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FURTHER RESULTS ON GENERALIZED CLOSED SETS IN TOPOLOGY 

By William Dunham and Norman Levine 

1. Introduction 

Generalized cIosed (g-cIosed) sets in a topological space were introduced by 
Levine [5] in order to extend many of the important properties of cIosed sets to 

a larger family. For instance, it was shown that compactness, normality, and 

completeness in a uniform space are inherited by g-cIosed subsets. In the present 

paper, we continue the study of g-cIosed sets, obtaining characterizations in 

(2) and providing, in (3) , examples of common topological structures which, 

although not necessarily cIosed, must be g-cIosed (e. g. , derived sets, complete 

subspaces of uniform spaces, compact subsets and retracts of regular spaces). 

We prove a “generalized" Tietze Extension Theorem in (4) and apply this 

result, in theorem 5.3, to the problem of extending continuous, real-valued 

functions defined on compact subsets of completely regular spaces. Throughout 

the paper, many fam iIiar results, and perhaps some unfamiliar ones, are derived 

as coroIIaries. 

2. Characterizations of G-closed sets 

DEFINITION 2. 1. (Levine [5]) A subset A of a topological space is g-closed 

if c(A)CO when ACO and 0 is open. (Here “ c" denotes the cIosure operator.) 

THEOREM 2.2. The !ol!owùzg condt"tions are equivalent: 

(a) A is g-closed 

(b) !or each xεc(A) ， c(x)nA~tþ 

(c) c(A) \ A contains no non-emþty closed subsets 

PROOF. (a) implies Cb): Suppose xEc(A) . but c(x)nA=tþ. Then AC강c(x) 

(where 강 denotes the complement operator) , and so c(A)ζ강c(x) ， contradicting 

xεc(A). 

(b) ‘ implies (c): Let Fζc(A)\A with F cIosed. If there is an xεF， then, by 

(b) , tþ~c(x)nACFnAζ(c(A)\A) n A , a contradiction. We concludethat F=tþ. 

(c) imp1ies (a): If ACO and O is open, then c(A)n강O is a closed subset of 

c(A) \ A and thus is empty. Hence c(A)ζo and A is g-cIosed. 



170 William Dμnham and N orman Levine 

COROLLARY 2.3. A is g-closed z'!f A=F\ N , where F z's closed and N 

coηtains no non-empty closed subsets. 

PROOF. Necessity fo lIows from theorem 2.2(c) with F=c(A) and N = 

c(A) \ A. Conversely, if A=F\ N and ACO 、γith 0 open, then Fn강o is a 

closed subsct of N and thus is empty. Hence c(A)ζFCO. 

COROLLARY 2.4. In a T1-space , g-closed sets are closed. 

PROOF. If A is g-closed in a TCspace, theorem 2.2(c) implies c(A) \ A=Ø. 

Hence c(A) = A. 

REMARK 2.5. A discussion of spaces in which the closed sets and the g一

cIosed sets are identicaI the so called T 1 -spaces can be 
2 

and Dunham [1]. 

3. G-closed sets arising naturally in topology 

found in Levine [5) 

LEMMA 3. 1. Let A be a sμbset 01 a topological space with A' its deηfved set. 

and suppose A ’CO for 0 opeη• Theη A’ CO. 

PROOF. Suppose xεA" but x풍O. Then x졸A' and so, for some open set U. 

xεU and AnUC{x}. But xεA’ implies yεAγ~un강{x} for some y. Now. 

yεonu and yεA' and so ø~Anonun강{y}CAnUC{x}. It follows that xε0， 

a contradiction. 

THEOREM 3.2. In any topological space, derived sets are g-closed. 

PROOF. If A is any subset of a topological space with A'CO for 0 open. 

the previous lemma implies c(A')=A' UA"ζO. 

COROLLARY 3.3. Derived sets z'n a compact space are compact. 

PROOF. By the previous result, derived sets are g-closed, and, in [5] , theorem 

3. 1. Levine has shown that g-cIosed subsets of a compact space are compact. 

REMARK 3.4. A space X is said to be weakly Hausdorff if c(x)=c(y) whe

never there is a net S : D-• X with lim S=x and lim S=y. Of primary impor

tance is the fact that any regular space or any Hausdorff space 1S weakly 

Hausdorff (see Dunham [2] for details). We shall use this idea in the next four 

examples of g-closed sets. 

THEOREM 3.5. 11 A z's a compact sμbset of a weakly Hausdorfl space, theχ 
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A z's g-closed. 

PROOF. For xεc(A)， there is a net S: DI-• A with lim S=x and, by compac

tness, there is a subnet T : E-• A with lim T=a for some aεA. The weakly 

Hausdorff property implies c(a) = c(x) and thus aεc(x) nA. By theorem 2.2(b). 

A is g-closed. 

COROLLARY 3.6. A compact subset 01 a regular space t's g-closed and a 

compact sμbset 01 a Hausdorll space t's closed. 

PROOF. Use corollary 2.4, remark 3.4, and the previous result. 

THEOREM 3.7. II A z's a retract 01 a weakly Hausdorll space X , then A t's 

g-closed. 

PROOF. Let r: X-• A be the retraction and let xEc(A). Then there 

net S: D-• A with lim S=x. and it follows that lim S=lim roS=r(x). 

conclude that c(r(x))=c(x) and thus c(x)nA~ø. 

1S a 
찌Te 

COROLLARY 3.8. A retract 01 a regular space is g-closed aηd a retract 01 a 

Haμsdorll space z's closed. 

THEOREM 3. 9. Let 1: x-• Y be coηtt'nμous， wz'th Y a weakly Hausdorll space. 

and let Gf={(x.f(x)) : xεX} be the graph 01 κ Then Gf t's g-closed t'n XxY. 

PROOF. For (x.y)εc(아). there is a net S : D• Gf• denoted S(d)=(xd, I(xd)) , 
with lim S=(x.y). Then, by continuity, I(x) =lim/(xd) =y , and so c(!(x))=c(y). 

Hence (x. l(x))EGfn(c(x) xc(y)) =Gfnc({(x,y)}). and Gfis g-closed by theorem 

2.2(b). 

COROLLARY 3. 10. The graPh 01 a contz'nμous jiμnctz'on μ，h，ose range Ues t'n a 

regular space z's g-closed. In pa1’ tz'cular, t1le diagonal 01 a regular space is g

closed. 

THEOREM 3.11. Suppose (X, iV) z's a umform space wz'th ACX a complete 

subspace. Tken A is g-c!osed z'n the uχilorm topology. 

PROOF. For xεc(A) there is a net S : D-• A with lim S=x. Then S is A

Cauchy. and so lim S =a for some aεA. Since X is completely regular, it is 

weakly Hausdorff by remark 3.4. Hence aEc(x) nA and A is g-closed. 

REMARK 3. 12. By the previous result and Levine [5]. theorem 3. 4. we see 
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that complete subspaces of uniform (or pseudometric) spaces are g-closed, while 

g-closed subspaces of complete uniform (or complete pseudometric) spaces are 

complete. As an immediate consequence we have the familiar: 

COROLLARY 3.13. Complete subspaces 01 separated unilorm spaces or 01 ηzetric 

spaces are closed. 

THEOREM 3.14. Let (Y, d) be a pseudometric space and let B(X, Y) be the 

laηzz"ly 01 bounded maps Irom X to Y with σCf， g)=s때{dCf(x) ， g(x)):xεX} the 

pseudomet서c 01 μnilorm c01wergence 0π B(X, Y). Further, let ß: Y-• B(X, 
Y) be the natural embedding given by β(y)(x)=y lor all xεX. Then ß [Y] is 

g-closed in B(X, Y) wzïh the pseudoηzetric topology. 

PROOF. If I'εc(ß[Y]) ， then, for each natural number l'l, there is a yt/εY 

with σCf， β(Y'I)) <1/n. Fixing x，。εX， we assert that ßCf(xr))εc(f) nβ [Y] and 

it suffices to show aCf, βCf(xr)))=O. But, for any xεX and for;z arbitrary, we 

have d (f(x) , β(f(xr)) (x)) =dCf(x) , I(xr)) <dCf(x), Y,) +d(yt/' I(xr)) <a(/， β(Y，)) 

+a(ß(Yt/)' f) <2/n. Thus, a여Cf(xr)) , f) =0 and β [Y] is g-closed by theorem 

2.2 (b). 

COROLLARY 3.15. (Y, d) is complete ill (B(X , Y) , a) is complete. 

PROOF. Necessity is a standard result, and sufficiency follows by combining 

theorem 3.14 and remark 3.12 and noting that β is an isometry. 

4. A generalized Tietze extension theorem 

REMARK 4. 1. In this section we shall prove that “ closed" can be replaced by 

“g-closed" in the statement of the Tietze Extension Theorem. We begin by 

recaIIing a theorem of A. D. Taimanov: 

THEOREM 4.2. 11 ACX and 1: A-• Y z.s continuous, where Y z.s a compact, 

Hausdorll space, then the lollowing are equivale까: 

(a) 1 has a contz"1zuous extension to c(A) 

(b) for every G1 and G2, closed and disjoint in Y , 

and /-1 [G2] are disjoint in X. 

tke closztres of f 1 [Gl] 

PROOF. See Taimanov [7]. (in Russian) or Engelking [3] , theorem 3.2.1. 

THEOREM 4.3. 11 AζX is g-closed and 1: A-• Y is continμoμs， where Y is 

compact and Hausdorll, then there exists a continuous F: c(A)-• Ywith F A=I. 
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PROOF. Let G1 and G'}. be closed, disjoint subsets of Y. Defining D= c(A) n 

cCFl[Gl])nc(f-l[G2]), we assert that Dζ강A. For, if xεnnA， then for z"= 

1, 2, we have x든Anc(f 1 [Gz] ) = CA(f l [Gz] ) =f 1 [Gt] by continuity, and thus 

f(x)εG1nG2， a contradiction. Hence D is an X-closed subset of c(A) \ A and so 

D=껴 by theorem 2.2(c). The continuous extension of f to c(A) fo l1ows from 

theorem 4. 2. 

COROLLARY 4.4. The þrevious result holds zf “ comþact" is reþlaced by 

“locαII y co mþact". 

PROOf. If Y is local1y compact and Hausdorff, we let Y‘=YU{∞} be the one

point compactification of Y. Then Y용 is a compact, Hausdorff space and so there 

is a continuolls F : c(A)-• Y% 1Vlth FlA=f· But F l [{∞}] is a closed subset of 

c(A) \ A and thus is cmpty. Hence F: c(A)--• Y is the desired extension. 

THEOREM 1.5. (Generalized Tietze Extension Theorem) A contiχμous， γeal

valued lunctioJZ delined 01l a g-closed subset 01 a πormal sþace has a continuous 

extellSiO iZ to the eμtire sþace. 

PROOF. If A is a g-clos념 subset o[ the normal space X and f: A-• R is 

continuous, then thεre is a continuous F: c(A) - • R with FIA=f by corol1ary 

4.4. The Tietzc Extcnsion Theorem then provides a continuous F싸 :X-• R 

with F펙 cCA)=F. Thus F센 A=f. 

COROLLARY 4.6. A continuous, reαl-valμed functio lZ defined on a comþlete 

subsþace 01 a þseud 0ηzetic sþace has α c07ZtimlOltS exteμsion to the enth’ e space. 

PROOF. A pseudo!πletric space is normal and a complete subspace is g-closed 

by rcmark 3. 12. 

REMARK 4.7. “ Pseudometric" can not be replaced by “ uniform" in the previous 

result. Let /1 be an uncountable set and, for each αε/1， let (X a' 2'1 a) be the 

reals with the usual uniformity. Then (X, 2'1) = x {(Xα， 2/g) : αε/1} is a complete 

uniform space. By Stone [6] , X with the uniform topology is not normal, and 

80 there is a closed (and thus complete) subspace A of X and a continuous f: 
A-• R which can not be extended continuously to all of X. 

5. An applieation 

REMARK 5. 1. We conclude this paper by applying the concepts developed 
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above to the problem of extending continuous, reaI-valued functions from compact 

subsets of a topologicaI space to the space itself. We shaIl use the foIlowing 

characterization of complete regularity, which is the non-T1 analogue of the 

weIl-known result that a space is Tychonoff (i. e. , completely regular and T 1) 

iff it is homeomorphic to a subspace of a compact, Hausdorff space: 

THEOREM 5.2. A space is completely regular iff U z's homeomorPhic to a 

subspace of a compact, regular space. 

PROOF. See Dunham [2] , coroIlary 7.8. 

THEOREM 5.3. A con tz"nuous, real-νalμed func tz"on defined on a coηzpact subset 

of α completely regular space has a continuous extension to the eηtire space. 

PROOF Let A be a compact subset of the completely regular space X and Iet 

/ : A • R be continuous. By theorem 5.2, there is a compact, regular space 

X l!- and an h : X-• X* so that h : X-• h [X] is a homeomorphism. We note 

that: 

(i) X을 is compact and regular and thus is normal and regular. 

(ii) h [A] is compact in X* and thus is g-closed in X* by coroIlary 3.6. 

(iii) h I A : A-• h [A] is a homeomorphism and so /0 (h I A) -1 : h [A]-• R is 

contmuous. 

By (i) (iii) and theorem 4.5, there is a continuous F*: X*-• R with 

F*I',[A] =fo(hI A) 一 1. Define F: X-• R by F= F*oh. Then F is continuous, 
real-valued, and, for xεA， F(x)= F* (h(x))=f(x). Thus F is the desired 

extension of f. 

COROLLARY 5. 4. A contiχμous， real-valued fU 1ZcNon defined on a compact 

sμbset 0/ a uniform (or regμlar， 1Zormal; or regμlar pa1'acoηzpact; or regμlar， 

second axiom) space has a contz'nuous extension to the entire space. 

PROOF. AIl such spaces are completely regular. 

REMARK 5.5. In theorem 5. 3, “ completely regular" can not be weakened to 

“ regular". Hewitt [4] provides an example of a regular, T 1 space on which the 

only continuous, real-valued functions are constant. Thus. any non-constant, 

Teal-valued function defined on a two-point subspace is continuous but has no 
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continuous extension to the entire space. 
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