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NOTE ON ANTI-HOLOMORPHIC SUBMANIFOLDS OF REAL 

CODIMENSION OF A COMPLEX PROJECTIVE SPACE 

By Jin Suk Pak 

1. Introduction 

2111+1 As is weIl known, the unit hypersurface S~"'T' (1) in an (m+l) -,.dimensional 
m+l ___ 1.0_'- ___ ~ll 1 __ ~_.J... _____ 1L_ ~..1 __ .l.:.r.:_...l ___ :.l. L n 2Cm+l) comp1ex number space C"'T" which w iIl be naturaIIy identified with R~""T')" 

is a principa1 circIe bund1e over a complex projective space cpnt and the 
m. . . ., - ...,'2m+l Rieman:1ian structure on CP'" is given by π: S~"'T'(l)-→CP'" the natural 

projection of S까+1(1) onto Cp'μ which is defined by the Hopf-fibratioi1 (see 

[2J , [6J). Thus the theory of su.bmersion is used as an interesting too1 fo1' 

studying a comp1ex projective space and its submanifo1ds. Forexamp1e, Lawson 
C 

[1J introduced the notion of genera1ized equators M;ja, b) and Maeda [3J. 
Okumura [4J and etc. have determined necessary or necessary and sufficient 

conditions for rea1 hypersurfaces to be one of the model spaces ML(a씨. 
On the other hand a submanifo1d 111 of a Kaeh1erian rnanifo1d is calIed a: 

gener’녕ti 

(αMη) 0아f M a없t P i섭s a떠1ways연s mapped into the t않ang양en따t s쟁pace T pCM) of M at P 

under the action of the a1most complex structure tensor ø of the ambient 

manifo1d, that is, if ØNpCM)CTpCM) for aIl PεM (see [5J , [7J and [9J). 

In [9J , Yano and Kon gave some examp1es of generic submanifo1ds immersed 

in compIex space forms and found the characterizations of the examples by 

using the method of Riemannian fibre bund1es. 

The purpose of the present paper is to study generic submanifo1ds of Cpttt 

by the method of Riemannian fibre bund1es and give the characterization of a. 

generic model immersed in CP
11I 

by using the foIlowing theorem. 

THEOREM A (Yano and Kon [9J) Let M be a coηzPIete mz·%Z·maI sztbmayzifold 

01 diηze%SZ.0% % z·ηzmersed in an (n+ p)-dùnensional χnz"t sPhereι St+P(1) zut·tk· 

para!lel second liμndaηzental lorm. 11 the sqμare ollength 01 thesecon(/ ‘ !unda- , 

mental lorm is not sma!ler than pn, tlzen M is a φ'Ythagorian product 01 the 

form 
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s"'(r1) x …x sÞN(rN) , rt=-/p/n (t=1 , ''', N) , 

20here Pl' …'PN는1， 까+…+ PN=n, p=N- 1. 

‘ 

Manifolds, submanifolds, geometric objects and mappings we discuss in this 

paper are assumed to be differentiable and of class C∞. We use in the present 
paper the systems of indices as follows: 

K, μ， LJ, À = 1, 2, "', 2m + 1; k , z', j , k = 1, 2, …, 2m, 

a， β. r， δ=1 ， 2， …, n+1; a, b, c, d , e=I , 2, …, n, 

x, y, z , w=I , 2, ""p, n+p=2m. 

The summation convention will be used with respect to those systems of 
indices. 

2. Submanifolds of Kaehlerian manifolds 

Let s1 be a 2m-dimensional Kaehlerian manifold covered by a system of 

coordinate neighborhoods {ψ ; y'} and denote by gji components of the Hermitian 

metric tensor and by 썩 those of the almost complex structure of M. TheD 

we have 

(2.1) 

(2.2) 와 h￠ikghk =gjz, 

and denoting by 낀 the operator of covariant differentiation with respect to 

g-JZ’ 

(2.3) 디￠th=o. 

Let M be an n-dimensional Riemannian manifold covered by a system of 

coordinate neighborhoods {U; 상} and immersed isometrically in s1 by the 

immersion i: M-• S1. In the sequel we identify i(M) with M itself and 

represent the immersion by 

(2.4) 

We put 

(2.5) 

y1=y1(xc). 

Bt =a，μ1， 껴=a/ai 

and denote by N2 mut때ly orthogonal unit normals to M. Then denoting by 

gcð the fundamental metric tensor of M , we have 

gcb=BJBo’Kji 
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becauce the immersion is isometric. Therefore, denoting by V b the operator of 

van der Waerden-Bortolotti covariant differentiation with respect to gcb’ we 

have equations of Gauss and Weingarten for }.,f 

(2.6) 

(2. 7) 

V Bl=A xN1 , b .'cb 

FcNJ = 一 AcbxBbj，

respectively, where Acb" are the second fundamental tensors with respect to the 

norma1s NZ and Acr=Acaxgab=AJ gabgxY’ g zy being the metric tensor of the 

normal bundle of M give by g ... = N.J N .. 
t σ ii and (/a)=(gba)-l. :ry .... % .... y 0 ji _ ......... 'b ./ '0 b 

Equations of Gauss, Codazzi and Ricci are respectively given by 

(2.8) 

(2.9) 

h n kjia K =If r B +A A -A A kii 4J dcbh I J. "'d x.l. "cb -4"'c x ...... db ’ 

o=KkjihBdcbkjlNZ- (FdAcf JcAdbx). 

and 

(2.10) h '1""\ k j 11.,. i 11.,. % 

Kdcy =Kkjt Bdc Ny Nh +(AdZAc3-Ac2 Ad;) , 

dcikklia = BdkBcJBbiBZ, Bdcbkji =BdkBcjBbz, BZ =Bbjgbagjh’ where B 

N ,,"=N: gy"gjh and KdC/ is the curvature tensor of the connection induced in 

the normal bundle. 

We now consider the transforms rP/B/ and rP /N"t of Bb
t and N%t by the str-

• 
, J 

i 
, 
φ
 
‘ 

m p 
」

ι
 
, ‘ m 

따
 

Then we can put in each coordinate neighborhood U =ψnM 

(2. 11) ￠ i1Bbz =￠ZB; +￠bxNZ， 

(2. 12) ￠ zIN; = -￠rBJ+합NJ 

respectively. 

Using ￠ja= -￠aJ ’ 
(2.11) and (2.12) , 

(2. 13) 

from 

rPbz =rPzb’ 

where rPbx =1/~yx and rPXb= rP"agab, and 

(2. 14) 와，，= -rP"y’ 

where rPyz=ø/ g zz' 

Applying rP to (2.11) and (2.12) and using (2. 1) and these equations, we can 
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easily find 

(2. 15) 

(2. 16) 

(2.17) 

Jin Suk Pak 

￠ab껴bc+δaC=rþ때xc， 

￠xz#zy+δX =￠갱Z 

Differentiating (2.11) and (2.12) covariantly along Af and using (2 ‘ 3) , (2.6) 

and (2.7) , we can verify that 

(2.18) \/6따=A;jo2-Ab; 쉰， 

(2. 19) pb￠Z = AjZ#y1- A bZdJr V L쉰 = Abcx￠La - -4ρ갱X， 

(2.20) \/b월=Abf￠r-A강썽. 

we now assume that the ambient manif。ld M is of constant ho1omorphic 

sectional curvature c. Then it is wclI known that its curvature tcns0r K L} kji 
has the form 

(2. 2l) Kkjf=숭(δ싫jt+δj잃+￠kh까z -와꿇-2rpkj껴th). 
Therefore, substituting (2.21) into (2.8), (2.9) and (2. 10), we can see that 

the equations of Gauss, Codazzi and Ricci are respectively givcn by 

(2 22) Kdcba=좋(δdagcb-δcagdb+￠때cb-￠ca￠db-2@dc껴oa) FAd땐cbx-A‘:Z싫f， 

(2.23) \/ dAcb
x 

- \/cAdb' ==승 (rp뼈ch-함rpdb- 2rpdCrpbX) ， 

(2· 24) Xdcyx= 융-(rþ펴cy -if;c갱dy-2와c험) + AdJ양y - AcaX/1dey-

3. Submersion 죠 : S2m+1-• CP’n and iIrlInersian t : M-• cpm 

Let S2m+l (1) be the hypersphere {(C1, …, cm+1)! lCll2+---+ 1c…+1:2=1} of 

’ 11 十 1 
1"adius 1 in the (m+ 1)-dimensional complex space C

,," T. which will be identified 

naturaIly with R2(m+1). The sphere S2m÷l (1) wi1l be simply denoted by S2m+l. 
2’n + 1 ......, ntn 1 • 1 • 1 • _ J 

• r n 2m 十 lLet π : s' .... n .- .... ____ 

• CP'" be the natural projective of S~"'T. onto a complex 

projective space Cpm which is defincd by the Hopf-fibration. We consider a 
2", +1 Riemannian submersion π :M-• M compatible with the Hopf-fibration ñ: S 

.. CP"', where M is a submanifold of codimension p in CP"‘ and M==π l(M) 
2m + 1 'K • L __ _ 1 • .. .,..r that of S~"'T.. More precisely speaking, π :M .M is a Riemannian subrncrsion 

:with totallY :Jòedesic fibres such that the follöwing diagram commutati ve: 
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M 

-" 
M 

z 

z 

~S2m+ 1 

π 

~cpm 

"": 6 '11 r .... 2m+l 1. 6 'lI Af" ,.., 'nl11l 
、where i: M-→S~"'T. and z" : Jl.:[-• CP'" are certain isometric immersions. 

2m十 1 .. ,..... ~.. " .. ~ ... "', Covering S~"'T. by a system of coordinate neighborhoods {U: y"} such 

E[ [7) = E are cOOdinate neighborhoods of CP’” 
2m + 1 represent the projection π : S """~ I ... ____ • CP'" by 

(3. 1) 

;and put 

(3.2) 

y1=y1(yK) 

E’xj = axYI, aK= 8/ayx’ 

,the rank of matric (캡) being always 2m. 

with local coordinate (/), 
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that 

we 

Let’s denote by ~K components of the unit Sasakian structure vector in 

s2m+1. Since the unit vector field is aIways tangent to the fibre g-l(&), &ε 
,cP’” everywhere, E4 and 훌" from a local COl때ne in S2m+1, where ax=gKlLEμ 

and g "11 denote the Riemannian metric tensor of S2111 + 1. We denote by {작， 맏} 

,the Jrame corresponding to the cofr때e {E;, 화}. We then have 、

(3.3) EZEgx=δzj， EJEx=o, 한Ezk=o. 

that π(U)=U are 、 1Ve now take coordinate neihgborhoods {U ; xa} of M such 

"coordinate neigborhoods of M with local coordinates (x잉. Let the isometric 

immersions i and i be locaIly expressed by y" = l (x
a

) and / (x
a

) in terms of 

‘ local coordinates x
a in rJ (ζ파) and (x

a
) in U (ζM) respectively. Then the 

commitativity f·i=i·π of the diagram implies 

y1(xa(xa)) =yj(yx(xg)), 

\where we expressed the submersion by xa=xa(xα) locally, an,d hence 

(3.4) BJEZ=EZBJ. 

BaI =a파 Bαx=8gYX and EZ=aαXa. 

For an arbitrary point pεM we choose unit nörmal voctor 

vdefined in a neighborhood U df ψ in such a way tha t {B: ' N x'} span the tangent 
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space of CP1ll at i(p). Let p be an arbitrary point of the fibre π-1(P) over p, 

then the lifts N" =N' E ," of N' are unit normal vector fields to M defined in 
"J . X 

the tubular neighborhood over U because of (3.4). Since 한EK? = 0, we caIL 

represent 웅 by 

(3.5) 한=용aBJ， 

where 암 is a local vector field in M. Using (3.4) and (3.5) , we find 

(3.6) 용a용a=1 ， aaEZ=0, 

where 양=양gßa and gßα is the Riemannian metric tensor of M induced from~ 

that of S2m+1. TherefJ떠 {EZ, 효} is a local coframe in M corresponding to , 

{학， 화} in s2nt+1. Denoting by {혐， 양} the frame corresponding to this coframe: 

{챔， 잃} we have 

(3. 7) 

and consequently 

(3.8) 

EJEr=검， 옹aEba=O. 

E ," K' =B _" E.a 
j ~b 

with the help of (3.4) and (3.6). 

Denoting by ~싫.싸윤f the Christoffel s빼 
the Riemannian metrics gμA’ gji' gßa and gba respectively. we put 

DμEZ=κEI- {떠}E;+ {싸}EJ찰， 

and 

(iiì ",,, (hì 
DμEi =aμEz ‘+ 싸JEin-UiJEμ Eh ’ 

F Ea=a Ea -! r Ea+! a ’EbEC ßJ,.j a - V ßJ,.j a - lß，αJ J,.jr T ì bcJ.l,j ß.l,j a 

F E a=a E a+ • α ’E r- J C lE bE a. ßJ,.ja -vßJ,.ja I lßrJ oÜa - \ba; β 

Since the metrics g uÀ and g ßa are both invariant with respect to the~ 

submersions 1i and π respectively. the van der Waerden-Bort이otti cov.arlant 
i ~À 

derivatives of Ei’ E i" and Ea~' Ea~ are given by 

(3.9) 
DμEAz=잔(Eμ휩+EμE{). 
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(3.10) 

respectively, 

tensors induced 
Konishi [2]). 

FgE강=랜(E앓a+S~ab) ， 
FβEr =k삶Bb5a - k간ßEba 

h ih. • a ac 
where 낀 =g 상， hbu=guo!zbc' hji and hba being the structure 

from the submersions ii and π respectively(See Ishihara andI 

On the other side, the equations of Gauss and Weingarten for the immersion, 
--; .... I ,..,2111 + 1 i : M-→S~"'T' are given by 

(3.11) 
F B x=8 B x+! x ’B μB_}'- f I ’ B~" = A ,,_.:X N .. " β a -vßJJa -. 1μÀj β α lβafJJr -n.ßa 

F N x=a N X 1 ! x ’B μN x-F Y N x= -A a B x ßH :x -vßLY :x -.)μÀj JJ ß LY :x β :X- Y 

and those for the immersion i : M-• cpm by 

(3. 12) 
V.Bi=ò.B i니 i )BjB h-( c)B i=A XNi, u!tj JJ b JJa 

~ 

lbaj 

P N i=a Ni+J i !BjNh-rY Ni =-A aBi
’ U!tJ 

I없 and IF1f강:x be마ihIn1땅gcom때nψponen따nts of the conne 

N(M)a없n띠d N(M) 0여f M and M res쟁pe않ct디iv%e려Iy， where Aβax=A김gragyi’ AβaX andi 

Aba% are the second fundamental tensors of M and M with respect to the unit 
-

normals N :x" and N: respectively, Moreover in such a case (3.4) and (3.8) imply 

Fb=E’baFa· 

ì. r. };À We now put øμ =D않 . Then we have by definition of Sasakian structure 

μ ì. . ';;: ';;:À ，ì.‘μ -(3.13) øμ ø,,'"= -δ ，，^ +S "s^, øμ aμ =0， Sì.øμ =0 

￠μì. +øÀμ=0 
and 

(3.14) Dμ뼈=exδ2-함gμA’ Dμ~"=행， 
where øμÀ =g Kì.Øμκ， Denoting by Æ the Lie differentiation with respect to the­

vector field S, we find 

(3. 15) 

putting in each U 

(3. 16) ￠jt =￠μ2EjμExi， 
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that of 

tEjμ 

as 

of (3.1잉， 

same type 

lφ11 ， 

웠
 

V 
i 

” u 
짧
 

e M Moreover, =0 and ÆE').I =0. 

않
 

·1 
냥
 

) 

상
짜
 

”μ
 
”m 

(
시
 
1

뼈
 

we using (3.9) and (3. 14), 

￠iz값 =-δh?. (3. 18) 

covariantly along CP"’ and 

ζ@ih=o， 

Differentiating (3. 16) 

have 

JiJ~ Suk Pak" 

'we can see that 와t defines a gIobFl tgnsor fie1d, Of the 

which will be denoted by the same letter, ψith the help 

usìng (3.9),' (3, 14) 'and (3. 16), 

￠Z=-kjz， 

t 

(3. 19) 

projection of. D. Hence the base space Cpm admits a 

Kaehle때n structure {한， gji} which is represented by the structure tensor h/ 
'of the submersion 죠 : S2m+1-• cpm defined by the Hopf fibration. 

ì~ . .' ..... ,. h "".'1 .• .r /t""'!2m+l Let’ s denote by K KμU‘ ah<l. K kj;' components of the curvature tensors of (S ’ 

the denotes P where 

gji) respectively. 

curvature 1, using the equations of co-Gauss, 
λ K _ II ν h . _ h 

K L ,;'=K ’‘E ,^ E ,"" E ,V E ," + lt ,"h" , - h ,", ~; - 2h L ,h kji. - ...... KIμJJ ~k .~j --::i λ kj1 lk, k1i 

with (3.17) 

Kkjf.'=δk gji- δj gki+따’￠ji-￠jhr·ki -2#k1￠i • 
h ~ h 

space' of lS a 2m+l 
sphere S theunit Since and (Cpm, .，gμ;l) 

we have 

and together 

ιconstant 

sectional 
. m L 

u 

聊
이
 

ι
 
“ 

따
 

m 
with Kaehlerian manifold 

Ishihara and Konishi (2J). 

a lS 

. curvature . 4 (Cf. 

Hence CPm 

띠i1Bbi =￠ZBJ +￠bxNJ， 

와1Nx’ = -￠rBJ +￠ZNJ， 

; as already shown in section 2, we Can easily find the algebraic relation (2. 13) 

~(2.17) and the structure equations (2.18) (2. 24) with c=4 which will be very 

‘usefuI. 
Now we put in each neighborhood U of 11ι 

Putting 

(3.20) 

Ø/=ØbaEβbEaα， 

here and in the sequel, we denote the lifts 
; letters as those the gi ven functions. Then, using 

￠강=￠ZEZ， ￠f=￠ZEaa’ (3.21) 

same bythe 

(3.4) , (3.8) , (3.20) and (3.21) 

of functibns where, 
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and taking account bf'N%"==N;/E/, 'wèob'tain 

(3. 22) ￠JBZ=#aβBJ+따NZ， 

(3.23) ￠μXNxμ= -양BJ+헝Nyx-

'. ".f-
ι67 

Transve띠1g ￠2 to (3 22) apd (3. 23) respectiveIy and using [ 3. 13), 

(3.23) in the usuaI way, we can easiI'y obÚl.Înthat 

(3.22) and 

(3.' 24) , 뻐ø;!~Øa%Ø엉-앓얻 -δ엉， 월￠강+ø생f=o， 

￠엉@gg+앵øya=o， ø챔Z-@@J= -δf， 

øa'앓=0， 했엉=0， Øa%fa=O, fa뻐=0， 

Øßri= • <Paß' øα'x=øxå' ψiy= ..c. øy~’ 

;::::; - 1( plÿing the ’opei:ator V r;'Br ̂ D" to (3.22) and (3.23) respectively and making use 

of (3. 11), (3.14), (3.22) and (3.23), we aIso find 

P따값=잃δf - Fαgrg+Afx￠gx-ArJ￠xa， 

(3.25) V [!Þa%=Aβ생yx-Aβr"øαr， fa￠xa=Agrx￠f-Aaay험， 

VßØ;=Aβ￡와a - A￡x ￠aY， 

operator V ß to (3.5) AIso, applying the 

(3.14), we have 

and taking account of (3. 11) and 

(3.26) Vβfa=Øβa， ￡crAsgx =￠gt Aß쟁ß=ø%a， 

wh iCh and (3.9) and (3.21) imply 

(3.27) ￠ a- -i a 
b - "'b. 

Moreover, in such a submanifold M , its Ricci equation is given by 

because the ambient manifold S2찌 +1 is a of • space constant curvatre. 

Now we apply the Opεrator Vb=B;낀=EbaFa to (3. 4). Then, using (3.11) and1 

(3.12), we have 

AbaxNjEZ+BajE웹gEZ=B;Eiμ(DμDJ)BJ+E;E엄Ag강NZ， 

from which, takingaccount of , (3. 9), ,(3.10) , a i:ld (3.27), 
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AMXNjEaa-￠ZBajaa= -￠iiBb‘~a+(A짜E엉)N와 
or using (3.20). 

(3.29) AgaXEbβ=AbaXEaa+￠bX강a' 
b 

Transvecting (3.29) with Er" and changing the index r with ß. 

(3.30) Aß강=AJEabEZ+얀힘 +aa￠gx 

we get 

with the help of (3.21) and (3.26), from which, taking account of (3.7) and 
(3.24), 

gβaAgax=gbaAbax. 

Thus we have 

LEMMA 1. The sμbmam'fold M z's mz'nimal z'f and 0ηly z'f so z's the stebmam'folà 

M. 

Moreover, transvecting A꺼 to (3.30) and using (3.21), (3.24) and (3.29) 

imply 

which and (2.20) give 

(3. 32) Ag; AC -AraXAgay= (￠d갱낀 -rþ때dy + Ad/'A짜-AcZAL)EadEfc 

+ (?d#yx)(Bgd화-E옆에， 

that is, 

(3.33) Kβrf=KdcyxEβdErc+2￠dc￠yxEgdErc+ (Vd함)(E않r-Erd혈). 

which are the relations between the connections in the normaI bundles of M 
’ - …. ~ . 

in CP"‘ and of M in S“’‘ T ‘. 

., . n2m+l LEMMA 2. In order that the connec!t"on in the normal bundle 01 M 샤 S 

z's 11 at, z"t is necessaγy and szellicient tkat the cμrvature tensor K dC/ 01 tM 

connection z'n tlze normal bundle 01 M on CP 11t is expressed by 

KdWx= -2￠dc￠yx 

and VdØ/'=O. 
r., 

FinalIy we apply the operator Vc=Ec' V r to (3.30). Then we have 

Tr=; .. % /'r""7 .. %, ..... b ..... 'Q . .. % ....... r ,..n 
E~V rAßCt~=(VcAba~)Eß"Ea" +Aba~ Ec' (V rEß")Ea" +A뼈 E"Ec' VrEαa 
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r ... M' "'- ... % "'- ..... TM .:t .... r ... ;:::; J % .... %' _ T;=:; 
+Ec'(Yr훨)Øa" +잃Ec Pr￠a +Ec (Pr￠a‘)+Ø/Ec'Vrfa’ 

from which. substituting (3.10) with hb
a

= -øb
a

’ 
(3.25) and (3.26). 

E’ZFrAaax=(FcAb낀EβbEZ-AJ힘(fßEaa+faE/) +힘EZ따 

+øraE : Ø/ +fßEc
r 
(Ar:Ø," -Arö대Z) +faEZ(ArJ#yx-Ar강ø/). 

oOr using (3.21) and (3.29). 
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EcrFrAβa" = C'VcAÓ(1" +øc껴Z +￠cj￠f)EgbE강 -(Aba갱cb+ Abcx￠ab - Ac2Y￠j?) (잃Eaa 

+E앓a) +2(Ø/ Øj")짧a. 

T때svecting the above equation with E/ and changing the index δ with r. 
we can easily find 

(3.34) V rAßa" = (VcAba" +øcbøa" +øcaØb")E’/EβbEaa_(Aba.갱Ch+Abc"Øa
b 

Thus ,'.-e have 

-Ac뼈;) (ErcagEga + ErcEgaFa + FrEArEac) + 2(￠뼈yx) (Erc챔α 
+용rE/fa +frfßEa

c). 

LEMMA 3. In order tlzat tke second fundamental tensor of M iχ S2m十 l z-s 

parallel z"t z-s necessary and sufjz"dent that the followz-ng equatioηs are valid on 

M: 

(3.35) 

(3.36) 

‘and 

(3.37) 

V cAba" +øcbø a" +øcaøb" =0. 

Ab때cb+Akx￠ab - Acf함=0 

￠X양=0 (eqμivaleηtly ØcbØ/=O). 

4. Anti-holomorphic submanifold of Cpm 

A complex or holomorphic submanifold of a complex manifold is defined by 

the fact that at any point of the submanifold M the tangent space is invariant 

under the action of the almost complex structure 와
I of the ambient manifold. 

that is. for any PεM. TpCM)=Ø(TpCM)). Since ø/ø/=-δ/. this condition 

is equivalent to the fact .that. at any point of M. the normal space NμM) is 

iinvariant under ø/. that is. Ø(NpCM)) = N pCM). In this point of view Okumura 
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[5] considered such a submanifold of a complex manifold that at any point of 
the submanifold ., '" \, 

‘ N pCM)J.,.Ø(NpCtJ)), 4 ‘ 

and caned this submarlifo1d an anti-holomorphic (generic) submanifold-

From now we corisider anti-hölom6rþhic 'submanifolds of a complex projectivC' 

space Cpm.According to our notatiOn a submanifold of cþm is anti-holomorphic 

if and only if 

(4.1) ￠jx슨O 

at each point of the submanifold. 

First of all we have 

LEl'vIMA 4. Let 111 be antz"-holomorplu"c submanilold 01 CP’”. Tl2e c0%%ectz·0% Z.% 

the normal bzmdle 01 CP’” z-s fJat t;f aηd only zf the cOnnection in the norηzal 

buIZdle of M z·% S2m十 l z-s flat. 

PROOF. It follo ì'is iminediatley from lemma 2 and (4. 1). 

LEMMA 5. OïZ an n-diηtensional anti-holomorplu"c sιbmanzfold M 01 Cp(II+P)/2: 

the lollowùzg ineqzealz"ty. 
~ ? 

||FCAbal|“능2p(n"--p) 

llOlds and that equality holds zf and on!y zf 

'V cAöa'" +øcaøó'" 十Øcõøa'" =0, 

a '\. /" A b '\. cd xv 
ZUt1ze7e ijVcAO2 「=(?cAb x)(VdAa y)g g I. Afoye0%7, zνilen the connection in the 

1l0rmal lJ2tnd!e 01 M is Ilat, the equalityimPlies 

Abax￠r+A펴 
’ 

PROOF. Putting -

fcAbax=VcAbax+#ca￠Z+#cb#ax / 

and using the equatjqn (2 .. 23)of ,Codazzi with c=4 , we caneasily verify that 

fcAbax 2 ; VcAbax 2 - (￠cb@cb) (#갑#xb) 

wìththehelp of , ø btl ø a'" =O, which 'implies out first assertlon. 

Next, .. we assumeth:at the connectiùn ‘ in the normal bundle of M is fJat, 

is K ba/ =0. TheÍl theequation; (2.24) with 향=0 yields 

that 

..... 

’ 
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“ ‘ 

￠Z￠ay-#J%+A&XAaey-AaZA와=0. (4.2) 

we have If lIY'cAbaxI12=2p(n- p) , 

Y'cAba%= -rþcarþ/~'rþctJ힘. (4.3) 

and (4.3) ... (2.19) with 함=0 and using differentiating (4.2) covariantly Now, 

we can see that 

‘ ，AC/Øberþay.-rþb%Ac댐ae+A때aeøbY +rþa% A/yØbe 

- (rþcbrþe% +rþce if>b%)AaCy - Abc"(rþcaif>yc +rþc댐a) 

we obtain, with 함=0， 

+ (Øci(< +øce힘)A/y + Aac
x 

(.'/JCbØ/ +ø뻐b)=O， 

using (2. 15) (2. 17) transvecting øay 
and from which, 

(P-1)(Acexκ+A때f) -Aa쩌r￡Y+A;왜cerþb"κy=o. 

Taking the skew-sýmmetric. part ()f the above equation, we get 

(4.4) 

A￠y@ay(￠ce#bx-#bz￠x) + Aagx￠챔꽤” - AaZ￠ce￠꽤앵=0， 

‘ 

매
 

VJ a ,0
‘ 

야
‘
 

,@’ ”e 

’”
u 

4
ψ‘
 

y 

X
α
 

l 

/r 
·
뼈
 

y• a 

·m 

샘
 

빠
 
%% 

l 

태
‘
 
A% 

않
 

1i 
p
ν
 

·m 

transve떠1g with ￠Z 

(p -1)Aae깨ce월 =0, 

from which, 

which and 

provided φ，> 1. Transvecting this equation with rþzb gives 

A때때2=0， 
、

yield provided p> 1, 

/ 

which and (4.4), 

Acex￠be+Akx#ce=o. 

But fortunately when p=l, that is, when the submanifold is reaI hypersurface •. , 

Maeda [3] already proved this implication •. Hence we complete the proof of 

lemma 4. 

we prove As a converse of lemma 4, 

mt"nt"mal" szebmani[ 01 á: 

and zf 

LEMMA 6. Let M be an n-dimensional anU-holomorphz'c, 
o[ CpCn+p)/2. 1[ the connectt"on z"n flze normalb.uizdte 'o[ M is [lat, 

Acex￠be + Abex이ce=0 
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.at every point 0/ M, then 

ffrAβax=0 

，aηd 

AgaXAβ앙= (n+1)p. 

PROOF. We assume that 

(4.5) A때Cb+A때ab=0 

at every point of M , Transvecting (4. 밍 with ø .. c 
and using (2.1밍 with 함=0， 

y 

we have 

Abcxdyc￠ab = o, 

irom which trans、recting with Ø/’ 
(4.6) Adr￠yc =Py싫z， 

where we have put PyZ=Abc힘bøZC. Applying the operator V'b to the both sides 

.of (4.6) and then taking the skew-symmetric part with respect to the indices 

b and d , we obtain 

(VbAdcx- PdAbcx) ￠yc + AdZAbey￠ec -- AbcxAd캡ec 

= (FbPyzx) #dz - (R캡yZ)￠bz - PyzxAbez￠de+PyzxAdez#be 

with the help of (2.19) with ø .. x=O. We substitute (2.23) with c=4 in the last y 

‘equation and use that Kdc;=O, that is, 

AdZA와-AcexAd3= -#dx￠η+ø싫f 
Then we can see tha t 

(4.7) -2Øbd형+2Ae/Ad맺f 
= (FbPyzx) ￠dz- (VdPyZ)#-2PyzxAKz￠de. 

b .. • ,....... .......... . . I Z 
Transvecting (4.7) with Øw"and using (2.16) witg øy.=O and (4.5) , we find 

FdPyJ =4b(FbPyZ) #dz, 

which and PYZx=Pz/imply 

(?bPyzx) #dz=￠ye(FePzJ) ￠b갱dt 
1rherefore (4.7) reduces to 

‘ 

r 

、
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-rþbdδ;+AecxAd;빠=PyzxAdZ야， 

ífrom which, transvecting with rþa
b, we have 

(4.8) (g ad-rþ때dz) δZ-AaexAd;+AerAd;힘￠f 
J = - PyzxAdZ+PyzxAdez￠a펴e. 
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On the other hand, by using the definition of P ... 
X 

and taking account of yz ---- -- ~ -~-----~ 

J( dC/ =0 and (2.20) with 항=0， we can see that 

,and consequently from (4.8) 

(4. 9) AcaxAb; =PyZAcbz+gcbδ ;-øc때- -
-Therefore substituting (4.9) into (3.31) gives 

(4.10) AβaxAfy=PyzxAa??+ggrδy 

,and hence 

AβJAgax= (%+ 야· 

We now compute the Laplacian JF of the function F=AßaxÆ'3앙， which is 

:globaIly defined on M , where iJ =gßaVβFa· We then have 
-. -r .... _ _ _ __ ‘ v 

융iJF= g' V (V r V öAßa")Aßa" + 11 \7 rAß， {~II"‘· 

.On the other hand, since from our assumption and lemmas 1 and 3 

Kgayx=o, gaaAgax =o, 

.using the Ricci identity and the equation (2.23) of Codazzi with c=4 , we can 

‘easily obtain 

웅4F=KrAgaxArgx-Kr6gaArαxA뼈x 
A+ IVrAβ강11 2， 

'where K r
a is the Ricci tensor of M given by 

K a= nδ~_A!A"ax r J. ~r % β 

Therefore the expression above of 운JF reduces to 

웅‘jF=: (1t + 1)AaaXAaax - (AgayAgax) (Ari냥 
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from which. 

we have 

which gives 

þn SukPak 
j 

taking account of F=(n+ 1)p=constant and 

(n+1)Aßa%Aβax느 (A바yAaax) (ArXA75x>,

l117rAgaxll2=o, 

V'rAß강=0 
Thus we complete the proof of lemma 6. 

Combinning lemma 3, lemma 5 and lemma 6, we have 

‘ 

PROPOSITION 7. Let M be an n-dz'mensional antl-holomorPhic, miniman 

submamfold 01 CpCn+p)/2. Szepþose the coηnection ùz the normal bundle 01 M is/; 

Ilat. Tken tke lollowz'χg conditions (1) (3) are equivalent to each other: 

(1) IIVcA ba%11 2=2P(n- p). 

(2) A때f+A때Z=0. 

(3) FrAgax=o. 

~. Thus,. combinning' prciposition 7and theotem A, we have 

COROLLARY. Let M ‘ be a . comPlete . n-dz'meηsz'onal antz'-holomorphicminimal'1 

submamfold 01 Cplll whose normal comzection is Ilat. 11 the second lundamenta l!: 

tensor Aba% 01 M satz'slies 

Acex￠be+Abe갱ce =0, 

then M is 
k 

ñ(S1II
1 (r1)x ... XS

1n

，(μ)) ， rt="/짜까감1) (1 =1 , "', k) , n+1=필 mz 

wheγe m1, …, ηik are odd meηzbers szech that m1, "', ηZk르1 ， P=k- l. 

From now we consider a vector field whose components are given þy 

￠;vewb - (Ve띠，%e) rþxb. 
η 

Then we can easily find 

?b (4eve￠xb) -Fb(￠xbpe￠e) = (Vbκ) (Ve￠xb) - |lFbκ 

+Kba￠xb@xa - Kbaxj￠ax#by 



Note on Auti-HolomorPhiè 'Subηûinzlblds o[ Real Codimension 
o[ a Complex Projective Space 

=Kba￠xb#xa-KbaxXx￠by，- |iFb#써\2→ IIV b월1\2 

+웅 IjV brþax+ V'(Jø씨12， 
from which, substituting (2. 19), 

Pb(￠￠Pe￠xb〕 - Fb (#xbpeκ〕 =P(% 」1) 듀 AbaXAb강+ AxAc혀lyC rþby 

-'KÕ;XyØ'fxrþbY + 웅IIA앓f+Aae따l12 
where we have assumed the submanifo1d is anti-holomorphic. 

Thus we have 
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PROPOSITION 8. Let M be an n~dime1Zsional comPlex projectiνe space Cp(n+P)/2-

Then the condz'tz'on 

z's equt'valent to the coηdition. (2) statedinproposition7. 

Combinning proposition 1, propósition 8 andtheorem A, we have 

COROLLARY. Let M be an n-dimensional compact, miniηzal. an#-holomorphic 

submanzjold 01 Cp(II +Þ)/2 whose normal connectz'on is jlat. 11 the second lunda ‘ 

mental A ba
x 01 M saNslies 

AJA안드p(χ-1) 

at each poz'nt 01 M , then M z's 
k 

죠(Sm， (r1) x ...... XS"\μ)) ， r t= -v'm/(n+1) (t =I, …, k) n+l= .L;’싹 
i=l ‘ 

μIhere ml' ...... , mk are odd 12μmbers such that ml' …, mk르1， p=k-l. 

As a special occurence, we consider the case p=1. Then we have 

COROLLARY(Lawson [1]). Let M be a compact, real mz'nimal hypersurlace 01 

cp(n+l)/2 on which the ùzeqzealz'ty 

holds. Then λ1 is 

ñ(Sk k 
n+1 

AbaAba드n-1 

xsn-k η -k+l 

n+1 

where k is an odd nμmber. 

, 1드k드n， 

Kyungpool‘ University, Korea. 
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