ALMOST POINTWISE PERIODIC SEMIGROUPS

By Younki Chae

The author investigated a structure theorem of a pointwise periodic semigroup on an arc [1]. In this paper, a structure theorem of an almost pointwise periodic semigroup on an arc is given. The results obtained are:

1. A compact semigroup S is almost pointwise periodic if and only if for each compact subset K of S, $K^2 \subseteq K$ implies $K^2 = K$.

2. Every almost pointwise periodic semigroup on an arc is a semilattice.

1. Introduction

A topological semigroup is a Hausdorff space with a continuous associative multiplication, denoted by juxtaposition [2], [3]. Throughout, a semigroup will mean a topological semigroup. An arc is a continuum with exactly two non-cutpoints. It is well known that any arc admits a total order and has one non-cutpoint as a least element and the other non-cutpoint as a greatest element [4]. It is supposed that an arc to have such a total order on it. We will denote an arc with end points a and b, $a < b$, by $[a, b]$ and if $x, y \in [a, b]$, $x < y$, then

$$[x, y] = \{t | x \leq t \leq y\}, \langle x, y \rangle = \{t | x < t < y\}.$$

A standard thread is a semigroup on an arc in which the greatest element is an identity and the least element is a zero. The real unit interval $[0, 1]$ under the ordinary multiplication is called the real thread, and the real interval $[1/2, 1]$ under the multiplication

$$xy = \max \left\{ \frac{1}{2}, \text{ ordinary product of } x \text{ and } y \right\}$$

is called the nil thread.

An element e of a semigroup is called an idempotent iff $e^2 = e$. If a semigroup S has a zero z, then $x \in S$ is called a nilpotent of S iff $x^n = z$ for some positive integer n.

Note that every element of the nil thread except 1 is a nilpotent.

The following lemma gives the structure of standard threads which will be found in [2].
LEMMA 1.1. Let S be a standard thread and let E be the set of all idempotents of S. If $\langle e, f \rangle$ is a component of $S - E$, then $[e, f]$ is isomorphic to either the real thread or the nil thread.

2. Almost pointwise periodic semigroups

DEFINITION. A semigroup S is termed almost pointwise periodic at $x \in S$ iff for each open set U about x, there is an integer $n > 1$ such that $x^n \in U$.

S is said to be almost pointwise periodic iff S is almost pointwise periodic at every $x \in S$.

LEMMA 2.1. Let K be a compact subsemigroup of a semigroup S. Then S is not almost pointwise periodic at every point of $K - K^2$.

PROOF. Since K is compact and since the binary operation in S is continuous, K^2 is compact. Let $x \in K - K^2$. Then there is an open set U about x such that $U \cap K^2 = \phi$. Now since $K^2 \subseteq K^2$ ($n \geq 2$), $x^n \in K^2$ ($n \geq 2$). This shows that $(x^2, x^3, \ldots) \cap U = \phi$, i.e., S is not almost pointwise periodic at x.

THEOREM 2.2. A compact semigroup S is almost pointwise periodic iff for each compact subset K of S, $K^2 \subseteq K$ implies $K^2 = K$.

PROOF. Suppose S is almost pointwise periodic and let K be a compact subset of S such that $K^2 \subseteq K$. If $K^2 \neq K$, by lemma 2.1, S is not almost pointwise periodic at each point of $K - K^2$. This contradicts the hypothesis and hence $K^2 = K$. Now suppose the condition holds. Assume that S is not pointwise periodic at a point $a \in S$. Then there is an open set U about a such that $U \cap (a^2, a^3, \ldots) = \phi$.

i.e., $x \notin (a^2, a^3, \ldots)$ (the closure of (a^2, a^3, \ldots)). Let us set

$P = (a^2, a^3, \ldots)^*$, $K = P \cup \{a\}$.

Since S is compact, K is a compact subset of S. By the compactness of P, one obtain $P^2 = ((a^2, a^3, \ldots)(a^2, a^3, \ldots))^* = (a^4, a^5, \ldots)^* \subseteq P$.

Then $K^2 = P^2 \cup aP \cup Pa \cup \{a^3\} \subseteq P = K - \{a\}$.

This shows that $K^2 \subseteq K$ and $K^2 \neq K$ which contradicts the assumption. Hence S is almost pointwise periodic.

COROLLARY 2.3. Every closed ideal of a compact almost pointwise periodic semigroup is full [1].

THEOREM 2.4. Every almost pointwise periodic standard thread is a semilattice.
PROOF. Let S be an almost pointwise periodic standard thread and let $\langle e, f \rangle$ be a component of $S-E$, where E is the set of all idempotents of S. By lemma 1.1, $[e, f]$ is isomorphic to the real thread or the nil thread.

Suppose $[e, f]$ is isomorphic to the real thread. Let $a \in \langle e, f \rangle$. Then $a^n < a^2 \ (n = 3, 4, \ldots)$. Since S is Hausdorff, there are open sets (b, c) and (p, q) about a^2 and a respectively such that $(b, c) \cap (p, q) = \emptyset$. Hence we have $(a^2, a^3, \ldots) \cap (p, q) = \emptyset$.

This contradicts the fact that S is almost pointwise periodic. Now suppose $[e, f]$ is isomorphic to the nil thread. Then every element of $\langle e, f \rangle$ is a nilpotent of $[e, f]$. Let $x \in \langle e, f \rangle$. Then there is the least positive integer m such that $x^m = e$. Let U_j be an open set about x such that $x \in U_j \ (j = 2, 3, \ldots, m)$ and let $U = \cap (U_j) \ (j = 2, 3, \ldots, m)$. Then $x \in U = U^0 = \{x^2, x^3, \ldots, x^m\} \cap U = \emptyset$.

If $p > m$, since $x^p = x^m x^{p-m} = e x^{p-m} = e$, there is an open set V about x such that $x^p = e \in V$. Let $W = U \cap V$. Then $x \in W = W^0 = \{x^2, x^3, \ldots\} \cap W = \emptyset$.

This is a contradiction since S is almost pointwise periodic. Hence E is dense in S. Since E is closed, we have $S=E$, i.e., S is a semilattice.

Kyungpook National University

REFERENCES