COMPACTNESS OF HOMOGENEOUS SPACES WITH FINITE VOLUMES

BY JAIHAN YOON AND KWANG SIK JEONG

Let \(G \) be a locally compact group and \(H \) be a closed subgroup such that \(G/H \) admits a finite \(G \)-invariant measure. Then under suitable restrictions on \(G \) or \(H \) it ensures \(G/H \) to be compact. For example, such is the case when \(G \) is a connected Lie group and \(H \) is any closed subgroup with finitely many connected components [4]. Also K.C. Sit generalized the above Mostow's result and proved [5] that \(G/H \) is compact whenever \(G \) is a locally compact and \(\sigma \)-compact group with the open identity component and \(H \) is the fixed points of a set of automorphisms and \(G/H \) admits a finite invariant measure.

In this paper we prove the following:

Theorem. Let \(G \) be a \([C]\)-group and \(H \) the centralizer of an element of \(x \) of \(G \) such that \(D = \{ gxg^{-1} : g \in G \} \) is closed. If \(G/H \) admits a finite invariant measure, then \(G/H \) is compact.

A simple example provides a \([C]\)-group \(G \) with non-open identity component; \(G = H \times K \) where \(H \) is any connected locally compact group and \(K \) is a compact, non-discrete and totally disconnected locally compact group.

§ 1. Preliminary lemmas.

For a locally compact group \(G \), \(G_0 \) will denote the identity component of \(G \) and the group \(G \) will be called a \([C]\)-group if the quotient group \(G/G_0 \) is compact. It is well known that a \([C]\)-group \(G \) can be approximated by a Lie groups; each neighbourhood of the identity contains a compact normal subgroup \(K \) of \(G \) such that \(G/K \) is a Lie group.

We shall modify this well known approximation theorem so that we can apply directly in proving our theorem.

We know that each neighbourhood of the identity of a compactly generated locally compact group \(G \) contains a compact normal subgroup \(H \) such that the quotient group \(G/H \) satisfies the second axiom of countability [1, p 71]. In particular, this is true for \([C]\)-groups. Now let \(K \) (resp. \(H \)) be a compact normal subgroup of a \([C]\)-group such that \(G/K \) is a Lie group (re-
sp. G/H satisfies the second axiom of countability). Then HK is a compact normal subgroup and the second countable group G/HK is isomorphic (topologically) to $(G/K)/(HK/K)$ which is a Lie group. Thus we have

Lemma 1. A $[C]$-group can be approximated by second countable Lie group.

A locally compact space X is called a homogeneous G-space if G acts on X transitively. Thus G/H is a homogeneous G-space for any closed subgroup H by a left translation. A regular Borel measure μ on X is G-invariant if $\mu(gE) = \mu(E)$ for each Borel measurable set E and $g \in G$.

The following lemma is proved by Greenleaf, Moskowitz and Rothschild [2, p.151].

Lemma 2. Let G be a second countable Lie group and A be the fixed points of a set of automorphisms of G. If G/A admits a G-invariant measure, then G/A is compact.

From now on a locally compact group will be assumed to be σ-compact unless otherwise specified. Let G (resp. G') be a locally compact group and let X (resp. X') be a homogeneous G-space (resp. G'-space).

Lemma 3. If $\pi : G \to G'$ is an open and continuous epimorphism and $\eta : X \to X'$ an equivariant continuous surjection, then η is an open mapping and a finite G-invariant measure μ on X can be transformed into a finite G'-invariant measure μ' on X'.

Although this lemma is well known, we sketch the proof for the convenience sake.

The proof of the openness of η is based on the fact that a continuous surjection from a locally compact and σ-compact group to a Baire space (which is also a G-space) is open [3, p.39]. Applying this fact to the mapping

$$f : G' \to X' ; \quad g \to g \cdot \eta(x),$$

we see that f is open. Now the equality, for any neighbourhood V of the identity of G, $\pi(V)\eta(x) = \eta(Vx)$ proves that η is open [5]. We show that μ', defined on X' by $\mu'(E) = \mu(\eta^{-1}(E))$ for every Borel set, is a regular measure. The μ' is clearly a measure. Since μ' is finite on X, it suffices to show that

$$\mu'(E) = \sup \{ \mu'(K) : K' \text{ is compact, } K' \subset E \}$$

for each measurable set E in X'. Clearly we have

$$\mu'(E) \geq \sup \{ \mu'(K') : K' \text{ is compact, } K' \subset E \} \geq$$
Compactness of homogeneous spaces with finite volumes

\[\sup \{ \mu(\eta^{-1}(K')) : K' \text{ is compact}, \eta^{-1}(K') \subset \eta^{-1}(E) \} \geq \sup \{ \mu(\eta^{-1}(K')) : \eta^{-1}(K') \subset \eta^{-1}(E), K' \text{ is compact} \} \]

For a compact set \(K \subset \eta^{-1}(E) \), \(\eta(K) \) is compact and \(\mu(K) \leq \mu(\eta^{-1}(\eta(K))) \) and it follows that

\[\sup \{ \mu(\eta^{-1}(K')) : \eta^{-1}(K') \subset \eta^{-1}(E), K' \text{ is compact} \} \geq \sup \{ \mu(K) : K \text{ is compact}, K \subset \eta^{-1}(E) \}. \]

The second term of the inequality is, by the regularity of \(\mu \), \(\mu(\eta^{-1}(E)) \) and this is \(\mu'(E) \) by the definition of \(\mu' \). Thus we have shown that \(\mu'(E) = \sup \{ \mu'(K') : K' \text{ is compact}, K' \subset E \} \), the regularity of \(\mu' \). The \(G' \)-invariance of \(\mu \) follows from the fact that \(\eta \) is an equivariant.

Lemma 4. [4, Lemma 2.5] Let \(H \subset F \) be closed subgroups such that \(G/H \) admits a finite \(G \)-invariant measure \(\mu \). Then \(G/F \) and \(F/H \) admits, respectively, finite \(G \)-invariant and \(F \)-invariant measures of which \(\mu \) is a product.

§ 2. The Proof of Theorem

By Lemma 1, there is a compact normal subgroup \(K \) such that \(G/K \) is a second countable Lie group. Since \(KH \supseteq K \) and \(KH \) is closed, \(G/KH \) admits a finite invariant measure (Lemm 4). Since \((G/H)/(KH/H) \) is homeomorphic to \(G/KH \) and \(KH/H \) is compact, \(G/H \) is compact if and only if \(G/KH \) is compact. Thus we reduced the problem to “whether \(G/KH \) is compact provided \(G/KH \) admits a finite \(G \)-invariant measure”.

Let \(\lambda \) and \(\lambda' \) be the usual actions of \(G \) on \(G/KH \) and \(G/K \) on \((G/K)/(KH/K) \), respectively. Then as the diagram shown below, there corresponds a continuous surjection (in fact, a homeomorphism) \(\eta : G/KH \rightarrow (G/K)/(KH/K) \) defined by \(\eta : xKH \rightarrow xK(HK/K) \) so that the diagram commutes, i.e., \(\eta \) is an equivariant mapping.

\[
\begin{array}{ccc}
G \times G/KH & \longrightarrow & G/HK \\
\downarrow \pi \times \eta & & \downarrow \eta \\
G/K \times ((G/K)/(KH/K)) & \longrightarrow & (G/K)/(KH/K)
\end{array}
\]

In the diagram, \(\pi \) denotes the canonical projection of \(G \) onto \(G/K \). Therefore, by Lemma 2 the \(G \)-invariant finite measure on \(G/KH \) induces a finite \(G/K \)-invariant measure on \((G/K)/(KH/K) \).

Let \(H' \) be the centralizer of \(xK \) in \(G/K \). Since \(\pi^{-1}(H') = \{ g \in G : g^{-1}x^{-1}gx \in K \} \) and contains \(H \), \(HK/K \subset H' \) and \(H'/HK/K \) admit finite invariant measures.
Since G/K is second countable Lie group, we can apply Lemma 2 and deduce that $(G/K)/H$ is compact.

Note that $(G/K)/H'$ is homeomorphic to $((G/K)/(KH/K))/((H'/(KH/K))$. Therefore, the compactness of G/HK (which is homeomorphic to $(G/H)/(KH/K)$) follows from the compactness of $H'/(KH/K)$ which remains to be shown.

Since $H'/(KH/K) \cong \pi^{-1}(H')/KH$ is a continuous image of $\pi^{-1}(H')/H$, it suffices to show that $\pi^{-1}(H')/H$ is compact. Consider a continuous map j_x on G defined by $j_x(g) = g(x)g^{-1}$, $g \in G$. Then $j_x^{-1}(xK) = \pi^{-1}(H')$ and $j_x^{-1}(x) = H$. Therefore the restriction f of j_x to $\pi^{-1}(H')$ is continuous on $\pi^{-1}(H')$ which is locally compact and σ-compact and the image of f is a compact set $\mathcal{D} \cap xK$.

We shall show that f is an open mapping. Since every element of $X = \mathcal{D} \cap xK$ can be written as gxg^{-1} for some g in $\pi^{-1}(H')$, the group $\pi^{-1}(H')$ acts on X by conjugation. In fact let $g' \in \pi^{-1}(H')$ then, because K is normal, $g'(gxg^{-1})g'^{-1} \subset g'(xK)g'^{-1} \subset g'xg'^{-1}K \subset xK$. Moreover $\pi^{-1}(H')$ acts transitively on X. To see this let z and z' be any two elements in X and write $z = xk$ and $z' = xk'$ ($k, k' \in K$). Clearly there exists an element h in H such that $hkh^{-1} = k'$, and we have $hzh^{-1} = (hkh^{-1}) = xh' = z'$, proving $\pi^{-1}(H')$ acts on X transitively. Thus f is a continuous map of a locally compact and σ-compact group $\pi^{-1}(H')$ onto a Bair homogeneous G-space X; f is an open mapping (see the proof of Lemma 3).

Since $f(g) = (g')$ is equivalent to $g^{-1}g' \in H$, the quotient space $\pi^{-1}(H')/H$ is homeomorphic to the compact space $\mathcal{D} \cap xK$, which completes the proof of the theorem.

References

1. V. M. Gluskov, The structure of locally compact groups and Hilbert's fifth problem, Transl. A. M. S. (2) 15 (1960)