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CECH CLOSURE SPACES

By David N. Roth and John W, -Carlson

1. Iﬁtroduction

Nearness spaces, introduced by Herrlich [9], provides one of the most unifying
concepts to0 appear In toﬁ)olo"gy in recent years. The categories of symmetric
topological spaces, uniform spaces, proximity spaces and contiguity spaces are
all embedded in the category NEAR, of nearness spaces and nearness Lmaps.

Nearness spaces have had an impact on the study of extensions of a topological
space; for example [1], [2] and [6].

The underlying structure of each nearness space is a topological space. A
slight modification of one axiom of a nearness space yields a semi-nearness
space, called a Cech nearness space in [11]. The underlying structure for each
semi-nearness space is a Cech closure space. It is this fact that has provided
the motivation for this paper. Cech closure spaces were introduced by Cech[7].
Thron, in [13], has studied the lattice of semi- proximites compatible with a
given Cech closure space. |

Herrlich, in [10], notes several prOpertles that fail to hold fo: tepological
spaces but which do hold for semi-nearness spaces. In this paper, for example,
it i5 noted that the composition of two topological closure operators on a given.
set need not be a topological closure operator but it is a Cech closure operator.

‘Sharp [12] ard Bonnett ‘and Porter[5] study finite topological spaces and they
represent them using zero-one matrices. Many topological pmpertles are
characterized in terms of the corresponding matrices in these two papers. -

In this paper it is shown that a Cech closure operator on-a finite set may be
represented by a zero-one reflexive matrix. A number of separation properties
are studied and for finite spaces characterized in terms of . the matrix that
represents the closure operator. It is also shown that Cech closure ~spaces.
satisfying certain mild separation axioms are topological spaces.

For each Cech closure space there exists an underlying topology, defined in a
natural way. Separation properties that carry over to the underlying topology'
are studied. Also, a Cech closure operator generates a semi- tOpelegy, that is,

“topology” without the union axiom. This is closely related to the work by
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Bentley and Slepian [4], although there they also mOdifjr the Intersection
axiom.

Finitely generated Cech closure spaces are a natural generalization of finite
Cech closure spaces. It is shown that the collection of all finitely generated
Cech closure spaces on a given set, partially ordered.in a natural way, yields
a uniquely complemented distributive complete lattice and hence a DBoolean
algebra.

Cech closure spaces of finite degree provide a non-trivial generalization . of
topological spaces. It is shown that the category of topological spaces and
continuous maps is bi-reflective in the category of Cech closure spaces of finite
degree and continuous maps.

! 2. Preliminaries

DEFINITION 2.1. Let X be a non-empty set and ¢: P(X)—P(X) satisfyihg:.

(D) c(p)=¢;

(2) ACc(A) for each ACX;

(3) c(AUB)=c(4)Uc(B) for all subsets A and B of X.

Then (X,c) is called a Cech closure space. (X,c) is called a topological space,
and ¢ a Kuratowski or topological closure operatar if ¢ also satisfies:

(4) c(c(A))=c(A) for each ACX. " '

Let (X,¢) be a Cech closure space. Set 1(c)={0CX :c(X—-0)=X-0}. Easily
t(c) is a topology on X, and it is called the underiying topology of (X,c). If
ACX then A denotes the closure of A with respect to the underlying topology

1(c).

DEFINITION 2.2. Let(X,¢) and (Y,d) be Cech closure spaces. Let f: X—Y.
S is said to be continuous provided f(c(A))Td(f(A)) for each ACX. |

The following result is found in Cech [9].
LEMMA A. Let (X.c) be a Cech closure space. Let ACBCX.Then c(A)Cc(B).

DEFINITION 2.3. Let(X,¢) be a Cech closure space. (X,c¢) is called finitely.
generated provided c(A)=U{c(a) : aEA4)}. |

' Easily each finite Cech closure space is finitely generated,
THEOREM 2.1. Let X be a set and e : X—=P(X) satisfying:

(1 {x} Ce(x) for wéh 2EX.
_Let‘c ;_P(X)—rP(X) be defined by
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Ule(a) : a€A} if A4,
@ if A=0.

Then (X,c) is a finitely gemerated Cech closure operator and; moreover,
each finitely generated Cech closure space can be constructed in this manner.

c(A)="

The essential point is that a finitely generated Cech closure operator is
completely determined by its action on singleton sets.

A topology on a finite set can be represented by a zero-orie matrix as
demonstrated by Sharp [12]. A similar representation is possible for a finite
Cech closure space. Let (S,c) be a finite Cech closure space. Denote S by
S=1s, S5, *++s,4. Define a matrix T =[], by:

1 if j&c(?),
0 if j&&e(@).

Le==<
fu

A basic result, found in Sharp[l12], is that an zXn zero-one matrix T
represents a topology on S if and only if it is reflexive and transitive; that 1is,
t..=1 for each ¢, and T2=T, ‘where the matrix multiplication is with respect
to Boolean arithmetic. In a similar manner it is evident that a zX# zero-one
matrix 7' represents a Cech closure operator on S if and only if it is.reflexive.

The following notation will be used for zero-one matrices P and Q of order
nXxXn: ‘

P\/QZH [Pijvqij] .
PAQ=, [pij/\qij] "

If P and Q are vectors then PVQ and PAQ are defined similarly. The
matrix product of the matrices P and Q, with respect to Boolean arithmetic,

can be expressed as [ﬁ/__ 1( pik/\qkj)]. P, denotes the 7-th row of the matrix P.
The identity matrix is denoted by I.

 Let (S,c) be a finite Cech closure space and let T, be the matrix representing
¢. The following notation .corfesponds to that found in Bonnett and Porter (5],
and Sharp [12]. For each s,&8, let €;,= (010 21 -++,0,.), Where 0, ; is Kronecker’s.
delta. For ACS, let A, be the vector defined by A,=V{e; :s5;E4}. Easily,

T,=(c{s;}),

THEOREM 2.2. Let (S,c) be a finite Cech closure space and let Tc denote the
matrix representing c. If ACS, then (c(A)')vh= (AT, where tke multiplication
is with respect to Boolean arithmelic. | ' |
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PROOF. The proof is similar to the proof for the corresponding result for
finite topological spaces found in Bonnett and Porter [5].

DEFINITION 2.4. Let (S,c) be a finite Cech closure operator and let T, denote

the matrix representing ¢. ¢T denotes the Cech closure operator on S

corresponding to the reflexive matrix Tf. the transpose of T .

3. Basic results

" DEFINITION 3.1. Two Cech closure spaces (X,c) and (¥, d) are called closure

homeomorphic provided there exists a one-to-one and onto map f: X—Y such
that f(¢(A))=d{(f(A)) for each ACX.

DEFINITION 3.2. Let (X,c¢) and (X,d) be Cech closure spaces. Then, for
each ACX:

(a) (cUd)(A)=c(A)Ud(4)

(b) (cNd)(A)=c(A)Nd(4)

() ¢<d if and only if c(A)Cd(4) for each ACX.
Let L(X) denote the collection of all Cech closure operators on X E‘I]Cl C(X)
the col ection of all finitely generated Cech closure operators on X. Then

(L(X ), <) and (C(X), <) are partially ordered sets.

THEOREM 3.1. Let T and T* be the two malrices corresponding 1o the finile
Cech closure spaces (S,c) and (S, c*), respectively. The follcwing statements are
equivalent,

(1) (S,¢) and (S,c*) are closure homeomorphic.

(2) There exists a permutation matrix P such that T*=pPITP. |

PROOF. Let S={s;, +--,s,} be a finite set and ¢ and c* Cech closure operators
on S, represented, respectively, by the matrices T=[{;;] and T%=[¢*;;]. Then
(S, c) is closure homeomorphic to (S, ¢*) if and only if there exists a permutation
7 : §S such that :r(c(sz-))zc*(:r(si)) for 1<<7<a.

Let #: S—S be any permutation, represented by the matrix P= [pz-j] defined

by

III'II]. if S":n-(S')’
J

P;’j:* z

0 otherwise.
We first show:

- {A) (TP);=(=(c(s)))), for 1</<x, and
(B) (PT*),=(c*(z(sp))), for 1<i<n.
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. n i
Proof of (A). Let 1<j<# and let U= [uﬁ] =TP = [kJZ_'l 1 p‘-kj]. Now there
-eXists & such that s;=z(s,). Then w;;=t,,, and;
b =1 s,‘,Ec(s Y= s Err(c(s D)), and

Lo =0 — Sk;€0(8 ) &> s %r(c(s D).
Hence (TP)z—(E(c(Sz)))y for 1<i<s.

n
Proof of (B). Let 1<j<# and let U= [u;] =PT*= [k_z_l bipt™y;l . Again, there

-exists &" such that sp=n(s). Thus u;;=p; 1% ;="
¥ =1 s,60%(sp) < s5;€c%(n(s;)); and
=0 5, (sp) > 5 Ec*(@(s;))-

“Thus, (PT*),=(*(n(s;))), for 1<i<n. |
The proof of the theorem is completed Ly noting that the followmg

.Statements are equivalent.

Now:

(1) 7 : (S, c)—(S, c*) is a closure homeomorphism.
(2) z(c(s))=c*(m(sy)) for 1<i<n.

(3) (PT'*)-:' (T'P), for 1<<i<n.

(4) PT*=TP

(5) T*=P'TP

"The proof of the following theorem is straight-forward and omitted.

"THEOREM 3.2. Let X be a non-empty set and c, a Cech closure opemz‘ar on X
_for each a=A. Define d by d(A)=U{c (A) : a&Ad}. Then:

(1) d is a Cech closure operator on X.

@) d=V{c,: a&4}.

3) (LX), V, A) is a complete latlice.

COROLLARY 3.3. Let ('X ,¢) and (X,d) be Cech closure spaces, Then c\Ud is a
.Cech closure operator on X, and c\Jd=cVd.

COROLLARY 3.4, (C(X), V, A) is a complete lattice.

PROOF. The proof follows easily from theorem 3.3 and the fact that
Ude, : aed, ¢, &C(X)} is finitely generated. |

EXAMPLE 3.1. Let ¢ and 4 be Cech closure operators on X; then c_ﬂdk need
mnot be a (Ylech closure operator on X. Let X=1{1,2,3}. Let ¢ and 4 be defined
by: | | o

c(D)={1,2} | d(L)={L;
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e@= . . . d@={}
¢(3)={3} d(3)= {2, 3}. | |
Let A={1} and B=/{3}. “Then: (cNd)(AUlNd)(B)=1{1,3}, but
(cNd)(AUB)=1{1,2,3}. Hence ¢4 1s not a Cech closure 0perat0r._
As example 3.1 shows ¢(\d need not be a Cech closure Op'erator. As the
following two theorems demonstrate, however, if ¢ and 4 are finitely geﬁnerated,.
or X is finite,. then one can determine ¢ Ad easily. S

THEOREM 3.5. Let (X,c) and (X,d) be finitely generated Cech closure spaces.
For each x&X, let e(x)=c(x)Nd(x). Then (cNd)(A)=Ule(z): x&A}, where
cN\d s with respect to C(X).

PROOF. Let e(A)=U{e(x) : x&€4} for each ACX. Then hy theorem 2.1,
e=C(X)., Let ACX. Then (cAd)(A)Cc(A) and (cANd)(A)Td(A). Easily
e(A)Cc(A4) and e(4)Cd(A). Hence cAd>e. Now (c Ad)(x)Cc{x)Nd(x)Ce(x):
for each x&X. Hence cA\d<e since ¢ Ad is finitely generated.

THEOREM 3.6. Let (S,c) and (S,d) be finite Cech closure spaces represented
by the matrices T, and T ,;, respectively. Then:

(1) TC\/d :ch Td’ and

@) T, g=T AT,

- PROOF. Statement (1). follows from corollary 3.3 and statement (2) follows:
from theorem 3. 5.

THEOREM 3.7. (C(X), V, A) 7s a distributive lattice.

PROOF. Let @, 4, and ¢ belong to C(X), and ACX. Then:
(@V (BN (A =U{(a® UG Nc(®) : xEA4}
=U{e@Ubx)N@x)Ucx)) : x4}
=@V A@Ve))(A).
In a similar manner, e A(®dVc)=0@Ab)V (a ).

THEOREM 3.8.: Let ¢&C(X). For each x&X, let e(x)={x} U(X - c(x)) Defme:’
¢’ by c’(A)=Ule(x) : x&X}. Then: | |

(1) 4 EC(X)

(9) c is a complement of c in (C(X) \V, /\)

(3) (C(X), \/ A) is a umquel vy complemented lattice.

PROOF. (1). Let A and B be subsets of X. Then:
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¢ (AUB)=U{e(x) : x& AU B}
=(Ule(x) { x4 UU{le®) t x&B})
—¢’(A)Uc’ (B).

It easily follows that ¢’'&C(X).

(2). (Ve )(A)=(Uc)H(A=c(ADUe(x) : xEA})
=c(AUUH UX —c(x)) - x&4L)
| =X
Now by theorem 3.5; (cAc)(A=U{cledNc’(a) : a=A)

He(@NHat U(X —c(@))) L aE A}
(3). Since (C(X),V, N\) 1is a distributive lattice by theorem 3.7 and has.
complements by (2), it follows that it is uniquely complemented.

)

—
L

COROLLARY 3.9. (C(X), V, A) is a Boolean algebra.

THEOREM 3.10. Let (S,c) be a finite Cech closure space. Le! T, denote-

the matrix representing c¢. Then T ,= [r,ﬁ-J-] where:
(1 if i=y

0 ¢f i) and ;=1

\L if 177 and ¢;:=0.

~
i

tJ

COROLLARY 3.11, Let (S,c) be a finiie Cech closure space. T hen (c")Tz(cT)".._

EXAMPLE 3.2. Two Cech closure operators may be complements and their
underlying topologies not be complements. Let S={s, s, s;}. Let ¢ be the Cech.

closure operator on S represented by the matrix:

1107 "1 01"
T' =010\ Then; T .= 110 |
1 01_ 011,

Now t(c)=t(c")=1{S, ¢}, the trivial topology on S.

THEOREM 3.12. Let (X,c¢) and (X,d) be Cech closure spaces. Then:
t(cVd)=t{c)Ni({d).

PROOF. By corollary 3.3, {(cUd)=t(cVd). Let O&{(cUd). Then
(cUd)(X-0)=X—-0and c(X-0)Ud(X—-0)=X-0. Hence ¢(X—9)=X -0 and.
d(X—-—0)=X-0. Therefore, O&t(c)Nt(d)=t(c)Nt(d).

Let O€t(c)Nt(d). Then ¢(X~-0)=X~-0 and d(X—-0)=X—Q and thus

(cUdD)(X-0)=X-0, and O&t(c\Ud). Therefore, {(cVd)=t(c)Nt({d).
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Let ¢ and d be Cech closure operators on a set X. The following example
-shows that #(c Ad) need not equal #(c)Vi(d).

EXAMPLE 3.3. Let X=1{1,2,3} and ¢ and d be Cech closure operators on X
rrepresented by:

1107 (1017
T.=|011 and T ,=| 110
L1 O 1_ LO 11 ].

Then #(¢) and ¢(d) are the trivial topology on X and #(cAd) is the discrete

1topology on X, since by theorem 3.6,
100"
T.pg=| 010
00 1_

4. Composition of Cech closure operators

DEFINITION 4.1. Let ¢ and d be Cech closure operators on a set X. Then ceod
.15 defined by (ced)(A4)=c(d(A4)) for each ACX.

One of the more noticeable differences between Cech closure spaces and
- topological spaces is the fact that the composition of two Cech closure operators
is a Cech closure operator; but the composition of two Kuratowski or topological

-closure operators need not be a topological closure operator, but it is a Cech
closure operator. Such examples are easy to construct. For finite spaces, this

reflects the matrix theory fact that the product of two transitive matrices,

with respect to Boolean arithmetic, need not be a transitive matrix.

THEOREM 4.1. Let (X,c) aend(X,d) be Cech closure spaces. Then cod is a
~-éech closure operator on X.

PROOF. Axioms (1) and (2) are easily satisfied. Let A and B be subsets of
X. Then (cod)(AUB)= (d(AUB)=c(d(A)Ud(B))=c(d(A))Uc(d(B))=
(cod ) A\J(cod)B.

COROLLARY 4.2. Let ¢ and d be topological closure operators on X. Then cod
.and doc are Cech closure operators on X.

1T HEOREM 4.3. Lef ¢ and d be 5eck closure operators on a set X. Then:
v(cod )(A)D(cUd)(A) for each ACX.

PROOF. Let x&(cUd)(A). Then x=c(A) or x&d(A). If x&Ed(A4) then easily
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2Sc(d(A)) and thus xE(ced)(A). If x&c(A4) then x&c(d(A)), since ACd(A)
and by lemma A, ¢c(A)Cc(d(A)). Thus x&(ced)(4).

Let (X,¢) be a Cech closure space. A natural question arises; is it possible to
find a Cech closure operator ¢ ‘on X such that (¢ tec)(A)=A4 for each ACX?
However, by theorem 4.3, (c_lnc) (A)DC"I(A) Uc(A). Hence it is evident that

such a ¢~} exists if and only if ¢c(A)=A for each ACX. That 1s; ¢! exists
only for the discrete closure operator. This, together with the following
theorem implies that it is impossible, except for 7, to find inverses for zero-one
reflexive matrices with respect to multiplication and Boolean arithmetic.

THEOREM 4.4. Let ¢ and d be Cech closure operators on a finite sel S
represented by the malrices T, and T, respectively., Then T, ,=T ,T, where

the matrix multiplication is with respect to Boolean arithmelic.
PROOF. Let S ={Sl, Sp» *+*» S, . Then the element in the z-th row and the s-th

n
column of T',T_ is k_!l(sz/\tij). Now:

z‘%‘:"dz{l .if sjE(cc'd)(si)
tJ 0 1if Sj€(00d)(33').

. _ cod _ 1 1f there exists s, such that sjEc(sk) and s,&d(S,)
Thus. tzj — _
0 otherwise
and,
t"f?d:{l if there exists 2 such that tkal and £,,=1
Y 0 otherwise.

n
‘Therefore, t;-’;d:‘;/_l(fz-k/\fkj) and hence T, ,=T,T..

It is an easy matter to construct examples to show that cod need not equal
doc, This, for finite spaces, reflects the matrix theory fact that matrix
multiplication is not commutative, even with respect to Boolean arithmetic.
Even though cod need not equal doc, the following theorem yields the rather
surprising result that they both generate the same underlying topology.

THEOREM 4.5. Let ¢ and d be Cech closure operators on X. Then,
t(cod)=t(c)Nt(d)=¢t(dec).

PROOF. Let O&t(ced). Then X -0=(cod)(X-0)=c(d(X -0)). Now
X—-0Cd(X—-0) and thus O€t(d) : also ¢c(X-0)Cc(d(X—-0))=X-0.
Thus O&f(c). Hence {(ced)Ct(c)Nt({d). Let O&t(c)Nt(d). Then ¢(X-0)
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=X—-0 and d(X—-0)=X—-0. Now -(cna')(X—O)=c(d(X—O))=c(X—O)zX~—O.
Thus 2(c)N@)CTt(ced). In a similar manner, t(doc)=t(c) Nt{d).
COROLLARY 4, 6 Let ¢ and d be Cech closure operators on a set X. Let A denote

the closure of A with respect to the topology t(ced). Then:
A=N{FCX ¢ ACF and F is closed with respect to both i{(c) and t(d)}.

THEOREM 4.7. Let ¢ and d | be éeck closure operators on a finite sel S. Then

(CEJ)T:dTﬂcT.

PROOF. Let T, and T, be the matrices that represent ¢ and 4, respectively.

Then T(md)z‘-—-{Tﬂd)T = (TdTC)T =Tf Tf;- Hence (cod)! =d’ec .

XAMPLE 4.1, (deoc)’ neesd not equal either ¢’od” or d’oc¢’. Let S= {51, S0, Sa}

and ¢ and d Cech closure operators on S represented by the matrices T, and T,

Darid N. Roih ard John W. Carlson

respectively; where,

T =
Then: T, =
Tdar.:::

But:
TG" oc! —

LEMMA 4.8. Let (S,c) be a fiunile Cech closure space. Fet A denote the closure
of A with respect to the underiying topolegy i(c). Then:

(1) For each natural number n, and ACS, it follows that ¢"(A)CTA.

(2) For each ACS there exisls a smalles! m&EN such that cm(A):H.

PROOF. (1). 4 is closed and hence c(A)=.4. Alsy ACA. Thus c(A)Cc(-E):Z'.
Suppose c*(A)CA. Then ¢*T'(4)Ce(A)=4. Hence ¢*(A)CA for each natural

number #.

101"
110

00 1_
_ O_I
1

1 1
|
1

01
1

11
111

11
011

11
111
111

and T ., .=

1107
1 111
01 1_
101
010 .
1 01_
1 00 ]
010
1 01_

111
011
' 111._
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(2). Since S is finite it follows that there exists a smallest natural number »

such that ¢”(A)=c""1(4). By (1), ¢"(A)CA. Now ¢™(A4) is closed with respect
to #(¢) and contains A, hence ¢"(A4)=4, since A4 is the smallest closed set
containing A.

DEFINITION 4.2. Let (X,¢) be a Cech closure space. Then ¢ is said to be of

degree k if £ is the smallest natural number for which ¢t =kt

It is apparent that ¢ is a Kuratowski closure operator if and only if it is of

degres one. IZasily there exist finitely generated Cech closure spaces that are
not of finite degree.

THEOREM 4.9. Lef (S,c) be a finite Cech closure space of degree k. Let T
denote the mztrix vepreseniing ¢, Thes:

(1) c* is @ Euratowski closure oscraior on S.

(2) cf"’ (S the closure operator with mspéct to the underlying topolozy t(c).

(3) The matrix representing t(c), or ck, is T

(4) ¢’ is a Cech closure operaior on S of degvree k.

PROOF. (1) isevident. (2). Let A denote the closure of ACS with respect to #(¢c).
By lemma 4.8, ck(A)C_Tl and there exists a smallest natural number s such that
c"(A)=A. Supnpose m>k; then c*(A)s%c* ' (4) and we bhave a contradiction.
Thus &= and CFE(A)——-cm(A)zﬁ.

(3). Sinca ¢® is the closure operator with respect to #(¢), it fcllows from
theorem 4.4 that T is the matrix that represents ¢* and hence represents £{¢).

(4). ¢’ is represented by 7', Now % is the smallest natural number such that
T* is idemnotent. Hence, £ is the smallest natural number such that (TT)A’ is

idempotent and e’ is of degree k.
3. Semi-topoelogi s

DEFINITION 5.1. Let X be a non-empty set and iCP(X). Then ¢ is calied a
sewi-topology provided:

(1) X&t, and gt

(2) O&¢ and QE! implies O QEL.

Let (X,¢) be a Cech closure space. A set F is called c-closed if there exists:
ACX such that #=c{A4). A set O is called c-0pzin 1f O=X—-F where F is a
c-closed set. 7#(¢) will denote the coilection of all c-open sets in (X, c).

THEOREM 5.1, Lei (X,c) be a Cech closure space. Thea t(c) is a sewmi-topology.
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PROOF. Easily X and ¢ are c-open sets. Suppose O and Q belong to #(c)..
Then there exists c-closed sets F# and G such that O=X—-F and Q=X -G.
Now there exists subsets A and B such that F=c(A4) and G=c¢(B). Then FUG
=c(A)Uc(B)=c(AUB), and thus FUG is c-closed. Hence
ONQ=(X-FANX-G)=X—-(FUG) is c-open. Thus #(¢) is a semi-topology on X.

COROLLARY 5.2, Let (X,¢) be a Cech closure space. Then t(c)Dt(c).

THEOREM 5.3. Let (X,c) be a Cech closure space of degree n. T hen
F(e)DE(cDD- - DE(™) =t(c).

PROOF. Let OEE(CHI). Then there exists sets F and A4 such that cmk“(A)'

and O=X-F. Now F=c(ck(A)) and hence OEE(ck).

EXAMPLE 5.1. Not every semi-topology is generated by a Cech closure:
operator. Let X=1{1,2,3,4} and f={X, ¢, {1}, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1,
3,4}, {2,3,4}}. Then (X,?#) is a semi-topological space. Suppose f=#(c) for some:
Cech closure operator ¢ on X. Then {1,3,4}=X—-c(4) for some ACX. Thus
c(2)={2}. Similarly, since {2,3,4}&t, ¢(1)={1}. Since {2, 3} and {1, 3} belong to
¢ it follows that c¢(4)={4}. Since {1,4}&f, then c¢(3)={3} or ¢(3)={2,3}. But.
c(3)# {3} since we would then have that 7 is the discrete topology.

Thus; if there exists a Cech closure operator ¢ on X such that #=#(c) then.
c(1)={1}, ¢c(2)=1{2}, ¢(3)=1{2,3} and c¢(4)={4}. Then:

ie)=1{X,¢, {1}, {3}, {4}, {1,3}, {1, 4}, {2,3}, 3,4}, {1, 2, 3}, {L, 3, 4}, {2, 3, 4}} #L.
Hence ¢ is not generated by a Cech closure operator.

EXAMPLE 5.2, Distinct Cech closure operators may generate the same semi-
topology. Let S=1{1,2, 3} and let ¢ and d be Cech closure operators on S such
that: ¢c(1)={1,3},¢c(2)=1{2,3}, and ¢(3)=1{2,3};d(1)={1,3},d(2)=1{2, 3}, and 4(3)
={1,3}. Then {(c)=1(d).

THEOREM 5.4. Let (X,t) be a semi-topological space. Let ¢ i P(X)—P(X) be
defined by c(A)={xEX :if x&0&t then ONAFP}. Then T is a Kuratowsk:
closure operator on X.(The topology generated by ¢ will be denoted by #(&).):

PROOF. Easily ¢(¢)=¢, and ¢(4)DA for each ACX. Let 4 and B be subsets.
of X and x&c(AUB). Suppose xZc(A)Uc(B). Then there exists c-open sets O
and Q containing x such that ONA=¢ and QN A=¢. But r&0NQE: and we:
have a contradiction since x&¢(AUB). Hence ¢(AUB)Cc(A)Ue(B). Easily
c(AUce(B)Ce(AB).
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Suppose x&c(c(A4)) for ACX and x<£c(A). Then there exists QCX such that:
x&EQ=F and QN A=¢p. Since xE:((A)) there exists p&Q¢(A) and this implies.
that Q1 A7#¢. Hence we have a contradiction and thus ¢(¢(4))=¢(4).

THEOREM 5.5. Let (X, f) be a semi-topological space. T hen z‘('c):)f.

PROOF. Let O=f. Then X-0Ce¢(X-0). If x€t(X—-0) then x<0. Hence:
(X —-0)=X—-0. Therefore Oct(t).

If (X,¢) is a Cech closure spacs then #(c) is a semi-topology and it generates.
a Kuratowski closure operator ¢. Using this notation we have the following:

| ——

corollary. |

COROLLARY 5.6. Let (X,c) be « E‘eck closure space of degree n. Then:
HE) Dt (c)Df(cz)D e D) =1(c).

COROLLARY 5.7. Let (X,c) be a Cech closure space. Let ACX. Then:
ACt(A)CTc(A)CA.

THEOREM 5.8, Let (X,c) be a Cech closure space. Then:
(1) £(c) is a base for the topology t(T),
(2) t(&)=inf {t:t is a topology on X and t(c)Ct}.

PROOF. (1). Let O&€f(t). Then ¢(X—-0)=X—-0. Let x&0. Then there exists.
Q.Ei(c) such that x&Q,_ and Q N(X—0)=¢. Hence 0=U{Q, : xE0}.
The proof of (2) follows easily from (1).

6. Separation properties

DEFINITION 6.1. Let (X,¢) be a Cech closure space.

(1) (X,c) is called T, if for each pair of distinct elements x and y in X then.
either x¢Zc(y) or yZe(x).

(2) (X,c) is called T, if for each *&X then c(x)={x}.

(3) (X, c¢) is called symmetric (Ry if x,yEX and xEc(y) then ySc(x).

(4) (X,c) is called strongly symmetric if for each x&X and ACX with.

 c(x)Ne(A)F#9 then xEc(A).

(5) (X,c) is called R, if for each x, y&X then either ¢(x)Ne(¥)=¢ or c¢(x)=
c(3).

(6) (X, c) is called Ty if for each pair of distinct elements ¥ and y in X then.:
c(x)Nc(y) is either ¢ or a singleton set.

(7) (X,c) is called T, if for each pair of distinct elements x and y in X then.
c(x)Nec(y) equals either @, {x}, or {y}. |
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(8) (X,c) is called T if for each x&X and disjoint finite set # then either

x&c(F) or c(x)NF =0,
(9) (X,c) 1s called T, if for each pair of disjoint finite sets # and G then

either c(F)NG=¢ or FNec(G)=7.

A discussion of the origination of several of the above separation axioms for
.topological spaces is found in Bonnett and Porter [5]. Many of the relationships

. between the above separation axioms that hold for topological spaces are also

-valid for Cech closure spaces.

LEMMA 6.1. The following properties hold for Cech closure spaces.
(1) T\=>strongly symmetric——pR,——>Symuetric.
:(3) Ty+Symmetric T,

PROOF. All parts are evident except perhaps that strongly symmetric implies
R,. Observe, that independently, strongly symmetric implies symmetric. Now
.suppose that (X,c) is a strongly symmetric Cech closure space. Let z&c(x))
+¢(y). Then x&c(z) and y&c(z). Let a&c(x), then x&c(a). Then x&c(y)Nela).
Hence c(ae)Ne(y)#p, and since (X,c) is strongly symmetric, it follows that
-a&c(y). Thus ¢(x) Ce(y). Similarly c¢(y)Cc(x).

EXAMPLE 6.1. A Cech closure space can be R, and not strongly symmetric.

‘Let N denote the natural numbers, and let £ denote the set of even natural

.numbers.
In, n+1} if 22 is even
Let - e(n):{ s
fi, n—1} if » is odd.
Define ¢ by:

{e(n) : n&A4} if A is finite or ¢ if A=a.
c(A)=1{e(n) : nEA} E if A contains infinitely many even numbers.
N otherwise,

Then (N,c¢) is an R, Cech closure space. Let A={2n:#>10}. Then ¢(3)N
c(A)#p, but 3%2c(A4). Hence (IV,c) is not strongly symmetric,

LEMMA 6.2. (1). For lopological spaces; strongly Symmetric is equivalent 1o
R,. (2). For fingtely generated Cech closure Spaces strongly symmetric 1s

cequivalent to R,.

PROOF. (1). Let (X,?) be a R, topological space and yE{x} N4A. Now y&{x}
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‘implies x&{y}. Since y=4, it follows that x&A=A4. Hence the space is
-strongly symmetric. Now by lemma 6.1, strongly symmetric is equivalent to
R..
(2). Let (X,c) be a finitely generated R, Cech closure space. Suppose (Ec(x)
Nc(A4). Then, since (X, cy is finitely generated, there exists e&EA4 with 1&e(a).

Since the space is R, it follows that ¢(x)=c(e) and x&c(4). Hence the space
1s strongly symmetric. The conclusion follows by lemma 6. 1.

THEOREM 6.3. Every finitely generated R, Cech closure space is a topological
-Space. ’

PROOF. Let (X, ¢) be such a space and x&c(c(A4)). Then there exists a {&c(4)
such that x&c(?). Now there exists ¢4 such that ?&c(e). Since R,
implies symmesatric, it follows that t&c(x) and ¢&c(e). Hence c(x)=c(q) since
the space is R;. Thus x&c(4) and c¢(c(A))=c(A) and ¢ is a Kuratowski closure
-operator.

COROLLARY 6.4. (1) Every fiuite R, Cech closure spfzce s a topological space.
(2) Every finitely generated strongly symmelvic Ceck closure space 1S @
fopological space.

COROLLARY 6.5. Let S be a finite set. The following statements are equivalent.
(L) (S,¢) is a R, Cech closure space.

(2) (S,c) is a symmetric topological space.

(3) (S,c) ts a O-dimensional topological space.

(4) (S,c) ts a completely regular topological space.

(5) (S,¢) is a regular topological space.

'PROOF. The proof follows from theorem 6.3 and theorem 3.6 in [5].

THEOREM 6.6. Every fiunitely generated T Cech closure space 1s a topological
.Space.

PROOF. Let (S,c¢) be such a space. Suppose (S,c¢) is not a topological space.
“Then there exists distinct elements 7,7, % of S such that j&Ec(?) and Z2Ec(j)
but k&e(?). Now j&&{d, k}. Hence, either jcZc{i,k} or c¢(F)N{i, £} =¢. But
JE€c(@) and k&c(j). Therefore (S,c) is a topological space.

COROLLARY 6.7. (1) Every finite T P Cech closure space is a topological space.
(2) Euvery finitely generated T wr Cech closure space is a topological space.
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(3) Every finite T pf Cech closure space ts a topological space.

THEOREM 6.8. Let (X,c) be a finitely generated symmetric Cech closure space..
Then OSt(c) if and only if X—-0&t(c).

PROOF. Let O&t#(¢). Then X—0=¢(X—-0). Let x&c(0O) and since (X,c) Iis:;
finitely generated, there exists p&E0 with x&Ec(p). Suppose »& X —0. Then,
since (X,c) is R; we have that p&c(x) and thus »ec(X—-0)=X-0, a.
contradiction. Thus, ¢(Q)=0 and X —-0&it(c).

COROLLARY 6.9. ™% a finite symmeiric topological space a set is open f and.
only if ¢t is closed.

We now consider finite Cech closure spaces and characterize various separation.
axioms in terms of the matrices that represent the Cech closure operators.

THEOREM 6.10. Let (S,c) be a finite Cech closure space and T_ the matrix:

that represents c. Then the following pairs of statemenis are equivalent.
(A) (S,c) is a symmetric Cech closure space.
(A') T, is a symmetric matrix.

(B) (S,¢) isa R, Cech closure space.
(B’) Two rows of T, are either equal or disjoint.

(C) (S,c) is a strongly symmetric Cech closure space.
(C") Two rows of T, are either equal or disjoint.

(D) (S,c) is a T Cech closure space.

(D) T, is anti-symmetric.

(E) (S,e)isaT, Cech closure space.

(') T,=I.

(F) (S,c) 7s a Ty Cech closure space.

(F) TN, for i#], has at most one non-zero element.
(&) (S,c) is a TJ,S Cech closure space.

(G') (TL.—I)(TC——DT, with respect to the wusual malrix mulliplication, s @
diaconel mairix. -

(H) (S,¢) isa Ty Cech closure space.

(H’) For each i, either ihe i-th row or the i-th column of T -1 is zero.

(1) (S,c) is @ Tyy Cech closure space.

(I') (T—=1or (T—I)T has at most one non-zero roiu.

PROOF. The proofs of (A) through (G) are easy and omitted. By corollary-
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6.7, the spaces in (H) and () are topological spaces and the results follow
from theorem 3.2 and theorem 3.5 in [5], respectively.

COROLLARY 6.11. Let (S,c) be a finite Cech closure space. T hen:

(1) (S,¢) is Ty(S, cT) is T,.
(2) (S,c) is T <=>(S,c) is a discrete topological space.

(3) (S,¢) is T,<=>(S,¢') is T,

(4) (S,c) s symmetric—(S, (:T) 1S Symmetric.
(5) (S,c¢) is symmetm'c@:}c:cT.

(6) (S,c) is Ty<:>(S, cT) Zs Ty.
(7) (S,¢) is T ;<= (S, ch) is T
(8) (S,¢) is T <=>(S,c") is T
(9) (S,c) is T zp=(S, ") is T e

It is shown in [5] that R, is equivalent to R, (symmetric) for finite topological
spaces. That this 1s not the case for finite Cech closure spaces follows easily
from the fact that there exists reflexive and symmetric zero-one matrices that
are not transitive.

It is of interest to know which separation properties of a Cech closure space
are preserved by the underlying topology. The next theorem and the following
examples examine this question.

THEOREM 6.12. Let (X,c) be a finitely generated Cech closure space.
1) £ (X, c) is Ty ther t(c) is Ty.

(2) If (X,c¢) is T then t(c) is T

(3) If (X,c) is T then i(c) is T py.

(4 If (X,c) is R, then I(c) is R;.

(5) If (X,c) is strongly symmetric then t(c) is strongly symmetric.

PROOF. (1) is evident. The remaining parts follow from the fact that the
stated separation axioms are strong enough to assure that (X,c) is actually a

topological space, as shown by the previous results.

EXAMPLE 6.2. A finitely generated Cech closurc spacc may be T, and the
underlying topology not be T, Let S={s;,s,, s;} and let ¢ be representied by the

matrx
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1160
T.=| 011

101

Then (X,c) is Ty and #(c) is the trivial topology on S.

()

EXAMPLE 6.3. The underlying topclogy of a symmetric Cech closure space
need not be symmetric. Let N denote the natural numbers. Let:
({n} if # 1s even
e(n)=<{1,n} if 2 is odd and #1
odd natural numbers if #=1.

Define:
o 1If A=0
c(A)=<U{e(a) : c&EA4} if A is finite

N 1If A 1s iniinite.

Then (N,c¢) is a symmetric Cech closure space. {2} = {2} since ¢(2)={2}. But
{1} =c(c(1))=N and thus #(c) 1s not symmelric.
EXAMPLE 6.4. A finitely generated Cech closure space may be T (and

hence T')) and the underlying topology not Dbe T, and thus not 7 . Let S={s;,

S5 S3} and ¢ be the Cech closure operator represented by ths matrix

101"
T =110
011

Easily (S,c) is Tys and hence Ty. {(c), however, is the trivial topoiogy and

T L il
1nor 9

thus neither T g5

THEOREM 6.13. Let (X,c) be a finitely generated symmelric Ceck closure space
of finite degree. Then the underlying topology is symmeivic.

PROOF. Let (X, ¢) be a finitely generated symmetric Cech closure SDace of
degree n. Suppose xE{a}=c”(z). Since the space is finitely generated there
exists z,&X such that x&c(x), x,&c(xg), -+, z Ec(a). Since the space is
symmetric; x,Ec(x), 1;Ec(xy), -+, eEc(x,). Thus aSc”(x)={z}. Hence (c)
1S symmetric.

The following theorem summarizes results obtained in this paper and also
results obtained by Sharp [12]. | |

They are listed together in order to unify the concepts. The proof clearly
denotes which of the following statements are due to Shaip.
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THEQOREM 6.14. Let S be a finite set. Then:

(1) The refiexive relations on S correspond to the Cech closure operators on S.

(2) The reflexive and symmetric relations on S correspond to the symmieiric
Cech closure operators on S.

(3) The reflexive, antisymmelric relations on S corrvespond to the T, Cech
closure operators on S.

(4) The reflexive and itrausitive relations, (guasi-orders) on S correspond o
the topologies on S.

(5) The reflexive, transitive and anti-symmztric relatlions (pariial-crders) on
S correspond to the T, topologies on S.

(6) The equivalence relations onn S corrvespond to the symmetric topologies on S.

PROOF. Statements (4), (5), and (6) are due to Sharp [12]. Statements (1),
(2), and (3) are easy consequences of resuits obtained in this paper.

Davis, in [8], provides a technical formula for the number of non-isomorphic
reflexive relations on a set of x#-elements. Consequently, this is also the number

of non-homeomorphic Cech closure operators on a set on #z-elements.

7. Categorical implications

THEOREM 7.1, The category of toposlogical spaces axnd conlinuons mabs is
bi-reflective in the category of Cech closure spaces of finite degree and continuous
maps.

PROOF. The reflection is given by 7: (X,c)—(X,#(c)). Since ¢(ACA4, iis
continuous. Consider the following diagram:
(X, C)-—_—*(X: £1(c))
et s
— (Y, d)
Where (X,c¢) is a Cech closure space of degree z, and (¥,d) is a topologicel

space. For each ACX, A denotes the closure of A with respect to #(¢). Let
F(x)=f(x) for each xEX. Easily f is unique.

To see that f is continuous, let ACX. Since f is contkinuous fhen JF(c(A))C
d(f(A)). Then:

FCA) =7(c"(A))cd"(f(A))=d(f(A))=d(F(4)).
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