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NOTE ON ANTI-HOLOMORPHIC SUBMANIFOLDS OF REAL
CODIMENSION OF A COMPLEX PROJECTIVE SPACE

By Jin Suk Pak

1. Infreduction

As is well known, the unit hypersurface Sz""H(l) in an (m-+1)-dimensional
C"*1, which will be naturally identified with R 1%,
Is a principal circle bundle over a complex projective space CP" and the
Riemannian structure on CP” is given by =: Szm_l_l(l)————rCPm the natural
projecticn of Szm'ﬁl(l) onto CP” which is defined by the Hopf-fibration (see
[2], [6]). Thus the theory of submersion is used as an interesting tool for
stud}iﬁg a complex projectivé-space and its submanifolds. For example, Lawson
[1] introduced the notion of gener-aliz'ed equators M;’: (@,b) and Maeda [3];.

complex number space

Okumura [4] and etc. have determined necessary or necessary and sufficient
conditions for real hypersurfaces to be one of the model spaces Mgs(a, D).

On the other hand a submanifold M of a Kaehlerian manifold is called a
generic submanifold (an anti-holomorphic submanifold) if the normal space N 5
(M) of M at P 1s always mapped into the tangent space TP(M) of M at P
under the action of the almost complex structure tensor ¢ of the ambient
manifold, that is, if 9N p(M)CTp(M) for all PEM (see [5], [7] and [9]).

In [9], Yano and Kon gave some examples of generic submanifolds immersed
in complex space forms and found the characterizations of the examples by

using the method of Riemannian fibre bundles.

The purpose of the present paper is to study generic submanifolds of CP”™
by the method of Riemannian fibre bundles and. give the characterization of a.

generic model immersed in CP” by using the following theorem.

THEOREM A (Yano and Kon [9]) Let M be a complete minimal sz&bmmé'fa?d |

of dimension n immersed in an (??:—}- p)-dimensional unit sphere. Sf”:""p (1) with:
parallel second fundamental form. If the square of length of tke second. . funda-

mental form is not smaller than pn, then M s a pythagorian product of the
form ‘
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SP () X x 8" (r ), r,=+/B/n (=1, N),
where py, ++, py=1, pytet+py=n p=N-1l. .
Manifolds, submanifolds, geometric objects and mappings we discuss in this

paper are assumed to be differentiable and of class C”. We use in the present
paper the systems of indices as follows:

K, U, A=1,2, -, 2m+1; h, 7,7, k=12, +-,2m,
a,B.7,0=12,,n+1; a,b,c,d,e=1,2, -, n,
X, 02 w=1,2,,p, n+p=2m.

The summation convention will be used with respect to those systems of
indices.

2. Submanifolds of Kaechlerian manifolds

Let M be a 2m-dimensional Kaehlerian manifold covered by a system of

coordinate neighborhoods {U;y’} and denote by g;; components of the Hermitian

metric tensor and by q!)f those of the almost complex structure of M. Thep

we have
ik o
(2- 1) th ¢'J —' 51 ’
kR, B
(2. 2) ‘;351 (ﬁf gk}g—gﬁ:

and denoting by fi'j the operator of covariant differentiation with respect to
& i

o~ L,k
Let M be an »-dimensional Riemannian manifold covered by a system of

coordinate neighborhoods {U: x°} and immersed isometrically in M by the
immersion 7 : M—— M. In the sequel we identify /(M) with M itself and

represent the immersion by

(2. 4) ¥ =5 ().
We put
' ] b
(2.5) B) =dy, 8,=0/0x

and denote by N : mutually orthogonal unit normals to M. Then denoting by
g., the fundamental metric tensor of M, we have

—_pip!
gcb—Br: Bb gl'"
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becauce the immersion is isometric. Therefore, denoting by V, the operator of
van der Waerden-Bortolotti covariant differentiation with respect to g, we

have equations of Gauss and Weingarten for Af
(2.6) V.B/=4 /N’
2.7 VN’ =-4"8/,
respectively, where A4 c; are the second fundamental tensors with respect to the

normals N 7 and 4 azAcma =A_’ ¢ gangy gy being the metric tensor of the

normal bundle of Af give by a...;y_N]N g.. and (g = (bba)

Equations of Gauss, Codazzi and Ricci zre respectively given by
(2.8) K=Ky B AL AT —A A,
(2.9 0=K,: Bdcbkﬂ = (V A, =V A
and
(2.10) K . =K,.B, ”’N ""N"+(A JAS -A A,

kjta ] . ] 7.
where B, ,."*=B *B'B'B’, B, "'=B*B’'B} BS =B, 2" &

N | N J g’ xgjk and K dcyx is the Curvature tensor of the connection induced in
the normal bundle.

We now consider the transforms e;zSz.jB; and QS; N ;: of B; and N : by the str-

ucture tensor gb;. Then we can put in each coordinate neighborhood U=UNM

(2. 11) /B, =¢, B+, N,
Iart__ Gl Y ard
(2.12) qbiNx——géxBﬂ+¢xNy
respectively.

Using ggsﬂ.:—gsz_j, ¢ﬁ:¢jkghi, we have, from
(2.11) and (2.12),

(2.13) B, =9,
4 a
where ¢, =¢",¢, . and ¢ ,=¢ g, and
(2.14) b= 6.,

where QS},I:QS;g“.
Applying ¢ to (2.11) and (2.12) and using (2.1) and these equations, we can
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easily find

(2. 15) ' 6 b, +0 5 =07",
(2. 16) b, 6, +8, 8. =0, 68, +¢5”¢ =0,
(2.17) gémz +07=¢"¢’

Differentiating (2.11) and (2.12) covariantly along Af and using (2.3), (2.6)
and (2.7), we can verify that

(2‘ 18) qué;:A;xé;_Ab: ?3_:.:
\ xr Yy X Xy e C a a € by
(2.19; Vb, =4, Yfﬁy = Ay, 0, Vi@, =4y 9. — 4, ﬁsx ’
y__ ¥ y
(2. 20) Vo’ =4,.0"-A"3".

we now assume that the ambient manifold A7 is of constant holomorphic

h
sectional curvature ¢. Then it is well known that its curvature tensor Aﬁvi
has the form

| N ] h / h h
2.2 K, —T(ﬁk 8ii 0 GpitPp Gsi =P Bpi— 2049, )-
Therefore, substituting (2.21) into (2.8), (2.9) and (2.10), we can see that
the equations of Gauss, Codazzi and Ricci are respectively given by

a

(2.22) K, , = c (0, gcb_a gdb+¢'d Des P, édb 2049, )LA 4 A:::Ad:'

(2.23) VdAc;—VGAd;-— T (@ b= by 28,8,

A

C x X x x +
"(2- 24) Ka’cy :“4‘(@.:' ¢Cy—¢c ¢dy"2¢dc¢y )—l—Ade A:y_AC&’ 'Ad'ey

2m -1

3. Submersion 7 : S ——CP"” and immersion 7 : M —CP"

Let §="*1 (1) be the hypersphere {(c1 mH)l |C 1lz+----l-l(,'m+1l?‘=1} of

41

which will be identified
2m+1

radius 1 in the (m+1)-dimensional complex space C
naturally with pAmTD, The sphere S dm : (1) will be simply denoted by S

Let 7 : S —.CP” be the natural projective of S"*tL onto a complex
projective space CP” which is defined by the Hopf-fibration. We consider a

21+ 1
Riemannian submersion 7 : M—— M compatible with the Hopf-fibration 7: S

——CP"” where M is a submanifold of codimension #in CP™ and M= (M)

2m+1 . :
that of S 7", More precisely speaking, 7 : M—— M is a Riemannian submersion

with totally goedesic fibres such that the following diagram commutative:
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M— 2 . S‘Bm +1

7 T

b4

M——>CP"

Z

< . Zm+1 .y 7 - . .
‘Where 7 : M—S and z : M—CP are certain isometric immersions.

Covering gl by a system of coordinate neighborhoods {U; ¥} such that
() =U are coodinate neighborhoods of CP” with local coordinate (yj), we

represent the projection 7 : st __cp” by

(3.1) ¥ =5 (5
-and put |
i a7 A K
(3.2) E=3y, 3.=0/0y",

ithe rank of matric (Ei) being aiways 2m.

Let’s denote by &" components of the unit Sasakian structure wvector 1n
S"*! Since the unit vector field is alwayvs tangent to the fibre E_l(ﬁ), =

2m+1

1 ] = . r— o~
«CP" everywhere, Ei and ¢_from a local ccirame in S , Where E,f:gx#fﬂ

! : : 21 f
-and g,, denote the Riemannian metric tensor of S "+1 We denote by {Ej, £')

~+the frame corresponding to the coframe {Ef;, E . We then have

Jp K o) Jek_ A~ F ok _ |
(3.3) Ein ——53., EEE =0, éin ={Q.

'We now take coordinate neihgborhoods {U ; x°} of M such that z(T)=U are
.coordinate neighorhoods of M with local coordinates (x°). Let the isometric
immersions 7 and 7 be locally expressed by 3" =3"(x") and y'(z”) in terms of
Jocal coordinates x” in U (CM) and (z%) in U (CM) respectively. Then the
.commutativity 7+7=¢-7 of the diagram implies
CHACH ELACHC )]
‘Wwhere we expressed the submersion by x°=x2"(x") locally, and hence

3.4 B'E’=E'Bf,

J_ 4 J K K a a
B =dy, B, =d,y" and E =0 x".

For an arbitrary point p&M we choose unit normal voctor fields N x’ to M
| (

defined in a neighborhood U of p 1n such a way that-"{B; ,ij } span the tangent
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space of CP™ at /(p). Let p be an arbitrary point of the fibre 7 Y0 over p,.
then the lifts N;::N ;: E ; of Nx" are unit normal vector fields to M defined in.:

the tubular neighborhood over U because of (3.4). Since ?xEszo, we can.

represent E by

(3.5) " =¢"B
where £% is a local vector field in M. Using (3.4) and (3.5), we find
(3.6) ¢ %=1, §°F “=o,

where & azfﬁ g Ber and g8 is the Riemannian metric tensor of M induced from:
that of §="*1, Therefore, {E :, .} is a local coframe in M corresponding to:

{Ei, 3 .} in R Denoting by {Ei, &%} the frame corresponding to this coframe:

{E;, £} we have

b~ O b o
(3.7) EE =0_, &E, =0,

(4 4 G

and consequently
Kpnl pkp&
(3.8) E. B =B E,
with the help of (3.4) and (3.6).

Denoting by {j } { ;k], L 5“7,} and [b"} the Christoffel symbols formed with:

the Riemannian metrics g &iv &b and g, respectively, we put
DE}=0,E - {5 +{ L IEIEL,
i pE =B/ +{L ES-{MEIE]
and
VeEe=d,E0—{ 1 JES+ (L1 ELEL,
VoE, =08, +{ & |E ~{L\ESEL.

Since the metrics g,, and gp, are both invariant with respect to the

FL

submersions # and z respectively, the van der Waerden-Bortolotti covariant

derivatives of E;, E;‘ and £ °

(9 4 .
5> £, are given by

t_plep A 4B pnJ
. (o=, EusE mD

A Jzh 72 A
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fVﬁE “=h “(E ”5‘ +§-‘5Ej

(3.10) *

respectively, where kj. =g .«z k;:gackbc, kﬁ and %, being the structure:

ji?
tensors induced from the submersions 7 and 7z respectively(See Ishihara and!

Konishi [2]).
On the other side, the equations of Gauss and Weingarten for the immersion

it M—smt! are given by
O n K_ £, [ K u
S K K K X 5 K
VN =3,N -+ {M}B N, —rﬁnyy = —4," B,

and those for the immersion 7 : M——CP™ by

. . » 11 .
V,B,'=3,B +{ B'B_ B'=4,°N,
(3.12) { a {jkj [ba}
-4, B}

bx a’

VN =0N ]+ LIBIN -} N

7h
]" f . and I, y being components of the connections induced on the normal bundles.

N(M) and N(M) of M and M respectively, where 4, =4, Ta

51 o8& &, ,Aﬁa andt

Ab: are the second fundamental tensors of M and M with respect to the unit:

normals N : and N j respectively. Moreover in such a case (3.4) and (3.8) imply

c'l,__
V,=E, V..
We now put ¢ pl-—-D#EZ. Then we have by definition of Sasakian structure
A A RA A% r .
(3.13) b, 9, =—0,+E.8% ¢,°6=0, &4, =0,
¢#2+¢1ﬂzo
and |
(3.14) D $:=€:0.—-€¢, DE =4,

where ¢M=gd¢5ﬂ”, Denoting by £ the Lie differentiation with respect to the

vector field €, we find

(3.15) 20 =0,
putting in each U

(3.16) 6 =9 #""E "E,,
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“‘we can see that e;tfv defines .a‘ -global tensor field of the same type as that of
..gbji, which will be denoted by the same letter w:th the help of (3.15), ;SE ¢
=( and ﬁEl =(. Moreover us1n'ET (3 9) (3 14) and (3 16) we easﬂy see

@I | " "gt;.i':.___—:k.ﬂ ' -
wmch satlsfles

(3.18) . "'t;é-io,f'---—

Differentiating (8. 16) covarlantly along CP and usmg (3 9) and (3 14) we
‘have

(3.19) S ?j(ﬁih;_(?, .

i~

‘where |/ denotes the projection of  D. Hence the base space CP admits a

‘Kaehlerian structure {c;i i, g; :} which is represented by the structure tensor k

.of the submersion 7 : Szm+1-'—+CP defined by the HOpf flbratlon

Let’s denote by K - and Klm

2 +1
components of the curvature tensors of (S "

2m--1

. ptl) and (CP”, gﬂ.) respectively. Since the unit sphere S is a space of

uconstant curvature 1, usrng the equations of co-Gauss, we have
g , o
K K E E E E.l +kk h}z hj ;kl Ehkjhs
and together with (3 17)
- | B h
Kka -—5}3 & i =0 gsz_Qﬁk i~ ‘;ﬁ‘fki_ggskjé"

Hence CP" is a Kaehlerian manifold w1th constant. holomorphlc sectlonal
.curvature 4 (Cf. Ishihara and Konishi [2]). " -
Putting

k]t

'-,1;:‘:"_ a, i Ix';
(3.20) {@t B, =¢,B, +¢, N;
QS;N:: — _gbxﬂBaJ +¢xyNyJ:
:as already shown in section 2, we can easily find the algebraic relation (2.13)
~(2.17) and the structure equatlons (2.18) (2.24) wrth c=4 Wthh w111 be very
useful. S | | |

Now we put in each neighborhood U of M
b .
(3.21) b =0, EgE,, 0, =0, E,, ¢, =0 E,, |
‘where, here and in the sequel, we denote the lifts of functions by the same
letters as those the given functions. Then, using (3.4), (3.8), (3.20) and (3.21)
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and taking account of N = N.f E _"i e obtain
(3.22) d, By =¢ ﬁBﬁ +8, N
(3.23) N cﬁN” -4, B, +<;e5”N

P

Transvectmg 935 to (3 22) and (3. 23) respectlvely and usmg (3.13), (3.22) and
(3.23) in the usual way, we can easﬂy obtam that |

€3.20) E i':'¢5 ¢5r 0, @5 —¢ E' "‘-5 ‘8 4;35‘8% _|_¢, J’¢ =0,
bLos +8.)0 =0, 678746, ==0,
By € 5=0, &% F=0, ¢ "e%=0, £,0 =
P =T g P =P Piy= Py

) , o
where we have put Qsﬁazgﬁﬁ Era ¢M=¢;’g ya’ @fﬂ?ﬁa __3_,n_d_ é?y-._ié:gzy' Ap-
plying the operator V =B, KD to (3.22) and (3.23) respectively and making use
of (3.11), (3. 14) (3 92) and (3 23), we also find
Vr(bﬁ _’Sﬁ r -§ grﬁ""Ar x¢£ rﬁ ¢'x ’ }
(.25 Vb =4y A0, V=4 8- 45 9],

S YA ¥ a oy
VﬁQSx _Aﬁa QS Aﬁ x Ta’

Also, applying the operator Vﬁ to (3.5) and taklng account of (3.11) and
(3.14), we have

G2 Vg %, " Ag,” =05 Aﬁ xeﬁ =4
whlch and (3.9) and (3.21) 1mply
._ @G, 27) - ¢;: _k;'

Moreover, in such a submanifold M, its Ricci equation is given by

(3.28) Kp, =457 A, —A,4;

because the ambient manifold S *! is a of- spa'ce constant curvatre.
Now we apply the operator V,=B, V E . to (3.4). Then, using (3 11) and,
{3.12), we have

A 'N'E +B’E5V5E =B, E”(D D’)B +E’E*3A

ga N
from which, taking account of - (3. 9) (3. 10) and (3 27, -
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A N/ES~¢,'B¢ =—8/B, ¢+ (Aﬁa‘E oﬁ) N/,
or using (3.20),
(3. 29) A, ES=4,7E  +¢¢,. .
Transvecting (3.29) with Erb and changing the index 7 with 8, we get
. b |
(3. 30) Ay "=AESE ' +&0  +E b5

with the help of (3.21) and (3.26), from which, taking account of (3.7) and
(3.24),

gﬁa Agangba Abax.
Thus we have

LEMMA 1. The submanifold M is minimal if and only if so is the submanifold
M.

Moreover, transvecting Ara , to (3.30) and using (3.21), (3.24) and (3.29)

imply
: BPR { X . & x b X, 8, 0n g ; X b x , 0
(3.31) Aﬁcx AT y:(Aba Ac y+¢b ¢cy)EB E?’ +Aba t;‘?5_3! Eﬁ §T+Ab y¢a EﬁET +(¢a’ ¢y )Eﬁéa"
which and (2.20) give
> JEAY S S ¢ x x X L, €. X € s —.
(3' 32) A,Sa’ A?‘. y_Afo Aﬁ y:(éd gsﬂy_qbc ¢a’y+Ade Ac y—Ace Ad y)Eﬁ ET
X d d
+(Vd¢y )(Bﬁ é?}'_Er 6‘3):
that 1s,
d X d ~ C d da
(3.33) Kg =K, 'ESES +20,0 Eg B, +(V 0 )(ES E—E, Ep.

which are the relations between the connections in the normal bundles of M
. — . Un+1
in CP” and of M in S 7.

LEMMA 2. In order that the connection in the normal bundle of M in Chidie

is flat, it is mnecessary and sufficient that the curvature tensor K J cyx of the

connection in the normal bundle of M on CP” is expressed by
b 4 X
K e =_2¢dc¢y
p 4
and quiy =0.

I‘inally we apply the operator VL,:E:-V_,, to (3.30). Then we have

EV, Ay =V ADESE +AE (V,ENES+ A4, E'EV.E,S

Y
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+E,] (V)b +E6E, Vi +E] (V8 D+, EV L,
from which, substituting (3.10) with &, =—¢,", (3.25) and (3.26),
= x a x, b a Y
ECTVTAﬁaxz (chba )EﬁbEa _Aba qsc (EﬁEaa+$aEﬁ )+¢TﬁEc éax

Y, x 4 0 4 d
F by By HEGE, (Ayg 8, = Aps 8 )+EE, (g, A5 85,
or using (3.21) and (3.29),
ETvA x_(VAx-I-@ ¢x+¢ QSx)EbEa—(A x¢b+A xgﬁb—A yqsx)(EEa
c "V 5a T ) ch a c2at b /8 T ba T¢ bc “a cz 'y 8~ a

€02

+E €0 +2(0. ¢, )€ 5 o
Transvecting the above equation with £ ; and changing the index ¢ with 7,

we can easily find

x x x x Cyv Dyn @ x, b x, b
(3' 34) V?’Aﬁa’ :(VcAba +¢cb¢a +¢ca¢b )ET EB Ea - (Aba ci)«:.' +Abc ¢a
_ Amyc;zﬁ;) (E,¢ 5Ej +E,'E g EqtEE ;E;) + 2(¢j¢;) (B, 8.8,
C C
+§',,Eﬁ Ea-I—E,,EﬁEa ).
Thus we have

LEMMA 3. In order that the second fundamential temsor of M in gimtl g

parallel it is necessary and sufficient that the following equations are valid on
M:

(3.35) VcAbax+¢cb¢ax+¢ca¢bx:O'
x, b x. b Yz
(3.36) A, 0, +A4, 6, —A, qby =0
and
Yy, x . b,y |
(3.37) b , =0 (equivalently ¢ ¢~ =0).

4. Anti-holomorphic submanifold of CP”

A complex or holomorphic submanifold of a complex manifold is defined by
the fact that at any point of the submanifold M the tangent space 1s invariant

under the action of the almost complex structure qﬁji of the ambient manifold,

that is, for any PEM, T,(M)=¢(T,(M)). Since ¢/, '=-0,

is equivalent to the fact that, at any point of M, the normal space N, (M) is

this condition

invariant under '¢ji. that is, ¢V p(M)):—N p(M ). In this point of view Gkumura
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[5] considered such a submamfold of a complex mamfold that at any point of
the submanifold ' | S e |
N(M)_Lf;ﬁ(N(M)) S R

and called t‘ns submanifold an anti- holomorphle (generic) subrnamfold |
From now we:consider anti- holomorph1c submanifolds of a complex projective:

space CP".  According to our notation a submamfold of CP™ is anti-holomorphic
if and only if

(4. 1) ng)“"O
at each point of the supmanifold.

First of all we have

1L

'ILLM\/IA 4, Let M be cmz‘z zolomorpfzzc submani fold of CP The comectaon I

the normal bundle of CP'w s flat zf and only if z!ke connection in the normal

buundle of M % Sszr1 ' fl.-:zz.’

PROOF lt follows lmmedlatley from lemma and (4 1)

LEMMA 5. On an n-dimensional mtz'*kOZomerpkzc szcbmamfold’ M of CP("J"?")/ &
the following inequalily. o -

IV_A; "I >9p<n 2
Iéela’e ‘c‘zkc‘z’ that équ&?ft'y holds zf cmd omy ) f
V A' x+¢ca¢bx_|_.¢cb¢:=0’

| ||2 d
witere Ve, xll =(V_ A, I)(V A, )f-'c 7, - Moreover, when tire connection in the

normal bundle of M is flat, me equalily zmpZzes
A B; A, Dy =0
PROOF. Putfing
V.4,"=V 4, +¢m¢b +¢cb¢
and usmg the equatmn (2 23) of .Codazzi with c—4 “we can-easily verily that

Y AM"‘ =V AT “—<¢cb¢”’><¢b ")

with the help of - gﬁbgé —O which Implles our first assertlon "
Next, we assume that the connection in the norimal bundle of M 1S flat that
1S Kbay =(. Then the:equation:(2.24) with Qly =(Q yields | | | i
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1Y A LI
l.'.' _l' N "

x X X € X 4 €.
(4.2) By Buy— Py Doyt Ape Ay y =4z, Ay, =0
If IV, A, 1°=2p(n—p), we have
(4.3) VA =-¢ ¢ < 6%

Now, differentiating (4.2) covariantly and using (2.19) with gé; —0 and (4. 3),.

we can see that
A By 8 AL Bt A8 B A B
B BB DAL~ A BB 878,
+ (b, + BB Ay AL D, +8, 8,0 =0,

from which, transvecting ¢~ and using (2.15)—(2.17) with v, y“’zo, we obtain.

(40 =D, +A, =4, 67+ 4] 8.8, =o0.

Taking the skew-symmetric part of the above equation,' we get

oo A;.yqbqy (éceébx - l;l’) b:¢cx) +A &:5?5 ;gﬁcj‘;ﬁay ""' Aagxéceébyéay = O?’

from which, transvecting with ¢ xb, .
| X,€, @
| . (}5""‘ I)Aae _q‘bc ¢:r =-0’.
which and the last equation imply
Xie @Yy '~ 4 X ¢ ay A
Aae P ¢'by¢ _Aae st ¢cy¢ =0,
provided p>1. Transvecting this equation with gf): givesl'
x,e,a -
_ ‘Arze ¢’c qu =0,
which and (4.4), provided p>1, yield
Xy € Xy €
_ A, o, +A, ?256 =O o
But fortunately when p=1, that is, when the submanifold is real hypersurface,.
Maeda [3] already proved:this implication. Hence we complete the proof of

lemma 4.

As a converse of lemma 4, we prove
LEMMA 6. Let M be an n-dimensional antz'—kolomorpkz'c," minisnal “submanifold’ |
of cplrtoe g f the connection in the normal bundle of M is flat, and if
X € X € | |
Ar:e éb +Ab3 éc ={ -
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al every point of M, then | |
V.4
and
A A% = (n+Dp.
PROOF. We assume that
(4.5) A0 °+4,76 =0

at every point of M, Transvecting (4.5) with qﬁ; and using (2.16) with ¢yx=0,

we have
T, ¢, b
Abc ¢y géa =0,
from which transvecting with gbda.
X,¢ X, 2
(4- 6) Adc ¢y _P}'Z {Esd »

where we have put Py:zAb:gé ybgé;. Applying the operator V, to the both sides

.0of (4.6) and then taking the skew-symmetric part with respect to the indices
/ and d, we obtain

¢
v A _VdAbr: )95 +Adc Ab yqé Ab:Aa'eyé
“(VP )¢d - (Vd yz )éb "'P Abe éd +P Ade ‘fbb
with the help of (2.19) with qﬁ =0. We substitute (2.23) with ¢=4 in the last

equation and use that K, —0 that 1s,

Ad;Ac y—Ace Ad y —g&d ¢cy+¢c t?idy'
“Then we can see that
(4.7) ~2¢,,0,+24,7A," 8,
=(V, yz)géd -—-(V P )éb —2P A qid.

“Transvecting (4.7) with ¢ ®and using (2.16) witg géy =0 and (4.5), we find

d yw “"5?5 (VPyz)éd'
which and P =P, 1mply

b yz ) Qsd t:35_: (VePzwx) ¢bw¢'d ;-t'
"Therefore (4.7) reduces to



Note on Anti-Holomorphic Submanifolds of Real Codimension 73
of a Complex Projective Space ~

firom which, transvecting with gé:, we have
4 4 X e e '
(4.8) (Goa= P By 0= A A FAAS 870
-.;.:" — X -4 X 2, W e
Pyz Aa’a +Pyz Aa’e ¢a Q'Sw *

'On the other hand, by using the definition of P y: and taking account of
K, *=0 and (2.20) with ¢ yx=0. we can see that |

dcy
x 2,0, ¢ x . b e, w z x x
Pyz Ad'e Qsa: éw :Aba Ad y¢w ¢a _gbd ¢az§y +¢a t;?S‘d_'p

:and consequently from (4.8)

X, a X, Z, X x .
(4.9) Aca Ab y:Pyz Acb Tgcba‘y_ﬁsc éby'
“Therefore substituting (4.9) into (3.31) gives
X x X F4 X
(4. 10) Aﬁa, A4, szyz Aﬁr —I—gﬁré‘y
:and hence

Aﬁ;AﬁaI:(ﬂ—l—l)p.

X :Sa' . .
A which 1is

We now compute the Laplacian 4F of the function F=A3
.globally defined on M, where 4= gﬁaV BV » We then have

2
L

1 1o, X N x
—Z—AF— g (VTV5A5a )Aﬁa —l-l!‘f/?,ffiﬁ”E I
'‘On the other hand, since from our assumption and lemmas 1 and 3
x Ba x
Kﬁay =0, g Aﬁa ={,

wusing the Riccl identity and the equation (2.23) of Codazzi with ¢=4, we can

-easily obtain

1 a x , T8 Yoo ,08«x = x,2
-_Q_AF:KT A,Scx A ﬂKT&ﬁﬂIA xA A+”V?«-A5a ” ’

X

-where K.” is the Ricci tensor of M given by

,
ax o B ax
K‘r —ﬂar_Ar IAﬁ »
"‘Therefore the expression above of -é—-AF reduces to
= 2
AP (4,7 A7) +1V,4,,7,

1 oo x 480
2 AF—(n+1>Aﬂ£I A x—(ABay
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from which, taking account of F (n—l—l)p constant and
5 |
(n+1)Ag, A% ‘—(AﬁayAﬁ“ )(A ’47%,
we have
IV, Ag, 17=0,
which gives
V Aﬁﬂ-’

’lhus we complete the proof of lemma 6.
Combinning lemma 3, lemma 5 and lemma 6, we have

PROPOSITION 7. Let M be an n-dimensional antt-holomorprie, minimai.

submanifold of CP("H’ )z Suppose tke connection in the normal bundle of M. iss
flat. Then the following conditions (1)—(3) are equivalent to each other:

(1) IV, 4, “I*=2p(n—p).
(2) Acex¢b€+Abex¢ce:O'
(3) vTA,Baxz

~Thus, combinning proposition 7 and theorem A, we have

COROLLARY. Let M be a complete -n-dimensional anti-holomorphic minimal:

subman: fold of CP" wkose normal connection. zs flat. If the second fundamentas:

tensor A, of M salisfies '
X € X s €
Ace g"’b +Abe QSC :0’
tkese M zs

n(s”"‘ (rl)x - XS (7)), r=a/m/(m1) (B=1, -, ), ntl=32m,
3 =

where my, -, ni, are odd numbers such that my, -, m,>1, p=~k—L.

From now we consider a vector field whose components are given by
e xb y e X0 | T
éx ngb _ (Vﬁ@x )¢ .
Then we can easily find

v, (@, w"’") V8V 6=V, 8V 6™~V 1

+ If.‘.’h:;t‘;35 @fﬂ - ‘K‘bexyqs éby
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=Ky 8,8 = K 0 8707~ IV, =1V 6,1

. VB Vgl
from which, substltutmg (2.19), o
V@SNV, -V - 4, A a8

qﬁax¢by+——HA

baxy ¢ +A

bex aex’ b H

where we have assumed the submamfold 1S antl ho]omorphlc
Thus we have

PROPOSITION 8. Let M be an ﬂ—dzmefzszoml camplex pmjecme space CP(”“)/ 2
Then the condition - . | -

fM{p (ﬁ—l) _AbaxA a:r_;_AxAb:st ¢ay_Kbaxy¢ x¢ y}*1>0
is equivalent to the condition. (2) stated .in proposition .7.
Combmnmﬂ' pmpos1t10n 7, propomtmn 8 and theorem A, we have

COROLLAR& Let M be an ﬂ—dzmeﬂszonal compact mmzmal, anti- hola‘morp!zz'c

submanifold of cpirti/2 whose normal connection is flat. If the second funda-
mental Abax of M satisfies

A, A Sp(n—1)
at each point of M, then M is

T(S™ ()X X 8™ (7)), r,=/m/(n+1) A=1,+k) n+1=3"m,

where my, -+ , m, are odd numbers such that my, -, m,>1, p=k—1l.

As a special occurence, we consider the case p=1. Then we have

COROLLARY (Lawson({1]). Let M bz a compact, real minimal hypersurface of

CP("'H)/ 2 on whiclh the inequality

AbaA ‘<p—-1
holds. Then M is

#(sH( kf— l)xs"“"( \/ﬂ;f_eﬂl 1<k<n,

where k 1s an odd number.

Kyungpook University, Korea.
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