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MULTIPLE GENERALIZED PROLATE SPHEROIDAL WAVE
TRANSFORM AND ITS APPLICATION

By S.D.Sharma

0. Abstract

In the present paper the multiple generalized prolate spheroidal wave transform-
‘has been developed and its useful operational property has been discussed. As
an application of this new transform-we have considered the non-homogeneous
.cubical region. The source of heat generation lies inside it and is dependent
upon temperature, and the conductivity is variable,

1. Introduction

Recently, Gupta[5] has defined the generalized: Jacobi transform by the

equation

T{}=FoPo=[1,a-0%A+0° F (24" Deodr, WD

“where the generalized prolate spheroidal ‘wave function, QSE; B (¢, x), satisfies

.the differential equation [5, p. 104]:
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(1-2%) ix _9?5(“ (e, 2)+ [(8- cr)+(a'+5+2)x]—~—- ¢'(“ B(e, x)

+ %P (@ =161 P e, x) =0, (1.2)

"X(c) being the separation constants for every value of c. qbia'ﬁ ) (c,x) can be

eXpanded as

qﬁ(“ ﬁ)(c 1) = Z’da Be)p™ B)(x) (ll 3)

n+J

The coefficients d (c) can be determmed by a five term recursion formula in
.4 manner quite parallel to the case of prolate spheroidal wave functions [4].-

The inversion formula for this transform is given by Gupta (himself) as

o F4 P

f(x)= = # P (e, x), , | (1.4)
O N ©

where the normalizing factor, N¢ . (c), 1s given by
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(4.B) (py 0@t B+L 2 B oy P T(ntat147) ]“(n+j;+5+"1) -
Vo (=2 = Y ()] Cn+2j+a+B+1) I'(n+j+1)
1
“TatitatBrD) (1.5):

2. Representation theorem and inversion formula

THEOREM 1. If f(x,3,2) is continuous (and of bounded wvariaiion) over the
cubical region {(x,%,2) : —1<x"<1, -1<y<1, =1<z<1}, and if the mulliple
generalized prolate spheroidal wave transform of f(x,y,2) is given by the equation:.

T{f(x,9,2);(x,9,2)—(p.a.7t=f(p,q,7)

= filfilfj;l A=) 1= 1™ A= D™ A+ 0P 1+ 97 A+ 2)

X F (3.2 655 (0, 08 P, 67 P (r, Dddxdydz, @1
then |
T HFCp,a.7) s (b g, P)—(x, 3, 2D}=f(x,3,2)
&, o = - f(p,q,7r) _
_I ?EO 1’th=10 mz____’o Nr(:rh 451) (p) Ni‘fa- ﬁz) (q)Nf:"ar ﬁn)(r)
X $o P 9, 5) G (@ B, 2, (2.2):

at the dpoints of the cube at wnich f(x,y,2) is continuous.

PROOF. By generalized Fourier series [3], the function f(x,y,z) possesses a.

formal expansion given by

fy=2 = 5 D, 800,085 (4, )8 (r,2),

n,=0 n,=0 n,t_O 3
(—1<x<<l, —1<p<l, —1<z<1) (2.3)
Now, by grouping the terms in (2.3) so as to display the total coefficients of.

=¢Sif?" P)( p, x) for each n, we can write formally

fanD= 2 | Dy, 6,55 @B a3, (),

=0 [[n,=0 2y,=0 -

(2.4).

Normarlizin'g' the function géff“‘ﬁ’)( D, x) for all real values of p, we get

30 XD, 6.5 (g, 9 ¢ff“:-‘.9*) (7,2)
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Ni’-:fh 481) (p |
:Fﬂl(yr Z), S Y. oy S . ' : L ' (2. Sb)!

vl L= nM A+ f(x, 9,2 gefﬁf""*ﬁ‘) (px)dz,  (2.50):
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The right hand side of (2.5a) is a sequence of functions F nl( ¥.2), n,=0,1,...,

each represented by its double Fourier series on the left-hand side of (2.52) on
the square {(y,2) : —1<y<l1, —1<2z<1}, where the coefficients: |

E Dﬂl‘ﬂ:ﬂa “éah . (f Z)

‘.'1,,:0

of gbf:'“' B) (g, v) can be determined in a like manner to give us

- (a3 o .
— p ~ 1 —
ﬂ;FZU' 2\ HaMtg é (T Z) E s 51) (P)N( -, ( ) f_l :[1 ( x)

X (14221 =)+ 9)"f(x, 3, Z>¢f,fr"5’) (2, "M:(:“B:) @y

X qﬁf:“ Ps) (r, 2)dxdy, - (2.6a)
mng (Bs S2Ye (2. 65)
Again repeating the above outlined procedure, by eq. (2.1) we finally get
L .
D FCha,7) | (2.7)

N MMy Nﬁ?llﬁl)(p)Nf:?:. 52)(q)Nf:ra- B1) (7,)

Thus, by virtue -of eqns. (2.3) and (2.7), the inversion formula (2.2)
immediately follows.

3. Particular cases

(D) If a;=8,=0 (z'=1,|2, 3) and p=g=r=0, then the integral transform (2. 1)
reduces to the well known finite Legendre transform.

(i) If p=qg=7=0, then our transform (2.1) reduces to the well-known Jacobi
transform. |

() If at--—-ﬁi:—--%-(z':l, 2,3), =0, ¢x0, <0, then our transform (2.1)

reduces to the multiple finite Mathieu transform recently defined by me [6].
4. Operational property

THEOREM 2. If f(x,y,2) and its partial derivaiives are bounded over ithe
region {(x,9,2): —1<x<1, —-1<9<1, —1<z<1}, the generalized prolate
spheroidal wave transform of differential operator: .

CLP=-n T+ P @‘1 A - 0%t arnh §§]+<1—y)*“'<1+y>
3 « . S
x5 =™+ gyt f]+(l—z) ‘(1+z)
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+1 3f]

RO - | ‘
X5 (1= 2% 1+ 2P (PP D F D) (4D

exists and is given by
3 | I 2» }2 B M3 ' |
T {Lf(x, 59, 2)} = - [Xf"ﬁ)(ﬂﬂxi‘f ﬁ)(q)+xff N par.  A4D
provided that

f(x, 9, 2), g'; g'; g'; remain fzmte czt both the limils.

PROOF. By deflnltlon (2 1) we first evaluate

e a0t )

ﬁf f f (1-— y)a*(l-l—y)ﬁz(l z) a(l-i—z) [(1 )N (l-l—.ﬂt:)ﬁ1+1 gi]

—1 -1 -1
X ¢§j"’“ﬁ"@, 2 g (g, y)gesf,f“'ﬁ*’cr, 2)dxdydz

2

1 1 .
-1 f [ | Aa-0"a+0"a-n*a+n®a- 2%+ 2?
-1 —1

X (29,2 858, 2) 655 (q, )¢ P, 2Ydxdydz, (4.3)
=I,+1,, say. |

Now evaluating the x-integral of I , twice by 'parfs, we get

1 1
J'l ____f f (l_y)ai(l_'_y)ﬁicl_ Z)aa(l_l_ z)ﬁ!¢ﬁf2l 52)(4’ y) Qs’(;:xh 53)(r’ Z)
—1 —1
1

X[(I-—-‘x)“‘“(lﬂ)ﬁ‘ {ié(“‘ (b, 1) — =f(x,5,2) (b(‘x‘ B, x)dedz

—1

1

1 1
o [ f £y D {a+P -0 L glf p )

-1 -1
X(l_y)a':(l_{_y)ﬁ:(l z)ﬂfa(l_l_ z)ﬁa‘{b(al » B )(ﬁ. x) qb(ﬂ'n ﬁn)(q’ J’)
X@SC“‘ ‘8‘)(?‘, z)]d’xd ydz . o (4.4)

Since the first expressmn Wlthm curly: brackets vanishes . on both the limits

(because of prescrlbed condltlons) the rlght hand 51de of (4 4) reduces to

— g BYpFhar), - o T @.5)
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by virtue of equations (1.2) and (2.1).
Proceeding similarly, we obtain

T[(l—y)'“’(1+y)_ﬁ'-%-[(l—y)“'“(l_,_y)ﬁﬁl_%'_]_qzyz}

= =P F (poa, ), ' 46

and

{(1 )B4+ 2)" ~Bs 0 [(1 z)a',+1(1+ )5=+1 gf] 222f}

==X 7 (5, 0.7, )
Thus, by virtue of results (4.5), (4.6), and (4.7) we arrive at the result
(4.2).

D. Application in heat conduction

Here as an application of generalized prolate spheroidal wave transform we

consider a non-homogeneous insulated cubical region: -1<<x<1, -1<y<1,
—1<<2z<1, where u«(x,v,2,t) is the tempezrature function. The energy equation
1s given by
du _ 0 ou 3 4N
= (K'x T )+ (KJ, 3y )t —— (Kz T “Y+Q(x, 3, 2, 1). , (5. 1)

The thermal conduct1v1t1es K, ,K ’ and K  along the pr1nc1pal axes aré-
proportional to (l—xz), (l—yz) and (1—32), respectively, Z.e., K J,',=_K'0(1—J::2),,,.
2 2 B
K =K,(1-y),K =Ky1-2).
The source of heat generation, Q(x,y,2,7) depends upon temperature in the
form: -

0[(431_0'1) (51+a1)x] +K0[(52 az) (52'['“2)}'] ay

+K0[(53—a3)—(53+a3)z]-—0—2—— (25 +ay 72 u

+ Kozp-(x: yr Z)f(t).
The equation (5.1) thus becomes
ou 0% 9% | 3y
=K |(1-% +(1—y +(1-2z
i =Ko 1=2)-T+(1-5) oy + oX. 7

+{(51_al) (Bl’l‘a +2).1:'} +{(432 (1’2) (52+ag+2)y}T

+{(453"'-a3)'.'(183+a3+2)2}_6é,_-‘{p-x +qy_+r z'}u].
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where K,>0 and is constant. The ends x==+1,9==21 and z=+1 are insulated

because the conductivity. vanishes-there.
Now, we solve this equation under the boundary conditions:

(i) «(x,v,2,t)=0 at {=0, | " (5. 3)
(ii) K, gu =), at x==1 -
K% 0  at y=sl ' '
y ay Vs y==x1l) for t=0, | (5. 4)
ou _
K, ~ =(, at z—il)

(iil) u, —— 8u : %’ and -g—;‘- remain all finite over the boundaries, 7z.e. at x =1,

y—+1 z==%1.
Applying the transform (2.1) and its operatlonal property (4.2), the equatlon

(5. 2) now becomes

where # and Zﬂ' are the Lgenerallzed prolate sphermdal wave transforms

of the functions # and 7.
Thus, the appropriate solution of this equation is given by

=K 7 f f('r)exp[ [x(‘f‘" ﬁ)(p)+X£f='ﬁ2)(q}+X,E:r"ﬁ')(r)](t—-'r)}d?:. (5.6)

The inversion formula (2.3) yields

pa=Ky 2 2 St
A N B ) N PO (g N By

X P p, 1) P (g, )6 P, 2)d xd i, G.7)

where % is given by (5.6).

REMARK. The multiple generalized prolate spheroidal wave transform and its
operational property defined .in secs.2 and 3, respectively, can be further

extended to m-variables.
6. Conclusion

Finall)r, we conclude that on account of very general nature of kernal in
our transform, several other transforms obtained earlier follow as its particular
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«cases. The transform developed in this paper is also applicable to the problems
relating to spheroids. The special beauty of this transform is that it eliminates
.more than one variable at a time. This transform may also be useiul to obtain
.analytical expressions of interest for certain astrophysical situations involving
rotating black holes and radiation [1,2].
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