§ 0. Introduction

In recent years, Sato ([1]) has introduced \(P \)-Sasakian structure (or normal paracontact Riemannian structure) and a number of authors has studied some characteristic properties of a \(P \)-Sasakian manifold ([1], [2], [3]).

On the other hand, many authors have studied infinitesimal variations of submanifold of Riemannian and Kaehlerian manifold. Moreover K. Yano, U-Hang Ki and J.S. Pak ([6]) proved that an infinitesimal fibre-preserving invariant conformal variation of a compact orientable invariant submanifold of a Sasakian manifold is necessarily \(f \)-preserving, where \(f \)-preserving means that it is invariant and it preserves the induced tensor field \(f^a_b \) of type \((1, 1)\) on the invariant submanifold of a Sasakian manifold. And K. Matsumoto has proved theorems analogous to those proved in ([6]) in the invariant hypersurfaces of a \(P \)-Sasakian manifold.

The purpose of the present paper is to study infinitesimal variations of a compact orientable submanifold of a \(P \)-Sasakian manifold and to prove theorems analogous to those proved in ([4], [6]). Thanks are due to Professor U-Hang Ki for his invaluable advice.

§ 1. Preliminaries

Let \(M^n \) be a \(n \)-dimensional \(P \)-Sasakian manifold covered by a system of coordinate neighborhoods \{\(U; x^h \}\) and \(g_{ij} \) be the Riemannian metric where and in the sequel the indices \(h, i, j, \ldots \) run over the range \{1, 2, ..., \(n \)\}.

Then we have

\[
(1.1) \quad \nabla_j f_i - \nabla_i f_j = 0,
\]

\[
(1.2) \quad \nabla_k \nabla_j f_i = (-g_{kj} + f_k f_i) f_j + (-g_{kj} + f_k f_j) f_i,
\]

\(f^i \) being a unit vector field of \(M^n \) and \(f_i = f^j g_{ji} \) ([1], [2], [3]), where \(\nabla_j \) denotes the Levi-Civita covariant differentiation. Now if we put

\[
(1.3) \quad f^j = \nabla_j f^i
\]

Received May 10, 1980
then we have

\[f_j f^i = 1, \quad f^i f_j = 0, \quad f_i f_j = 0, \]

\[f^i_j f^h = \delta^i_j f^h, \]

\[f^i_{ji} = f^i_j (f^i_j = g_{ij} f^i), \]

and

\[g_{ij} f^i_j f^i = g_{ji} - f^i_j f^i. \]

Then we can easily obtain

\[K^i_{ji} f^i = g_{ki} f_{ij} - g_{ij} f_k, \]

\[K^i_{ij} f^i = -(n-1) f_{ij}, \]

\[K^i_{ji} f^i = K^i_{it} f^i, \]

where \(K^i_{ji} \) and \(K_{ij} \) are respectively the curvature tensor and the Ricci tensor with respect to \(g_{ij} \). \(\overline{\partial} \) is defined as \(\overline{\partial} = f_{ij} g^{ij} \) \([3]\).

Let \(M^m \) be a \(m \)-dimensional Riemannian manifold isometrically immersed in \(M^n \) by the isometric immersion \(i : M^m \rightarrow M^n \) and covered by the local coordinate system \(\{ \nu; y^a \} \). We identify \(\rho \in M^m \) with \(i(\rho) \in M^n \) and the tangent space \(T_p M^m \) with a subspace of \(T_p M^n \). In terms of local coordinates \((y^a) \) of \(M^m \) and \((x^h) \) of \(M^n \) the immersion \(i \) is locally expressed by \(x^h = x^h(y^a) \).

If we put \(B^i_a = \partial_a x^i \), \(\partial_a = \partial / \partial y^a \), then \(B^i_a \) are \(m \)-linearly independent vectors of \(M^n \) tangent to \(M^m \). Denote by \(g_{ba} \) the Riemannian metric tensor of \(M^n \), we have

\[g_{cb} = B^i_c B^i_b g_{ji} \]

because the immersion is isometric.

We denote by \(C_{ab}^c \) \((n-m)\) mutually unit normals to \(M^m \). Then the metric tensor of the normal bundle of \(M^m \) is given by \(g_{yx} = C_{ac}^i C_{cd}^j = \delta_{xy}, \delta_{yx} \) denoting the Kronecker delta. The systems of indices \(a, b, c, \ldots \) and \(x, y, z, \ldots \) run over the ranges \(\{ 1, 2, \ldots, m \} \) and \(\{ m+1, \ldots, n \} \) respectively and the summation convention will be used with respect to these indices.

Let \(h^{a}_{bc} \) be second fundamental tensors of \(M^m \). Then we have the following Gauss and Weingarten equations

\[V_b B^i_a = h^{a}_{bc} C^i_x, \quad V_b C^i_x = -h^{a}_{bc} B^i_a \]

\(V_b \) being the so-called van der Waerden-Bortolotti covariant differentiation and \(h^{a}_{bc} = h_{ac}^b g^{ea} g_{yx}, \) where \(V_b B^i_a, V_b C^i_x \) are

\[V_b B^i_a = \partial_b B^i_a - \left\{ \begin{array}{c} c \\ a \end{array} \right\} B^i_c + \left\{ \begin{array}{c} i \\ j \end{array} \right\} B^i_j B^j_a, \]

\[V_b C^i_x = \partial_b C^i_x + \left\{ \begin{array}{c} i \\ j \end{array} \right\} B^j_i C^j_x - \Gamma^i_{y x} C^i_x \]
and }{\begin{pmatrix} i \\ j \\ k \end{pmatrix}}\) and \(\left\{\begin{pmatrix} a \\ b \\ c \end{pmatrix}\right\}\) are the Christoffel's symbols formed with \(g_{ji}\) and \(g_{cb}\) respectively and \(\Gamma_{y}^{x}z\) are the components of the connection induced on the normal bundle of \(M^m\) from the Riemannian connection \(\nabla\) of \(M^n\), that is,

\[
\Gamma_{y}^{x}z = \left(\partial_{b}C_{z}^{i} + \left\{\begin{pmatrix} i \\ j \\ k \end{pmatrix}\right\}B_{j}^{i}C_{z}^{k}\right)C_{y,i}, C_{y,i} = C_{z}^{h}g^{xy}g_{hi}.
\]

Denoting \(K_{dcba}\) and \(K_{dcyx}\) the curvature tensors of \(M^m\) and of the normal bundle of \(M^m\), we have the following structure equations of Gauss, Codazzi and Ricci respectively:

(1.13) \(K_{dcba} = K_{bj}^{h}b^{i}B_{d}^{j}B_{j}^{e}B_{h}^{i} + h_{d}^{a}h_{b}^{z} - h_{c}^{x}h_{d}^{x},\)

(1.14) \(0 = K_{bj}^{h}b^{i}B_{j}^{i}B_{c}^{a} - (\nabla_{c}h_{ba}^{x} - \nabla_{b}h_{ca}^{x}),\)

and

(1.15) \(K_{dcyx} = K_{bj}^{h}b^{i}B_{d}^{j}B_{c}^{y}C_{y}^{z} + h_{d}^{x}h_{c}^{e}h_{y}^{x} - h_{c}^{e}h_{d}^{e}h_{y}^{y}.\)

A \(m\)-dimensional submanifold \(M^m\) of \(M^n\) is called invariant (or an invariant submanifold) when each tangent space of \(M^m\) is invariant under the action of \(f_{ji}\). Hence in this case, we can put

(1.16) \(f_{b}^{j}b^{i} = f_{b}^{a}b_{a}^{i}, f_{j}^{i}C_{z}^{j} = f_{z}^{y}C_{y}^{i},\)

\(f_{b}^{a}\) and \(f_{y}^{x}\) being tensor fields of type \((1,1)\) of \(M^m\) and the normal bundle of \(M^m\) respectively. Putting \(f_{ba} = f_{a}^{b}g_{za}^{a}, f_{yz} = f_{y}^{x}g_{zx}^{x}\), we have

\(f_{ba} = f_{ab}, f_{yz} = f_{xy}.\)

On the other hand, we put

(1.17) \(f_{i}^{a} = f_{a}^{b}B_{a}^{i} + f_{y}^{x}C_{x}^{i}.\)

Transvecting the equations of (1.16) with \(f_{ji}\) and making use of (1.5), (1.16) and (1.17), we have

(1.18) \(f_{b}^{a}f_{a}^{z} = \partial b^{z} - f_{b}f_{a}^{z}, f_{b}f_{a} = 0,\)

(1.19) \(f_{a}f_{a}^{x} = \partial a^{x} - f_{a}f_{a}^{x}.\)

And now from (1.4) we have

(1.20) \(f_{a}f_{a}^{x} + f_{a}f_{a}^{z} = 1,\)

(1.21) \(f_{a}^{a}f_{a}^{b} = 0, f_{a}^{a}f_{a}^{z} = 0.\)

Differentiating covariantly the equations of (1.16) and making use of (1.2), (1.12), (1.16), (1.17) and (1.18), we have

(1.22) \(\Delta_{f}f_{a}^{b} = (\partial f_{b}^{z} + f_{b}f_{a}^{z} - f_{e}f_{a}^{e}) + f_{c}f_{d}^{a}f_{b}^{c} + f_{b}f_{a}^{z},\)

(1.23) \(h_{c}^{a}f_{b}^{a} = h_{cb}^{y}f_{y}^{x} - g_{cb}f^{x},\)

(1.24) \(\nabla_{c}f_{a}^{z} = 0.\)

Finally differentiating covariantly the equation (1.17) and making use of (1.3), (1.12) and (1.16), we can obtain

(1.25) \(\nabla_{b}f_{a}^{a} = f_{b}^{a} + f_{b}^{z}h_{a}^{x},\)

(1.26) \(\nabla_{b}f_{a}^{z} = -f_{a}^{b}h_{a}^{x}.\)
From the last equation of (1.18) and (1.20), we can see that there exist only two cases: (1) $f^x=0$ or (2) $f_b=0$.

(1) In case $f^x=0$, that is,
the P-Sasakian structure vector f^i of the ambient manifold M^n is tangent
normal to the submanifold M^m.

$$(1.18) \sim (1.26)$$ reduce

(1.27)	(1.27)'
$f_b^a f_a^x = \delta^a_b f^x$	$f_b^a f_a^x = \delta^a_b$
(1.28)	(1.28)'
$f_b^a f_a^x f^y = \delta^a_b f^y$	$f_b^a f_a^x f^y = \delta^a_b$
(1.29)	(1.29)'
$f_b f^a = 1$	$f_b f^a = 1$
(1.30)	(1.30)'
$f^a f_a^x = 0$	$f^a f_a^x = 0$
(1.31)	(1.31)'
$V_c f^a = -\delta_c^a f_b + 2 f_c f_b f^a$	$V_c f^a = 0$
(1.32)	(1.32)'
$h_c^a f^x = h_{c a}^x f^y$	$h_c^a f^x = h_{c a}^x f^y - g_{c b} f^x$
(1.33)	(1.33)'
$V_c f^x = 0$	$V_c f^x = 0$
(1.34)	(1.34)'
$V_b f^a = f_b^a$	$f_b^a = -f^x h_b^a f^x$
(1.35)	(1.35)'
$V_b f^a = 0$	$V_b f^a = 0$

(1.27), (1.29), (1.30), (1.31) and (1.34) show that $(f_b^a, g_{c b}, f_b)$ admits a P-Sasakian structure in M^m.

Thus we have

(1.36)	(1.36)'
$K_{c c b} f^a = -f_d g_{c b} + f_c g_{d b}$	$K_{c c b} f^a = -f_d g_{c b} + f_c g_{d b}$
(1.37)	(1.37)'
$K_{c b} f^b = -(m-1) f_c$	$K_{c b} f^b = -(m-1) f_c$
(1.38)	(1.38)'
$K_{c c b} f^a - K_{c e a} f^a$	$K_{c c b} f^a - K_{c e a} f^a$
= $(m-2) f_{c b} - \phi g_{c b} + 2 f_c f_b$	= $(m-2) f_{c b} - \phi g_{c b} + 2 f_c f_b$
$K_{c e b} f^e = K_{b e} f_c^e$	$K_{c e b} f^e = K_{b e} f_c^e$
where $\phi = f_{c e} g_{c b}$	

§ 2. Infinitesimal variations of invariant submanifolds

We consider an infinitesimal variation of invariant submanifold M^m of M^n given by

| (2.1) | (2.1)' |
| $\xi^h = x^h(\gamma) + \xi^h(\gamma) \varepsilon$ | $\xi^h = x^h(\gamma) + \xi^h(\gamma) \varepsilon$ |

where $\xi^h(\gamma)$ is a vector field of M^n defined along M^m and ε is an infinitesimal. We then have

| (2.2) | (2.2)' |
| $\phi^h = B_b^h + (\partial_b \xi^h) \varepsilon$ | $\phi^h = B_b^h + (\partial_b \xi^h) \varepsilon$ |

where $\phi^h = \partial_b \xi^h$ are m-linearly independent vectors tangent to the varied submanifold. We displace ϕ^h parallelly from the varied point (ξ^h) to the
original point \((x^h)\). Then we obtain the vectors

\[
\overline{B}^h_b = B^h_b + \Gamma^h_j(x + \xi \varepsilon)\xi^j\overline{B}^h_j \varepsilon
\]

at the point \((x^h)\), or \(\overline{B}^h_b = B^h_b + (V \xi \varepsilon)\varepsilon\), neglecting the terms of order higher than one with respect to \(\varepsilon\), where

\[
(2.3) \quad V^j \xi^h = \partial^h_j \varepsilon + \Gamma^h_j \xi^j.
\]

In the sequel we always neglect terms of order higher than one with respect to \(\varepsilon\). Thus putting \(\delta B^h_b = \overline{B}^h_b - B^h_b\), we have \(\delta B^h_b = (V \xi \varepsilon)\varepsilon\).

If we put

\[
(2.4) \quad \xi^h = \xi^e B^e_b + \xi^e C^e_x \varepsilon,
\]

then we obtain

\[
(2.5) \quad V^j \xi^h = (V^j \xi^e - h^x_b \xi^e \varepsilon) B^h_b + (V^j \xi^e + h^x_b \xi^e \varepsilon) C^e_x \varepsilon
\]

because of \((1.12)\).

Now we denote by \(\overline{C}^h_y \) \((n-m)\) mutually orthogonal unit normals to the varied submanifold and by \(\overline{C}^h_y\) the vectors obtained from \(\overline{C}^h_y\) by parallel displacement of \(\overline{C}^h_y\) from the point \((x^h)\) to \((x^h)\). Then we have

\[
(2.6) \quad \overline{C}^h_y = \xi^e B^h_x + \xi^e \overline{C}^e_x \varepsilon.
\]

We put

\[
(2.7) \quad \delta \overline{C}^h_y = \overline{C}^h_y - C^h_y
\]

and assume that \(\delta \overline{C}^h_y\) is of the form

\[
(2.8) \quad \delta \overline{C}^h_y = \eta^e_y \varepsilon = (\eta^e_y B^h_a + \eta^e_x C^h_x) \varepsilon.
\]

Then, from \((2.6)\), \((2.7)\) and \((2.8)\), we have

\[
(2.9) \quad \overline{C}^h_y = C^h_y + \Gamma^h_j(x + \xi \varepsilon)\xi^j \overline{C}^h_j \varepsilon + (\eta^e_y B^h_a + \eta^e_x C^h_x) \varepsilon.
\]

Applying the operator \(\delta\) to \(B^j_i \overline{C}^i_j g_{ji} = 0\) and using \((2.5)\), \((2.8)\) and \(\delta g_{ji} = 0\), we find

\[
(V^a \xi^e + h^x_b \xi^e \varepsilon) + \eta^e_y = 0,
\]

where \(\xi^e = \xi^e g_{xy}\) and \(\eta^e_y = \eta^e_y g_{cb}\), or

\[
(2.10) \quad \eta^e_y = -(F^a \xi^e + h^x_b \xi^e) V^a\]

\(V^a\) being defined to be \(V^a = g^{ae} V_e\). Applying also the operator \(\delta\) to \(C^j_i \xi^i g_{ji} = \xi^e g_{xy}\) and using \((2.8)\) and \(\delta g_{ji} = 0\), we find

\[
(2.11) \quad \eta^e_y = \eta^e_y g_{xy},
\]

where \(\eta^e_y = \eta^e_y g_{xy}\).

We assume that the infinitesimal variation \((2.1)\) carries an invariant submanifold into an invariant submanifold, that is,

\[
(2.12) \quad f^h(x + \xi \varepsilon) \overline{B}^i_b \]

are linear combination of \(\overline{B}^h_b\).

Now using the equations of \((1.2)\), \((1.16)\), \((1.17)\), \((1.18)\), \((2.2)\), \((2.3)\), \((2.4)\) and \((2.5)\), we have
118 Jae-Ryong Kim

(2.13) \[f^h_i (x + \xi e) B_b^i = [f_b^a - f_b^a (V_b \xi^e - h \xi^e)] \xi^e + f_c^e (V_b \xi^e - h \xi^e) \xi^e + 2(\xi f_c) \]
\[f_b^a \xi^e = f_b^a (V_b \xi^e - h \xi^e) \]
\[(V_b \xi^e - h \xi^e) \xi^e + f_b^a \xi^e + 2(\xi f_c) \]
\[f_b^a \xi^e = f_b^a (V_b \xi^e - h \xi^e) \xi^e + 2(\xi f_c) \]

Thus (2.12) is equivalent to

(2.14) \[f_c^e (V_b \xi^e - h \xi^e) - f_b^a \xi^e = 0 \]

by the virtue of (1.25).

An infinitesimal variation given by (2.1) is called an invariant (or invariance-preserving) variation if it carries an invariant submanifold into an invariant submanifold. When \(\xi^e = 0 \), that is, when the variation vector \(\xi^e \) is tangent to the submanifold, the variation is said to be tangential and when \(\xi^a = 0 \), that is, when the variation vector \(\xi^a \) is normal to the submanifold, the variation is said to be normal. When the tangent space at a point \((x^h) \) of the submanifold and that at the corresponding point \((\bar{x}^h) \) of the varied submanifold are always parallel, the variation is said to be parallel. Then we have the following assertions:

Lemma 2.1. In order for an infinitesimal variation to be invariant, it is necessary and sufficient that the variation vector satisfies (2.14).

Lemma 2.2. In order for an infinitesimal variation to be parallel, it is necessary and sufficient that

\[V_b \xi^e + h \xi^e = 0. \]

Lemma 2.3. If an infinitesimal invariant variation of \(M^n \) is parallel, then it is tangential in case (1), that is, it is tangential in the case that the vector fields \(f^i \) are always tangent to the submanifold, and it is normal in case (2), that is, it is normal in the case that the vector fields \(f^i \) are always normal to the submanifold.

§ 3. The variations of \(f_b^a \)

Suppose that an infinitesimal variation (2.1) is invariant. Then putting

(3.1) \[f^h_i (x + \xi e) B_b^i = (f_b^a + \delta f_b^a) B_b^h, \]

we have from (1.15) and (2.15)

(3.2) \[\delta f_b^a = [f_c^e V_b \xi^e - f_b^e V_c \xi^e + 2(\xi f_c) f_b^e - f_b^e \xi^e - f_b^a \xi^e] \xi^e. \]

If an invariant variation preserves \(f_b^a \), then we say that it is \(f \)-preserving.

Lemma 3.1. An invariant variation is \(f \)-preserving if and only if

(3.3) \[(V_b \xi^e) f_e^a - f_b^e (V_c \xi^e) + 2(\xi f_c) f_b^e - f_b^e \xi^e - \xi_b f^e = 0. \]

Now applying the operator \(\delta \) to \(g_{cb} = g_{ji} B_c^i B_b^j \), and using \(\delta g_{ji} = 0 \), we find
Infinitesimal variations of the invariant submanifold of a P-Sasakian manifold

(3.4) $\delta g_{cb} = (V_b \xi_c + V_c \xi_b - 2h_{cb} \xi^z \xi_z) \varepsilon,$

from which we have

$$\delta g_{cb} = -(V_b \xi_c + V_c \xi_b - 2h_{cb} \xi^z \xi_z) \varepsilon.$$

A variation of a submanifold for which $\delta g_{cb} = 0$ is said to be isometric and for which δg_{cb} is proportional to g_{cb} is said to be conformal. A necessary and sufficient condition for an infinitesimal variation (2.1) of a submanifold to be conformal is

(3.5) $V_b \xi_c + V_c \xi_b - 2h_{cb} \xi^z \xi_z = 2A g_{cb},$

where $A = (1/m) (V_b \xi^z - h_b \xi^z)$.

Since the infinitesimal variation (2.1) is invariant, we have

(3.6) $f^h C_y^i = f^h \xi^i \xi^h.$

Then using (2.9), we find

(3.7) $f^h F(x + \xi) [C_\xi^i - f^i_j \xi_j \xi^i \xi^e + (\eta_1^a B_\xi^i + \eta_2^a C_\xi^i) \varepsilon] = (f_y^e + \delta f_y^e) C_y^h,$

from which we can get

(3.8) $\eta_f f_a^e - \xi^a f_a^e = f_y^e \eta_f^e,$

(3.9) $\delta f_y^e = [-f_y^e \eta_f^e + \eta_y f_x^e - f_y^e f_x^e - f_y^e f_x^e + 2(\xi^e f_x^e) f_y^e f_x^e] \varepsilon.$

On the other hand, applying the operator δ to (1.29) and (1.30), we have the variations of f^e in case (1) by the help of (3.2) and (3.4)

(3.10) $\delta f^e = \Omega f^e,$

Ω being the operator of the Lie derivation.

We now define a tensor field T_{eb} by

(3.11) $T_{eb} = V_{c} \xi_{e} - (V_{b} \xi_{d}) f_{c} f_{d} - (f_{b} \xi_{c}) f_{c} - f_{b}^{e} f_{d}^{e} (V_{c} \xi_{d}) f_{c} f_{b},$

(3.11)' $T_{eb} = V_{e} \xi_{b} - (V_{e} \xi_{a}) f_{a} f_{b} - f_{a}^{e} f_{b}^{e} (V_{e} \xi_{a}) f_{a} f_{b}$

for the case (1) and (2) respectively, and prove

Lemma 3.2. In order for an infinitesimal invariant variation of an invariant submanifold to be f-preserving, it is necessary and sufficient that $T_{eb} = 0$.

Proof. Suppose that an infinitesimal invariant variation of an invariant submanifold is f-preserving. Then in case (1) by Lemma 3.1, we have

$$V_b \xi_c - f_a (V_b \xi_a) f_c - (f_b \xi_c) f_b - f_a f_b (V_c \xi_d) f_c f_b = 0,$$

by transvecting (3.3) with f_a^e and using (1.27) and (1.30),

$$f_a^{e} V_{d} \xi_{a} = f_{a}^{e} f_{d}^{e} (V_{e} \xi_{a}) f_{d} - f_{d}^{e} f_{e}^{e} \xi_{c}$$

by transvecting (3.3) with $f_a f_d^b$ and using (1.29) and (1.30) respectively. These two equations imply that $T_{eb} = 0$.

Conversely we suppose that $T_{eb} = 0$. Then we have by transvecting (3.11) with f^e

$$f^{e} V_{b} \xi_{e} = f_{b}^{e} f_{a}^{e} (V_{e} \xi_{a}) f_{b} - f_{b}^{e} \xi_{e}, f^{e} V_{e} \xi_{b} = f_{e}^{e} f_{a}^{e} (V_{e} \xi_{a}) f_{b} + f_{b}^{e} \xi_{e}.$$
Transvecting (3.11) with f_α^e and taking account of (1.27), (1.30) and the last equations, we have our lemma. In case (2), from Lemma 3.1 and (1.27)' we can easily verify our lemma.

And consequently we shall prove

Lemma 3.3 For an infinitesimal conformal invariant variation of an invariant minimal submanifold, we have:

In case (1)

<table>
<thead>
<tr>
<th>In case (1)</th>
<th>In case (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{cb} + T_{bc} = 0$</td>
<td>$T_{cb} + T_{bc} = 0$</td>
</tr>
<tr>
<td>$T_{cb} + f_\alpha^e f_b^a T_{ea} = (\mathcal{Q} f_e) f_b - (\mathcal{Q} f_b) f_e$</td>
<td>$T_{cb} + f_\alpha^e f_b^a T_{ea} = 0$</td>
</tr>
<tr>
<td>$T_{cb} T_{cb} = 2 T_{cb} \mathcal{Q} f_e + 4 (\mathcal{Q} f_e) (\mathcal{Q} f') - 2 A (\mathcal{Q} f_e) f^c.$</td>
<td>$T_{cb} T_{cb} = 2 T_{cb} \mathcal{Q} f_e.$</td>
</tr>
</tbody>
</table>

Proof. Differentiating (3.5) covariantly and using Ricci identity and the first Biahchi identity, we find

$$V_c V_b \xi^a - K_{bacs} \xi^d = V_c (h_{ba} \xi^x + A g_{ba}) + V_b (h_{cb} \xi^x + A g_{ca}) - V_a (h_{eb} \xi^x + A g_{eb}).$$

Transvecting this with g^{cb} and using the condition $h_{\alpha x}^e = 0$, that is, the submanifold is minimal, we find

$$V_c V_e \xi^b = V_c (h_{eb} \xi^x + A g_{eb}).$$

On the other hand, in case (1) we can easily verify that

$$f^e f_b^a (V_c \xi_b) = A,$$

by the virtue of (3.5).

Thus from the definition (3.13), (1.28) and (1.32), we see that (3.12).

Now using (1.27) and (1.37), we have

$$f_\alpha^e f_b^a T_{ec} = f_\alpha^e f_b^a (V_e \xi_e) - V_b \xi_d - \xi^e f_b f_d + f_b \xi_e f_e + f_b \xi_d - f_b \xi_e f_e + A f_b f_d,$$

where we used the identity $2 f_b = \xi f e f b + f_e V_b \xi^e$.

Consequently from (3.11) and the last equations, we have (3.13).

Next, from (3.11) we can get

$$T_{cb} T_{cb} = T_{cb} (V_c \xi_e) - A T_{cb} f_c f_b + T_{cb} f_\alpha^e f_b^a f_c - T_{cb} f_b f_e f_c f_e (V_c \xi_e).$$

Therefore using (3.13) and $f^e T_{ec} = - \xi f b + A f_c$, we have (3.14).

Finall, in case (2), we can obtain our lemma from (3.11)' by the virtues of (3.5), (1.27)', (1.28)' and (1.32)'.

Applying the operator V^e to (3.11), using (1.38), (3.16) and Ricci identity, and assuming that the submanifold is minimal, we then have

$$V^e T_{eb} = - m V_b A + A f_b + f_b d V_d A + f^e (V_e A) f_b - (m - 3) f_b d \xi f_d.$$
Now an infinitesimal variation which satisfies $\partial f^b = @ f^b$, @ being a certain function, is to be said to be fibre-preserving. Thus for a fibre-preserving variation from $\delta g_{cb} = 2A g_{cb}$ and (1.29) we see that $\Omega f^a = -A f^a$ by (3.12). Putting $\mu = \xi e f^e$, differentiating this covariantly and using the identity $\Omega f_b = \xi e f_b + f_b V_e \xi e$ we then have

$$V_d \mu = \Omega f_d = A f_d.$$

Thus we obtain $V f_d \mu = (V_e A) f_d + A f_{de}$, from which we have

$$f^e (V_e A) f_d = V_d A, f_d (V_d A) = 0,$$

where we used Ricci identity and $f_{ab} = f_{ba}$.

Substituting this result into (3.18) we have

$$V^e T_{eb} = -(m-1) V_b A + A f_b,$$

from which we have

$$V^e (T_{eb} + m A g_{eb} - A f_e f_b) = \frac{1}{2} T_{eb} T_{eb} + (m^2 - 1) A^2.$$

Thus if the submanifold is compact orientable, we have

$$\int [T_{eb} T_{eb} + 2(m^2 - 1) A^2] dV = 0,$$

dV being the volume element of M^m. Hence we have ([4], [6])

Theorem 3.5. If an infinitesimal conformal invariant variation of a compact orientable invariant minimal submanifold of a P-Sasakian manifold whose structure vector f^i is tangent to the submanifold is fibre-preserving, then it is isometric and f-preserving.

Theorem 3.6. For an infinitesimal conformal invariant variation of a compact orientable invariant minimal submanifold of a P-Sasakian manifold whose structure vector f^i is normal to the submanifold, if the ambient manifold is space of a constant curvature, then the variation is isometric and f-preserving. Moreover it is normal.

Proof. If the submanifold is minimal, from (1.32)' and (1.34)' we can easily find $h_{eb} f^{fa} = -mf^x$ and $\phi = 0$.

On the other hand, we assume that the ambient manifold is space of constant curvature, then we see that from (1.13) and (1.14),

$$K_{dcb} \xi^a = -(\xi c g_{cb} - \xi e g_{db}) + h_{da} \xi^a h_{cbx} - h_{ca} \xi^a h_{dbx},$$

$$V h_{eb} = V h_{eb}.$$

Now applying the operator V^e to (3.13)', using (3.17) and the last equations, and computing by straightforward, we have

$$V^e T_{ec} = V^e V^e \xi c + (m+1) \xi c - h_{ec} h_a \xi^a - 2V c A - 2V h c \xi^e \xi x.$$
Consequently by substituting (3.16) into this equation, we have
\[\nabla^e T_{ec} = 2m\xi^e - m\nabla_e A. \]

Hence we can obtain
\[\nabla^e [(T_{ec} + mAg_{ec})\xi^e] = 2m\xi^e + \frac{1}{2} T^e b T_{eb} + (mA)^2, \]

from which, if the submanifold is compact orientable, we have
\[\int [2m\xi^e + \frac{1}{2} T^e b T_{eb} + (mA)^2] dV = 0. \]

This completes the proof of our theorem.

References

Kookmin University