ON STRUCTURES OF LEFT BIPOTENT NEAR RINGS

By Y.S. Park and W.J. Kim

1. Introduction

Throughout this paper N will mean a zero-symmetric near ring (that is, $a0=0$ for all $a\in N$) with or without identity, which satisfies the right distributive law. N is said to be left bipotent if $Na=Na^2$ for all $a\in N$, and an s-near ring if $a\in Na$ for all $a\in N$ ([6]). These types of near rings were introduced by J.L. Jat and S.C. Choudhary.

For convenience, we quote their results.

THEOREM 1.1. If N is left bipotent, the following are equivalent.

1. N is an s-near ring
2. N has no non-zero nilpotent elements and
3. N is regular (i.e. for any $a\in N$, there exists $a'\in N$ such that $aa'a=a$)

On the other hand, Howard E. Bell proved in [7] that

THEOREM 1.2. If N has no non-zero nilpotent elements, it is isomorphic to a subdirect sum of near rings with no non-zero divisors of zero.

In this paper we investigated structures of left bipotent near rings and some elementary properties of near rings.

For undefined terminologies, we refer to [8].

2. Results

LEMMA 2.1. Homomorphic images of left bipotent s-near rings are also such.

PROOF. Let $f: N\rightarrow N'$ be a homomorphism of near rings N onto N', and let N be a left bipotent s-near ring. If $a\in N'$, there exists $b\in N$ such that $f(b)=a$. By assumption, we have $Nb=Na^2$. Then $f(Nb)=f(N)f(b)=N'a$ and $f(Nb^2)=f(N)f(b)^2=N'a^2$. Thus $N'a=N'a^2$. Now since $b\in Nb$, we have $a=f(b)\in f(Nb)=N'a$.

PROPOSITION 2.2. Let N be a left bipotent s-near ring. Then it is isomorphic
PROOF. In view of Theorem 1.1, 1.2, and Lemma 2.1, we may assume that each \(N_i \) is a left bipotent s-near ring with no non-zero divisors of zero.

For each \(i \), if \(N_i \) has a non-zero distributive element, then by [6] it is a near field. Now if \(N_i \) has no such an element, for any \(0 \neq r \in N_i \), there exists \(r' \in N_i \) such that \(rr' = r \) by Theorem 1.1. Putting \(e = rr' \), \(e \) is an idempotent. Then for each \(x \in N_i \), we have \((xe-x)r = xee - exr = xrr - xr = 0\). Since \(N_i \) has no nonzero divisors of zero, we have \(xe = x \). Hence \(e \) is a right identity for \(N_i \).

We observe that homomorphic images of distributively generated (d.g.) near rings are d.g.. Thus a d.g. left bipotent s-near ring is isomorphic to a subdirect sum of near fields.

COROLLARY 2.3. Let \(N \) be left bipotent with 1. \(N \) is isomorphic to a subdirect sum of near fields.

PROOF. Since an epimorphism carries identity to identity, each subdirect summand of \(N \) endowed with an identity. Obviously an identity is a distributive element, so the proof is immediately established by Proposition 2.2.

COROLLARY 2.4. A left bipotent near ring with 1 has commutative addition.

PROOF. By Corollary 2.3, the proof is trivial.

PROPOSITION 2.5. A left bipotent near ring with 1 is a ring iff it is d.g..

PROOF. \((\Rightarrow)\) Clear.

\((\Leftarrow)\) With the aid of Corollary 2.4, we need only the left distributive law. Let \(a, b, c \in N \) and put \(a = a_1 + \cdots + a_n \), where each \(a_i \) is distributive. Then we have

\[
a(b+c) = (a_1 + \cdots + a_n)(b+c)
= a_1(b+c) + \cdots + a_n(b+c)
= a_1b + a_1c + \cdots + a_nb + a_nc
= (a_1b + \cdots + a_nb) + (a_1c + \cdots + a_nc)
= (a_1 + \cdots + a_n)b + (a_1 + \cdots + a_n)c
= ab + ac.
\]
By a left annihilator of \(r \in N \), we mean the set
\[
I(r) = \{ x \in N | xr = 0 \}
\]
It is immediate that \(I(S) = \bigcap_{s \in S} I(s) \) for any non-empty subset \(S \) of \(N \). Analogously we may define right annihilators.

It is easily seen that left annihilators are left ideals and left annihilators of \(N \)-subgroups are ideals. But right annihilators are only closed under multiplications of elements of \(N \) on the right hand side.

Hereafter, for any non-empty subsets \(A \) and \(B \) of \(N \),
\[
AB = \{ ab | a \in A \text{ and } b \in B \}
\]

Proposition 2.6. If \(N \) has non-zero nilpotent elements, \(I(S) \) is an ideal for every non-empty subset \(S \) of \(N \).

Proof. We need only to show that \(I(S)N \subseteq I(S) \). Let \(x \in I(S) \) and \(s \in S \). Then \(xs = 0 \) implies \((sx)^2 = s(xs)x = 0 \). Hence \(sx = 0 \) by assumption. For any \(r \in N \), \((xr)^2 = xr(xr)r = 0 \) implies \(xr = 0 \). Thus \(xr \in I(S) \). Hence \(xr \in I(S) = \bigcap_{s \in S} I(s) \). Therefore \(I(S)N \subseteq I(S) \).

In view of Theorem 1.1, we immediately have

Corollary 2.7. In a left bipotent \(s \)-near ring, left annihilators are ideals.

Proposition 2.8. Let \(B \) be a minimal \(N \)-subgroup of \(N \), then either \(B^2 = 0 \) or there exists \(e^2 = e \in B \) such that \(B = Ne \).

Proof. If \(B^2 \neq 0 \), there exists \(0 \neq b \in B \) such that \(Bb \neq 0 \). Since \(Bb \) is an \(N \)-subgroup and \(0 \neq Bb \subseteq B \), \(Bb = B \). Now let \(I(b) = \{ r \in N | rb = 0 \} \) be the left annihilator of \(b \) in \(N \). Then \(I(b) \cap B = 0 \).

Now \(eb = b \) for some \(0 \neq e \in B \), \(e^2 = eb \). Thus \((e^2 - e)b = 0 \). Therefore \(e^2 - e \in I(b) \cap B = 0 \), so \(e^2 = e \). Thus we have \(B = Ne \) by the minimality of \(B \).

Again by Theorem 1.1, we have

Corollary 2.9. In a left bipotent \(s \)-near ring, every minimal \(N \)-subgroup of \(N \) has the form \(Ne \) for some \(e^2 = e \in N \).

Lemma 2.10 If \(N \) has 1 and every \(N \)-subgroup of \(N \) is finitely generated, then \(N \) has the maximum condition on \(N \)-subgroups.
PROOF. Let \(A_1 \subset A_2 \subset \cdots \) be a chain of \(N \)-subgroups of \(N \). We set \(A = \bigcup_{i=1}^{\infty} A_i \). Then \(A \) is an \(N \)-subgroup of \(N \). Now let \(\{ a_1, \ldots, a_k \} \subset A \) be a generating set of \(A \). Then \(\{ a_1, \ldots, a_k \} \subset A_n \) for some \(n \in \mathbb{Z}^+ \). Hence \(A \subset A_n \subset A \). Therefore \(A_n = A_{n+1} = \cdots \) as required.

In a d.g. near ring, it is known that an \(N \)-subgroup of \(N \) is a left ideal iff it is a normal subgroup of \((N, +) \).

Lemma 2.11. Let \(N \) be d.g. and let \(A, B \) be left ideals of \(N \), then \(A + B \) is also a left ideal.

Proof. Since \(A \) and \(B \) are normal subgroup of \((N, +) \), we see that \(A + B = B + A \) is also a normal subgroup of \((N, +) \). Now it suffices to show that \(A + B \) is an \(N \)-subgroup of \(N \).

Let \(r \in N \). We may put \(r = r_1 + \cdots + r_n \), where each \(r_i \) distributive or anti-distributive. For any element \(a + b \in A + B \),

\[
\begin{align*}
 r(a + b) &= (r_1 + \cdots + r_n)(a + b) \\
 &= r_1(a + b) + \cdots + r_n(a + b).
\end{align*}
\]

For each \(1 \leq i \leq n \), if \(r_i \) is distributive, \(r_i(a + b) = r_ia + r_ib \in A + B \), and if \(r_i \) is anti-distributive, \(r_i(a + b) = r_ib + r_ia \in B + A = A + B \). In any way \(r_i(a + b) \in A + B \) for \(1 \leq i \leq n \). Therefore \(r(a + b) \in A + B \) as required.

Proposition 2.12. Let \(N \) be d.g. with 1. If every additive subgroup of \(N \) is normal then \(N \) has the maximum condition on \(N \)-subgroups iff every \(N \)-subgroup of \(N \) is finitely generated.

Proof. (\(\Leftarrow \)) It is already shown in Lemma 2.10.

(\(\Rightarrow \)) Under the hypothesis, the two concepts \(N \)-subgroup and left ideal coincide. So we turn the proof on left ideals.

Let \(A \) be a left ideal of \(N \). Consider all finitely generated left ideals of \(N \) contained in \(A \). By assumption, the set contains a maximal element, say, \(B \).

Let \(a \in A \) and consider \(B + Na \). By assumption and Lemma 2.11, \(B + Na \) is a left ideal and \(B \subset B + Na \subset A \). Then \(B = B + Na \) by the maximality of \(B \). Hence \(a \in B \) and consequently \(A = B \).
REFERENCES

