Kyungpook Math. J. Volume 20, Number 2 December, 1980.

Υ.

A NOTE ON LEVITZKI RADICAL OF NEAR-RING

By M.C. Bhandari and P.K.Sexana

Levitzki [5] has studied locally nilpotent rings to define the radical of a general ring. In this note we extend it to the case of near-rings. This provides a natural example of an *F*-radical to support the work of Scott [7] and Saxena and Bhandari [6]. It is shown that unlike rings, the locally nilpotent radical of a near-ring need not contain every locally nilpotent one side ideal. An example is given to show that the result of Herstein; "the set of all nilpotent elements of a ring *R* form an ideal if $(xy-yx)^n = 0$ for all *x*, *y* in *R* and for some fixed positive integer *n*" does not hold for near-rings. A result of Amitsur [3] for rings is extended for a class of distributively generated near-rings.

An algebraic system $N = (N, +, \cdot, 0)$ is called a *near-ring* if (i) (N, +, 0) is a group, (ii) (N, \cdot) is a semi-group, (iii) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all a, b, c in N and (iv) $0 \cdot a = 0$ for all a in N. A subset I of N is said to be an *ideal* of N if (i) (I, +) is a normal subgroup of (N, +) (ii) (a+x)b-ab belongs to I for all a, b in N and x in I and (iii) $ax \in I$ for all $a \in N$ and $x \in I$. If (i) and (ii) are satisfied then I is called a *right ideal* of N. For other elementary properties

of near-rings we refer to [7].

A near-ring N is said to be *locally nilpotent* if every finite subset of N is nilpotent. A distributively generated (d.g.) near-ring N is locally nilpotent if and only if subnear-ring generated by every finite subset of N is nilpotent. For, let S be a generating set of N, whose every finite subset is nilpotent and let $F = \{a_1, a_2, \dots, a_n\}$ be a finite subset of N. Then the set $P = \{\pm s \mid s \text{ is} in S \text{ and appears in the the representation of some <math>a_i \in F\}$ is a finite subset of S, and hence $P^m = (0)$ for some natural number m. We observe that [F], the subring generated by F is $\bigcup_{i=0}^{\infty} S_i$ where $S_0 = FU - F$, $S_n = \{x : x \text{ is in } N \text{ and} is a finite sum of finite products of elements from <math>S_{n-1}\}$, $n=1, 2, 3, \dots$. It is easy to see that $S_i^m = 0$ for all $i=1, 2, \dots$, and hence $[F]^m = 0$. The converse is obvious. However the two statements need not be equivalent for arbitrary near-

M. C. Bhandari and P. K. Sexana ٤84

rings. Analogous to rings [3] it is easy to see that a near-ring N is locally nilpotent, if and only if I and N/I are locally nilpotent for some ideal I of N. Thus the sum of two locally nilpotent ideals is locally nilpotent. Therefore L(N), the sum of all locally nilpotent ideal containing every other locally nilpotent ideal with L(N/L(N)) = (0). Hence we have

THEOREM 1. The class of all locally nilpotent near-rings is a hereditary

radical class.

L(N) is called the Levitzki radical of N. For any universal class C, local nilpotence gives rise to a C-formation radical [6]. In fact, the class $\{(A, N) | A\}$ is locally nilpotent ideal of N, $N \in C$ is a C-formation radical class. The proof of the following characterization of L(N) in terms of prime ideals is similar to that for rings [3].

THEOREM 2. If N is a near-ring, then $L(N) = \bigcap \{P \mid P \text{ is a prime ideal with}\}$ $L(N/P) = (0)\}.$

As an immediate corollary, we have the following:

THEAREM 3. Every near-ring N with L(N) = (0) is isomorphic to a subdirect sum of prime near-rings with Levitzki Radical (0).

The relationship of locally nilpotent radical with various other radicals is given by the chain.

 $S(N) \subset l(N) \subset L(N) \subset U(N) \subset J_0(N) \subset D(N) \subset J_1(N) \subset J_2(N)$ where S(N) is the sum of all nilpotent ideals of N, l(N) is the intersection of all prime ideals of N, called *lower nil radical*, U(N) is the sum of all nil ideals of N, called upper nil radical, and D(N), $J_0(N)$, $J_1(N)$, $J_2(N)$ are as defined in [1]. If I is a nil ideal of a near-ring N satisfying ba=0 whenever ab=0 for all a, b in I, then ab=0 implies axb=0 for all a, b in I, x in N and hence $ax_1ax_2\cdots ax_{n-1}a$ =0 for x_1, x_2, \dots, x_{n-1} in N whenever $a^n = 0$, a in I. Thus if $F = \{a_1, a_2, \dots, a_n\}$ is a finite subset of N, then $F^{m_0}=0$, where $m_0=(m-1)n+1$, $m=\max\{n_1,n_2,\cdots,n_n\}$ n_n , n_i being the index of nilpotency of a_i . We have thus proved:

PROPOSTION 4. If N is a near-ring satisfying ab=0 implies ba=0 for all a, b in N, then L(N) = U(N).

It is observed that for a d. g. near-ring the condition given in Proposition 1 can be sharpened by $s_1 s_2 = 0$ implies $s_2 s_1 = 0$ for all s_1, s_2 in S. Another sufficient

A Note on Levitzki Readical of Near-Ring 185

condition for the equality of L(N) and U(N) is as follows:

PROPOSITION 5. If N is a near-ring with identity satisfying d.c.c. on finitely generated nil right N-subgroup then L(N)=U(N).

PROOF. Let I be a nil right N-subgroup of N-subgroup of N and let J be any finite subset of I. For $n=1, 2, 3, \dots$, let \overline{J}_n denote the right N-subgroup

of N generated by $J^n = \{a_1 a_2 \cdots a_n | a_i \in J\}$. We observe that $\overline{J}_1 \supset \overline{J}_2 \supset \overline{J}_3 \supset \cdots$ is a descending chain of finitely generated nil right N-subgroups and hence, $\overline{J}_m = \overline{J}_{m+1} \cdots = \overline{J}_{2m}$ for some *m*. If $\overline{K} = J_m \neq (0)$, and \overline{K}_2 is the right N-subgroup generated by K^2 , then $K \supset \overline{K}_2 \supset \overline{J}^m$, $J^m = J^{2m}$, and hence $0 \neq K \supset \overline{K}_2 \supset \overline{J}_{2m} = \overline{J}_m = K$ giving $K_2 \neq (0)$, $K = \overline{K}_2$. By Zorn's Lemma, there exists a non zero minimal N-subgroup *M* generated by finite number of elements of *I*, and $M \cdot K \neq (0)$. Thus $m \cdot K \neq (0)$ for some *m* in *M*. If $(m \cdot K) \cdot K = (0)$, then $K \cdot K \subseteq \text{Ker } \theta$, where $\theta : N \rightarrow N$ is a homomorphism defined by $\theta(x) = mx$ for all x in *N*, and hence $K = \overline{K}_2 \subset \text{Ker } \theta$, contradicting $m \cdot K \neq (0)$. Thus $(m \cdot K) \cdot K \neq (0)$, and therefore $m \cdot K = M$ by minimality of *M*. Since $k \in K \subset I$, $m = mk = mk^2 = \cdots = 0$. This contradiction proves that $K = \overline{J}_m = (0)$, and hence $J^m = (0)$. Thus every finite subset of *I* is nilpotent, and hence *I* is locally nilpotent.

It is seen that for a near ring N satisfying d. c. c. on nil N-subgroups, S(N) = l(N) = U(N) = L(N). In this case J is replaced by I in the proof of Proposition

2. Unlike rings, Levitzki radical L(N) of a near-ring N need not contain every locally nilpotent one sided ideal.

EXAMPLE 1. Consider $G=(S_9, +)$, the symmetric group over 9 symbols. Let T be the near-ring generated by all inner automorphisms of G. Then (T, +, 0)is a finte simple d. g. near ring with identity. For each x in T define $\theta_x: T \to T$ by $\theta_x(y)=xy$ for all y in T. Then θ_x is an endomorphism. Let N be the d. g. near-ring generated by the set $\{\theta_x | x \text{ is in } T\}$. Then N is a finite d. g. near-ring with identity and L(N)=(0) [4]. But the intersection of all maximal right ideals of N is a nonzero locally nilpotent right ideal, which is not a two sided ideal [4]. Locally nilpotence of rings has a further interesting feature (given by Amitsur): If there exists a fixed positive integer n such that $x^n=0$ for all x in the ring, then the ring is locally nilpotent. The corresponding result holds for d. g. near-rings with n=2, and for a class of d.g. near-rings with n=3.

186 M.C. Bhandari and P.K. Sexana

THEOREM 6. If N is a d.g. near-ring with $x^2=0$ for all x in N, then N is locally nilpotent.

PROOF. Let S be a multiplicative semigroup generating N. For s_1 , s_2 in S,

$$0 = (s_1 + s_2)^2 = s_1^2 + s_2 s_1 + s_1 s_2 + s_2^2 = s_2 s_1 + s_1 s_2^{-1}$$

Thus

(1) $s_2 s_1 = -s_1 s_2$ for all s_1 , s_2 in S.

It can be easily shown that (1) holds for all s_1 , s_2 in SU-S. If $F = \{x_1, x_2, \dots, x_m\}$ is a finite subset of N, then $x_i = \sum_{j=1}^{r_i} t_{ij}$; t_{ij} in SU-S for all i, j. Hence in view of (1), $F^{m_0} = (0)$ where $m_0 = r_1 + r_2 + \dots + r_m + 1$. Thus N is locally nilpotent.

THEOREM 5. Let N be a d.g. near-ring with generating set S. If $x^3=0$ for all x in N and $s^2=0$ for all s in S, then N is locally nilpotent.

PROOF. For s_1 , s_2 in S, $0 = (s_1 + s_2)^3 = (s_1^2 + s_2 s_1 + s_1 s_2 + s_2^2) (s_1 = s_2) = s_1 s_2 s_1 + s_2 s_1 s_2$. Therefore

(2) $s_1s_2s_1 = -s_2s_1s_2$ for all s_1, s_2 in S. It is easy to varify that the relation (2) holds for all s_1, s_2 in SU-S. We now make an observation that any product of the form $y = \cdots s_1 \cdots s_1 \cdots s_1 \cdots s_1$, where s_1 is in SU-S and . represents some element of SU-S, is zero. For, by (2),

$$y = \cdots s_{1} (s_{r_{1}} s_{r_{2}} \cdots s_{r_{j}}) s_{1} \cdots$$

$$= - [\cdots (s_{r_{1}} s_{r_{2}} \cdots s_{r_{j}}) s_{1} (s_{r_{1}} s_{r_{2}} \cdots s_{r_{j}}) \cdots]$$

$$= - [\cdots s_{r_{1}} s_{r_{2}} (s_{r_{3}} s_{r_{4}} \cdots s_{1} s_{r_{1}}) s_{r_{2}} \cdots]$$

$$= \cdots s_{r_{1}} (s_{r_{3}} s_{r_{4}} \cdots s_{1} s_{r_{1}}) s_{r_{2}} (s_{r_{3}} \cdots s_{1} s_{r_{1}}) \cdots$$

$$= - [\cdots s_{r_{1}} (s_{r_{4}} \cdots s_{r_{j}} s_{1} s_{r_{1}} s_{r_{2}}) s_{r_{3}} (s_{r_{4}} \cdots s_{r_{3}}) \cdots$$

Hence, repeating this process j+1 times leaving first s_{r_1} fixed, we get

$$y = \pm \left[\cdots s_{r_1} s_{r_1} \cdots \right] = 0.$$

Now, let $P = [x_1, x_2, \dots, x_m]$ be a finite subset of R. Each x_i is of the form $x_i = \sum_{j=1}^{n_i} s_{i_j} s_{i_j}$ in SU-S for all i, j. Then $P^n = 0$ with $n = r_1 + r_2 \dots + r_m + 1$. Hence R is locally nilpotent.

A Note on Levitzki Radical of Near-Ring

In a similar way, it can be proved that a d.g. near-ring N satisfying $x^n = 0$ for all x in N, n fixed positive integer, and (2), is locally nilpotent. Herstein has proved the following result.

THEOREM ([3]). If there exists a fixed positive integer n such that $(xy-yx)^n = 0$ for all x, y in N, then the set of all nilpotent elements of N is an ideal.

This need not hold for near-rings.

EXAMPLE 2. Let $N = (S_3, +)$ be the symmetric group on three elements say $N = \{0, a, x, 2x, a+x, x+a | + \text{ is the composition, } a = (1, 2), x = (1, 2, 3)\}$. Define multiplication \cdot in N by

$$z_1 \cdot z_2 = \begin{cases} z_2, & \text{if } z_1 = a + x; \\ 0, & \text{otherwise.} \end{cases}$$

Then N is a near-ring ([2]) and $(uv - vu)^2 = 0$ for all $u, v \in N$. But the set of nilpotent elements, {0, a, x+a, x, 2x}, is not an ideal of N.

PROPOSITION 7. If R is a locally nilpotent simple d.g. near-ring, then $R^3 = (0)$.

PROOF. Let $R^3 \neq (0)$. Then there exists x in R such that $R \times R \neq (0)$. Consider $\langle R \times R \rangle = \{ \sum_{f} (-m_i + a_i x s_i + m_i); a_i, m_i \text{ are in } R, s_i \text{ in } SU - U \}$, where S generates R. Then $(0) \neq \langle R \times R \rangle$ is a two sided ideal of R generated by $R \times R$. Hence $\langle R \times R \rangle = R$. So $x = \sum_{i=1}^{k} (-m_i + a_i x s_i + m_i)$ for some m_i , a_i in R and s_i in SU - S. Consider $F = \{a_i, s_i \mid \text{ where } a_i, s_i \text{ appear in the representation of } x \}$. Certainly F is a finite subset of R and so $F^n = (0)$ for some positive integer n. Now,

$$\begin{aligned} x &= \sum_{i=1}^{k} (-m_{i} + a_{i}xs_{i} + m_{i}) \\ &= \sum_{i=1}^{k} (-m_{i} + a_{i}(\sum_{i=1}^{k} (-m_{i} + a_{i}xs_{i} + m_{i}))s_{i} + m_{i}) \\ &= \sum_{i=1}^{k} (-m_{i}^{(1)} + a_{i}^{(1)}xs_{i}^{(1)} + m_{i}^{(1)}); \text{ where } a_{i}^{(1)}, s_{i}^{(1)} \text{ are in } F^{2} \\ &= \sum_{i=1}^{k} (-m_{i}^{(n)} + a_{i}^{(n)}xs_{i}^{(n)} + m_{i}^{(n)}); \text{ where } a_{i}^{(n)}, s_{i}^{(n)} \text{ are in } F^{n} \\ &= 0. \end{aligned}$$

Hence $R = (0)$. Thus $R^{3} = (0)$.

188 M.C. Bhandari and P.K. Sexana

COROLLARY 8. If R is a simple d.g. near-ring which is locally nilpotent, then R^2 can not be an ideal of R. (For simple near-rings we assume $R^2 \neq (0)$.

> Department of Mathematics Indian Institute of Technology Kanpur-208016, INDIA.

Regional Engineering College, Silchar, Assam, INDIA.

REFERENCES

- [1] Betsch, G., Struktursatze für fastringe. Inaugurat Dissertation, Eberhard Karls Universitat zu Tubingen 1963.
- [2] Clay R. J., The near-rings on groups of low order, Math. Zeitschr, 104(1968), 364-371.
- [3] Divinski, N.J., Rings and radicals, Univ. of Toronto Press, Toronto 1965.
- [4] Laxton, R.R., Prime ideals and ideal-radical of a distributively generated near-ring, Math. Zeitschr, 83(1964), 8-17.
- [5] Levitzki, J., On the radical of a general ring, Bull. Amer. Math. Soc., 49(1943), 462-466.
- [6] P. K. Saxena and M. C. Bhandari, Lower formation radical for near-rings, Kyung-

pook Math. J., 18(1978) 23-29.

[7] Scott, S.D., Formation radicals for near-rings, Proc. London. Math Soc. 25(1972), 441-464.

· · ·

·* · - · ·