o*
— 27 (ak?) —p:(ah)} =0.

Thus we have
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THEOREM 2.4. If an infinitesimal variation (2.1) of an invariant hypersur-
face of a P-Sasakian manifold is isometric, then (2.21) is valid.

3. Infinitesimal F-preserving variations.

Let an infinitesimal variation (2.1) be invariant and put

3-1) ¢,* (z+ve) B#= (F++3F2) Bid.

Then, by virtue of (2.8) and (3.1), we have

(3-2) of F={fitv ' — FilVrt+20 fififr—vif— fivt}e.

An infinitesimal invariant variation for which Jf;/=0 is said to be f-preserv-
ing.

From (2.10) and (3.2), we have

THEOREM 3.1. In order for an infinitesimal variation (2.1) of an invariant
hypersurface of a P-Sasakian manifold to be f—preserving, it is necessary and
sufficient that the variation satisfies (2.10) and

3.3) YA — F b+ 20 £ fi fh—v; fR— fieh=0
or equivalently
3.4 0(v)f#=0,

where 0(v) denotes the Lie derivative with respect to v'.

Now, applying the operator 6 to f/#/7=0 and using (3.2), we can find

(3.5) 0 fh=(0(0) f-+BfP)e
for a certain scalar field 8 on M*"1, On the other hand, applying the
operator d to gj; f7 fi=1—p? and the second equation of (1.7), we respectively
have

(0g;) 1 fi+2g;:(0f7) fi=—2pdp
and

(0g) fit1d fi=0.
From the above two equations, (1.8), (1.20) and (2.13), if the P-Sasakian
structure vector & is tangent to M*1, that is, #=0, we have

O g;0) f1 Fi+2g;:(0f)fi =0, ou=0.
Substituting (3.5) in the first equation of the above equation, we get 8=0.
Thus we have

(3.6) oft=0() fPe.
Next, we define a tensor field T;; by
3.7 T;i=V0i—f} F*Vo—ofl fi+ofifi

Then we now prove

THEOREM 3.2. In order for an infinitesimal isometric invariant variation
(2.1) of an invariant hypersurface of a P-Sasakian manifold to be f-preserving,
it is necessary and sufficient that T;;=0.
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Proof. Suppose that an infinitesimal variation of an invariant hypersurface
is f-preserving. Then by Theorem 3.1, we have (3.3). Transvecting (3.3)
with f3/, we get
(3.8 Vivi— fif'Wio— i fAVm— fiofi#=0.

Substituting (3.8) into (3.7), we have

(3.9) Tji=vfifit fif'Wio-

Transvecting (3.8) with f7, we get fiyv;=—v,

Thus we have from the above equation and (3.9) T;;=0.

Conversely, we assume that T;=0. Then we have

Vo' — i fiv ot —o fi fi+o ff Fi=0.
Transvecting the above equation with f;* and f/, we respectively have
B.10) At — fiPot+ R if Wt —ot f; - i f; £ =0,
(3.11) W=7 fi.

On the other hand, since the infinitesimal variation is isometric, we have
from (3.11)

(3.12) fWor=—3fy.
Substituting (3.12) in (3.10), we find df;7=0.

Next, we shall prove

LEMMA 3.3. For an infinitesimal isometric invariant variation (2.1) of an
invariant hypersurface of a P-Sasakian manifold, we have

(3.13) T+ T;=0,
(3.14) T+ f fETu= 0@ f:i— f0@)fj
(3.15) T;; TH#=2T7p ju;+2(0 (v) £) @ (0) ).

Proof. By the definition of Tj;, (3.13) is clear.

Next, we have
Tufi fE=—Voit F Vot Fi0 fri— o' fi;+ £ (0) f;—F 0 () fa
where we used the identity f!F;v;=0(v) f;—v' fij.
Thus, using (3.7) and the above equation, we have (3.14).
Finally, from (3.7), (3.13) and (3.14), we have
TiT;=2T 3 jo;— (fl @) fe—F 0 () fO VA —o fH (T f) +o fH(TH ).
Transvecting (3.7) withf;, we get
Tii f;=—8(0) fi.
So we obtain '
THT;=2T%F 0;+2g4 f1 (0 (v) FOH7*+20 (v) ) o fi. :
Substituting g f vt =0(v) f;—v* f1; into the above equation, we get (3.15).
Next, applying the operator [/ to (3.7) and taking account of (1.14),
we have ‘
ViT;=Vivit f firmost (n—3) fEf v
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— FEFY W ro— fofi+vi— (a—Dv fif;.
Since an infinitesimal isometric variation is affine, substituting (2.19) with
a=0 into the above equation and using (1.20) and (2.20) with a=0, we
obtain »
(3.16) WiT;)v=m—) {fEfYVm—vo+ (o f)% .
Thus we have from (3.15) and the above equation
B.17)  Pi(T;v) = (a—) {f# floVro—vio'+ (v, )
+ L THT;— 0) £ 0(0) £
Now, an infinitesimal variation which satisfies () fi=zfi, < being a

certain scalar field on M”! is said to be fibre-preserving. Thus, if an
infinitesimal isometric invariant variation is fibre-preserving, we get 8(v)g;;
=0 and 0(v) fi=tfi
Furthermore we get
6(v) £;=0(v) (fig;) =0 g+ fI0(v) gji=rf;.
Apllying the operator 8(v) to f;fi=1, we get r=0.
Hence we have
THEOREM 3.4. For an infinitesimal isometric invarient variation of an
invariant hypersurface of a P-Sasakian manifold, if the -variation is fibre-
preserving, then we have
3.18) 0 (v) fi=0,
that is, the vector field v* is a strict paraconmtact vector field defired in [2].
Next, since
0() fii=—v;fi—o' [;+2f fi fi— o'+ Fii7 o
we get
(3.19) O ) ;) fi=—v'+ fidd fi+ fi .
Thus, for an infinitesimal isometric invariant fibre-preserving variaticn, we

have from (3.18) and (3.19)
Vi(T;w') ='%'Tji7}i ’
from which, if the hypersurface is compact orientable, we have
[anr (T Tpav—0,
dV being the volume element of M"-1, Thus we have
THEOREM 3.5. If an infinitesimal isometric imvariant variation of a compact
orientable invariant hypersurface of a P-Sasakian manifold is fibre—preserving,
then it is f—preserving.
4. Infinitesimal conformal variations

An infinitesimal variation of a hypersurface for which dg;; is proportional
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to g;; is said to be conformal. A necessary and sufficient condition for an
infinitesimal variation (2.1) of an invariant hypersurface of a P-Sasakian
manifold to be conformal is

4.1 Vvi+Vio;—2ah;;=22gj;
where

1 .
4.2) 2=n—_'i" (Vj'vl——ah).

Now, we assume that an infinitesimal variation is a conformal invariant
variation. Then we have from (2.11) and (4.1)
4.3) Vivi+Vvj=2gj; -
We define a tensor field T; by
4.9 T;i=V i~} FEWmon) —f F*Wrow) £ifi— fifio+ fif o

Next Theorem and Lemma will be proved in the same way as in proofs
of Theorem 3.2 and Lemma 3.3. So we omit their proofs.

THEOREM 4.1. In order for an infinitesimal conformal invariant wariation
(2.1) of an invariant hypersurface of a P-Sasakian manifold to be f-pr-
eserving, it is necessary and sufficient that the tensor field '.T'J-,- defined by (4.
4) wvanishes identically.

LEMMA 4. 2. For an infinitesimal conformal invariant variation of an invariant
hypersurface of a P-Sasakian manifold, we have
(4- 5) Tji + T,‘j=0,
(4.6) T;+Tufiflt=rb@) fi— P fa
4.7 T#T;=2T7F 0,+20 () f;) @ (v) f)
+4 0 (v) f1) Fi*—221'0(v) fi-

For an infinitesimal conformal variation, we have from (4.1)

4.8) V¥ on—Kajotr =g+ Aighi+ i »
from which
4.9 7y jop+ Kot =— (2—3) A,

where we put A;,=03A.
Now applying the operator [/ to (4.4), we find
ViT ;=077 joit+ Kejuo' f f#— 22,8 7 f# 4 fAf -+ (0 —2) F1(Prow) £
+ FEWrop) 1+ Wrop) i~V (Af;f) — Ffio—F fiv;m
+v;— (a—1) flogfi+Affi-
Substituting (1.21) in the above equation and taking account of (4.1) and
the identity ,
FrPro) f#= 0 (v) fE—vit flufi,
we have
VjTji=VjVj7J£+ K i —=22; 24, f fi+ fAp fE— (n—4) 0 (v) f1) f}
+2Af Fi—Vi(fif)- '
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Furthermore, substituting (4.9) in the above equation, we get
ViTji=— (a—D A4+ 24 f1 fi+-fA f i — (n—4) 0 () f1) f.’+21ff,
—VIAf;f)-
Since
ViQf;f) =4 fi+ A1,
the above equation can be written as
VT ;i=— (a—DA+VIQASi £+ fAfi— (n—4) 0 () f) fi
Substituting fA4 f#=fVi(Af;) + (n—2)Af f; into the above equation, we have
(4.10) pi(T;i+ (r—1)Ag;;i—Af; fi+Af F;:) = (a—2)Af fi— (n—4) O () f1) fi-
By virtue of (4.7) and (4.10), we obtain
(4.11) VIA(T ji+ (n—1) Agji—Af; fi— Af F3:) 7'}
= (1—2) Uf fim O) £) fA v+ ST T ;= O@) £) O (o) )
+A1%(v) fit+ (n—1)282—22(1—f?).
Next, we assume that our variation is fibre-preserving. Then it follows
from 0(v)g;;=24g;; that
O fi=fi O@fi=—2F
Substituting the above equations in (4.11), we have

4.13) V(T4 (n—1) Ag;;i— Af; fi—Af f) 0
= (=D Af fr+ FTHT ot {l—f2+ (a—1)F 2
On the other hand, by virtue of (4.2) With a=(, we have
(n—Z)fozv"" (V,v)fffa = {7’ (ff'v;) — foib(v) £}

= _1 {VJ,(ff.-v'vj)—lfv,-ff}-

Thus we have

(4.19) (n—2)Af fivi="2 V’(ffm‘v,)

Substituting (4.14) in (4.13), we obtam

(4. 15) 7i{(T i+ (n—1) g~ fo_;fz Affii— f‘v,f;)'o'}

=TT+ U=+ (a—1)3 2.

Thus if the hypersurface is compact orientable, we have
(4.16) |LL3 TT 5+ s+ e—D)3 A v—o.
On the other hand, in a P-Sasakian hypersurface M"1 we can easily

show that f2<(n—1)%
So we have from (4.16) T;;=0 and 1=0.
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Thus we have

THEOREM 4.3. If an infinitesimal conformal invariant variation of a compact
orientable hypersurface of a P-Sasakian manifold is fibre—preserving, then it
is isometric and hence f—preserving.
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