The purpose of this paper is to prove that in a manifold of dimension \(\geq 2 \), for any two sets \(A \) and \(B \) having no cluster points and having same cardinality, then there exists homeomorphism \(f \) such that \(f(A) = B \). Then we use this property to study the topology \(\mathcal{Y} \) with the same class of homeomorphisms \(H(Z, \mathcal{Y}) = H(X, \mathcal{Y}) \). By manifold we always mean separable connected manifold without boundary.

THEOREM 1. Let \(X \) be a manifold with dimension \(\geq 2 \) and \(A, B \) are subsets of \(X \) with no cluster point and have same cardinality. Then there exists a homeomorphism \(f \) of \(X \) onto itself such that \(f(A) = B \).

PROOF. Since \(A \) and \(B \) have no cluster points, the cardinality of \(A \) and \(B \) is at most countable. If \(A \) and \(B \) have same finite number of points. Then by the homogeneity of \(X \), we have a homeomorphism \(f \) of \(X \) onto itself such that \(f(A) = B \). If \(A \) and \(B \) are countable, let \(A = \{a_1, a_2, \ldots, a_n, \ldots\} \)
and \(B = \{b_1, b_2, \ldots, b_n, \ldots\} \).

First choose an open connected set \(U_1 \) such that \(\{a_1, b_1\} \subseteq U_1 \) and \(\text{cl}(U_1) \cap \{a_2, \ldots, a_n, \ldots\} \cup \{b_1, \ldots, b_n, \ldots\} = \emptyset \) and \(X \setminus U_1 \) is a connected manifold and a homeomorphism \(f_1 \) with \(f_1(a_1) = b_1 \) and \(f_1(x) = x \) for \(x \in U_1 \). After constructing \(\{U_{n-1}\} \), choose \(U_n \) to be an open connected set such that
\[
\text{cl}(U_n) \cap \text{cl}(U_1) \cup \ldots \cup \text{cl}(U_{n-1}) \cup \{a_{n+1}, a_{n+2}, \ldots\} \cup \{b_2, \ldots, b_n, \ldots\} = \emptyset
\]
and \(X \setminus \{\text{cl}(U_i)|i=1, 2, \ldots, n\} \) is a connected manifold. In this way we constructed a sequence of open connected sets and sequence of homeomorphism \(\{f_n\} \) such that \(f_n \) is fixed outside \(U_n \) and \(f_n(a_n) = b_n \). Then let \(f \) be the function defined on \(X \) such that \(f(x) = f_n(x) \) if \(x \in U_n \) and \(f(x) = x \) if \(x \notin U_n \) for all \(n \).

Then \(f \) is a homeomorphism and \(f(A) = B \).

This result is useful in studying the classes of homeomorphisms.

THEOREM 2. Let \((Z, \mathcal{Y}) \) be a manifold and \(H(Z, \mathcal{Y}) \) the class of homeomorphisms of \((X, \mathcal{Y}) \) onto itself. Let \(\mathcal{Y} = \{U \subseteq \mathcal{Z} | U = \emptyset \text{ or } X \setminus U \text{ has no cluster point.}\} \)
then \mathcal{Y} is a topology in X and $H(X, \mathcal{Y}) \subseteq H(X, \mathcal{Y}')$

PROOF. It is clear that \mathcal{Y} is a topology and $H(X, \mathcal{Y}) \subseteq H(X, \mathcal{Y}')$. To see that $H(X, \mathcal{Y}) \neq H(X, \mathcal{Y}')$, take a point $p \in X$ and an open ball U with center p. Let f be a function which makes a rotation on U on any direction of angle between 0 and π, and fixed outside U, then $f \in H(X, \mathcal{Y}')$ but $f \notin H(X, \mathcal{Y})$.

COROLLARY. Let (X, \mathcal{Y}) be a manifold and $\mathcal{Y} \subseteq \mathcal{U}$ is a topology on X. If $H(X, \mathcal{Y}) \neq H(X, \mathcal{Y}')$, then there exists $V \neq \emptyset$ in \mathcal{Y} such that $X \setminus V$ contains cluster points.

PROOF. Let $\dim(X, \mathcal{Y}) \geq 2$. Then there exists $\phi \neq V \in \mathcal{Y}$ with $X \setminus V$ containing infinitely many points. Because otherwise, by theorem 1 $\mathcal{Y} = \{V \in \mathcal{Y} | V = \emptyset \text{ or } \text{Card}(X \setminus V) \leq m\}$ for some positive integer m. Then $H(X, \mathcal{Y})$ would be the set of all one-to-one functions of X onto itself. If $X \setminus V$ contains no cluster points for every non-void V in \mathcal{Y} then by theorem 1 again $\mathcal{Y} = \{V \in \mathcal{Y} | V = \emptyset \text{ or } \text{Card}(X \setminus V) \leq N\}$, and $X \setminus V$ has no cluster points. By theorem 2, $H(X, \mathcal{Y}) \supseteq H(X, \mathcal{Y}')$.

If $\dim(X, \mathcal{Y}) = 1$, and X is a circle, and for every non-void $V \in \mathcal{Y}$ $X \setminus V$ contains no cluster point, then $X \setminus V$ is a finite set, it is easy to see $\mathcal{Y} = \{V \in \mathcal{Y} | V = \emptyset \text{ or } \text{Card}(X \setminus V) \leq m\}$ for some positive integer m and $H(X, \mathcal{Y}) \supseteq H(X, \mathcal{Y}') = \text{the set of all one-one onto maps}$. Hence there is $V \neq \emptyset$ with $X \setminus V$ containing infinitely many points. Since X is compact, $X \setminus V$ has cluster points. If X is a real line, by similar argument, there exists $V \neq \emptyset$ in \mathcal{Y} such that $\text{Card}(X \setminus V) = \mathbb{N}$. If $X \setminus V$ has no cluster point and $X \setminus V$ is unbounded in both sides, then it is easy to see that there exist $f, g \in H(X, \mathcal{Y})$ with $f(X \setminus V) = \text{the set of all integers}$. Also there exist $g \in H(Z, \mathcal{Y})$ such that $g(X \setminus V) = \{1, 2, 3, \ldots\} \cup \left\{-\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2}, \ldots\right\}$

Hence $f(X \setminus V) \cap g(Z \setminus V) = \text{the set of all positive integers which is closed } (Z, \mathcal{Y})$. If $Z \setminus V$ is unbounded in one side, then there exist f, g in $H(Z, \mathcal{Y})$ such that $f(X \setminus V) = \text{the set of all non-negative integers}$ $g(Z \setminus V) = \text{the set of all non-positive integers}$. Hence the set of all integers is closed in (X, \mathcal{Y}) and $\mathcal{Y} \supseteq \{V \in \mathcal{Y} | V = \emptyset \text{ or } X \setminus V \text{ has no cluster points}\}$.

However, if \mathcal{Y} does not contain any non-void V with $X \setminus V$ having cluster points then $H(X, \mathcal{Y}) \subseteq H(X, \mathcal{Y}')$. This contraction proves that there exists $V \neq \emptyset$ in \mathcal{Y} with $X \setminus V$ contains cluster points.