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0. Introduction

Let CP**? denote the complex projective space of real dimension z-+p
{(complex dimension (#+p)/2) with constant holomorphic sectional curvature 4.
We denote by J the almost complex structure tensor field of CP*%?, Let M

be a real n#-dimensional Riemannian manifold isometrically immersed in CP""?,
We denote by g the Riemannian metric tensor field induced on M from that

.of CP"*?,
When the transform of the normal space T (M)* at x of M by J is always
tangent to M, that is, JT (M)*CT (M) for any x,T_ (1) being the taugent

space at x of M, the submanifold M is said to be generic in CP™*?. If M is
.a real hypersurface of CP"*! then M is obviously a generic submanifold.

In [1], Okumura proved the following theorems:

THEOREM A. Let M be a compact orientable real hypersurface of CP" Y with

constant mean curvature such that the second fundamental form A is semidefinite.
If TrA’<n-1, then TrA’=n—1 and M=M, , p=(n—1)/2.

THEOREM B. Let M be a compact orientable real hypersurface of CP"*Y with
xonstant mean curvature such that the second fundamental form A is semidefiniie.

If (TrA’ < (n=1)% then M=M', , p=(n—1)/2.
The purpose of the present paper is to prove generalizations of theorems A4
:and B for generic submanifolds of CP"*? with flat normal connection.

1. Preliminaries

Let M be an n-dimensional generic submanifold of cpr? . For any vector
“ield X tangent to M, we put JX=PX+FX, where PX is the tangential part
of JX and FX the normal part of JX. Then P is an endomorphism on the
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tangent bundle T(M). The operator of covariant. differentiation with respect:
to the Levi-Civita connection in CP"™? (resp. M) will be denoted by V (resp.
V). The Weingarten formula is glven by V. V—-——AVX +DyV for any vector:

field X tangent to M and any vector fleld v normal to M, - where D _denotes:
the operator of covariant differentiation with respect to the linear connectmm
induced in the normal bundle T'(M)* of M. A is called the second fundamenial
Jorm of M. For any normal vector V, 4, is a symmetf*ic linear transformation:
on T .(M). Let {v,} be an orthonormal frame for T, (M)*. Then the .mean

curvature vector u of M is defined to be pu= Z’TrA v, where A, =4, . If Du=0,.
then y is said to be parallel. For any vector X tangent to M and any vector:
V normal to M, if g(AyX, X)<Oor g(4,X, X)=>0, then the second fundamental
form A of M is said to be semidefinite. We now define the curvature tensor-
R+ of the normal bundle of M by RY(X,Y)= (D, Dyl —D[ X.¥]" If R+ vanisheé.
identically, then the normal connection of M is said to be fiet. If the normal

connection of M is flat, we can choose an orthonormal frame {v} oi the:

normal bundle such that Dva=0 for all 2. Now we have

LEMMA 1. ([2]). Let M be an n-dimensional generic submanifold of CP"¥
with flat normal connection. T hen

‘"*dw (Vﬁ,’ Jv)=(n—-1) p— Z‘Tu—l +Z‘TrA (A J Vs, fvb)+—-Z' I[- ,A ]l
where P, A ] =PA,—A P and ITI denotes rhe length of fhe lensor T

LEMMA 2. ([2]): Let M be an n-dimensional genemc svbmamfold of CP”“ ’

with flat normal connection. If the mean curvature vector of M is parallel, their

¥ ,g(V‘A, A)=(7z—3)):'TrA&—-E(TrAa) +337| [P, A ] I"—'r2p(p—-l)

R S

+'zb‘[3g(Aﬂ]vb, Jo)TrA, — (TrA, A’ +(Trd ) (TrA24)]. -
a, ! - ._ Lo L -

. Model “space: Let S"° be sphere with radius 1. In S"’+ we have the famlly
of generaliZzed Clifford surfaces M 5, q——S‘&(r) X SY(»), r1+r =1, p+g=n+1. By

choosing the spheres in such a way that they lie in complex subspaces we get.
E . ‘ . . . =
fibrations S' -—+M2p+1 2+1 —>ng

g=(n~ 1>/9 Thus we see that M, —n(szf””L(rl)xsﬂ“(rz)) ra+72=1.In the:

compatible with Hopf fibration, where p+

gpqc1g1_ case q=0, M ; 1s-called the geodesic hypersphere.
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2. Theorems
First of all, we prove
THEOREM 1. Let M be a compact orientable n-dimensional generic submanifold’

of CP" 7 with flat normal commection such that the second fundamental form ts-
semidefinile. If ZTI‘AE <(n—1)p, then p=1 and M is the geodesic hypersphere:
a

2(S"(r)XS' (), r=1/2)"" of CP"T,
PROOF. Since M is compact orientable, lemma 1 implies that
fM{(n—l)p—%TrAi—-g TrA,g(A Jv, Jo)l*1 = ——é—jM}T_'l (P, A] Rt

From the assumptions we see that the left hand side of this equation is.
nonnegative. Thus we obtain Z'TrA§=(n—1)p, PA,=A P and TrA,g(A,J v
a

Jv,)=0 for any ¢ and b. Suppose that T rd, =0 for some @. Since the second
fundamental form is semidefinite, we see that A,=0. On the other hand, the:

equation of Codazzi is given by
(VA Y —(V, A)y X =—g(X, JVIPY +g(JV,Y)PX -2g(X,PY)]V.
Putting V=v, and X=JV in this equation, we obtain g(JV,JV)PY =0.
Thus we have P=0. Then M is anti-invariant and %‘g(ﬁa] v, Jv,)=TrA, for-
any a. Therefore TrA g(A_Jv,, Jv,)=0 implies -that Tr4 =0 for all a and
hence M 1s totally geodesic. This contradicts to the fact that )__,'TrAE = (n—~1)p.

a
Consequently, we must have Trd4_#0 for all a and then g(A4,/v,, Jv,)=0 for

any @ and b. Let V be a unit vector normal to M. We take an orthonormal.
frame {V } of T (M )L such that V=V,. Then we obtain

%’ g(AJV ,JV )= b%d gV v eV ,v)8(A,Jv,Jv)
=2g(4, Jvy Jv,)=0.
From this we see that g(4,/JV,/V)=0 for any unit vector V normal to M.
Since A4, is symmetic, we obtain g(A4,Jv,, Jv,)=0 for any e, and ¢ by putting
V=C_,+v,)/+/2. We now use the following equation of Ricci

gR* (X, YU, V)+g([Ay, Ayl X, Y)=g(FY,UDg(FX,V)-g(FX,U)g(FY,V).
Putting V=v,U=v, X=Jv, and Y =Jv, in this equation, and using R*=0, we-

have g(v,, v, )g(v,,v,)—g(v, vb)gzo. Therefore we obtain p=1. On the other
hand, PA,=A_ P implies that the mean curvature of M is constant because of
p=1 (see [1])., Thus our theorem follows from theorem A.
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From theorem 1 we have

THEOREM 2. Let M be a compact orientable rveal hypersurface of CP"™ such
that the. second fundamental form is semidefinite. If TrAg_-’\jfe—l, then M is the

_geodesic hypersphere 7(S"(7) X s (7)), r=( 1/2)1/ 2

THEOREM 3. Let M be a compact orientable n-dimensional generic submanifold
.of CP" P with flat normal connection such that the second fundamental form is
. : 2
semidefinite. If the mean curvature vector of M is parallel and 3_(TrA)"<
a

(n— 1)217, then p=1 and M is the geodesic hypersphere n(S"(r) XSl(r)), 7= (1/2)1/2,
'of CPr.',-{-l.

PROOF. Since M is compact orientable, lemma 2 implies that
I, [IVAI*~2(n=p)p+3 1 [P, 4] %1%
= [mzb(TrAaAb)z—g(TrAa) (TrA'jAH)—-(n—P,)"\R:TrAﬁ
+ aZ’(TrAE)Z—BE TrA g(A4 ], Jv,)—2(n—1)p] *1.
For any e, we put K X=A4,X+(Trd,g(Jv, X)Jv,)/(n—1) for some b. Since

. . 2 .
K, is symmetric, we see that nTrKi > (Trk,)". From this we have

(TrAﬂ)z < (n2— 1)T1‘A§+2T1'Aﬂg(Aﬂf Vs J vb)
for any @ and 4. Thus we obtain

%’(Trz‘iﬂ)2 < (z— 1)%’ TrAi—l—2§'TrAﬂg(Aa Ju, Jv,).
"Therefore we see that

[, [IVAlz—Z(H—P)P-FSEEI P, 4,)1°1%1

'lqh

<[ [30(TrA,A)° = 35(TrA )(TrAA )+ 2 _{33(Trd)?
JM ab a,b | n—1 e -
~ (n=1)°p} =243 57 Trd,g(4,]v, Jopl*L.

it—1 a,b

‘On the other hand, we have IVA]2;>2(7¢—- )P (Sqe [2]) and hence the left hand
‘side of this inequality is nonnegative. Moreover, from the assumption we see

‘that the right hand side of this inequality is nonpositive. Consequently, we
have Z’(TrAa)z: (n—l)zp, (T rrilﬂfl‘{,)2 = (TrAa)(TrAiAa)and Trd, g(A4,/v,, fﬂg:,)
=0 Jforﬂr any e and b. By « similar method as that used in the proof of theorem
1 we see that p=1. Therefore our theorem follows from theorem B.
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