ON DIRECT INJECTIVE MODULES

By Younki Chae and Joongsung Kwon

1. Introduction

The concept of direct injectivity was introduced by W.K. Nicholson([3]). We know that injective modules are direct injective and its converse is not true in general. For instance, the \mathbb{Z}-module \mathbb{Z}_4 does not imply the direct injectivity, for the \mathbb{Z}-module \mathbb{Z} is not direct injective but quasi-injective.

In this paper, we investigate properties of direct injective modules. Throughout this paper M always denotes an R-module.

2. Results

DEFINITION 2.1. An R-module M is said to be direct injective if and only if given direct summand D of M with injection $1_D : D \rightarrow M$ and a monomorphism $k : D \rightarrow M$, there exists $f \in \text{End}(M)$ such that $f \circ k = 1_D$.

PROPOSITION 2.2. For an R-module M, M is direct injective if and only if for submodules A,B of M, B-direct summand of M and any monomorphism $\Phi : M/B \rightarrow A$, there exists $\Psi \in \text{Hom}_R(M,A)$ with $\Psi \circ \Phi = \nu$, where $\nu : M/B \rightarrow M$ is the canonical injection.

PROOF. Assume that M is direct injective. Suppose B is a direct summand of M. Then for canonical injection $\nu : M/B \rightarrow M$ and a monomorphism $\Phi : M/B \rightarrow A$, there exists a homomorphism $g : M \rightarrow M$ such that $g \circ i \circ \Phi = \nu$. Put $\Psi = g \circ i$, then Ψ is the required. The converse implication is quite obvious.

The proof of the following proposition is similar to that of proposition 2.3. in [4].

PROPOSITION 2.3. A direct summand of a direct injective module is direct injective.

PROPOSITION 2.4. If αM is a direct summand of M for each $\alpha \in \text{End}(M)$, then M is direct injective.

REMARK. The reverse of the above proposition 2.4. is not true in general.
Let $f : \mathbb{Z}_4 \to \mathbb{Z}_4$ be a homomorphism such that $f(x) = \begin{cases} 0 & \text{if } x = 0, 2. \\ 2 & \text{if } x = 1, 3. \end{cases}$

Then $f(\mathbb{Z}_4) = \{0, 2\}$ is not a direct summand of \mathbb{Z}_4.

Corollary 2.5. Every completely reducible module is direct injective.

Proof. M is completely reducible if and only if every submodule of M is a direct summand of M ([2]). It follows that a completely reducible module is direct injective.

Corollary 2.6. If $\text{End}(M)$ is (von Neumann) regular, then M is direct injective.

Lemma 2.7. Let $0 \to L \to M \to N \to 0$ be a short exact sequence such that $L \oplus M$ is direct injective. Then this sequence splits.

Proof. Let $\nu_1 : L \to L \oplus M$, $\nu_2 : M \to L \oplus M$ be the corresponding canonical maps. By direct injectivity of $L \oplus M$, there exists a homomorphism $h \in \text{End}(L \oplus M)$ such that $\nu_1 = h \circ \nu_2 \circ g$. Define a homomorphism $f(m) = (\pi_L \circ h \circ \nu_2)(m)$, where $\pi_L : L \oplus M \to L$ is the corresponding projection map. Then $f \circ g = 1_L$ and hence the sequence splits.

Proposition 2.8. Let $\mu : K \to M$ be a monomorphism such that M is injective. Then K is injective if and only if $K \oplus M$ is direct injective.

Proof. Assume that $K \oplus M$ is direct injective, then we have a short exact sequence: $0 \to K \mu \to M \to \text{Im}(\mu) \to 0$. By Lemma 2.7, $M \cong K \oplus M / \text{Im}(\mu)$.

Corollary 2.9. The direct sum of two direct injective modules is direct injective if and only if every direct injective module is injective.

Proof. It is trivial because every module is isomorphic to a submodule of an injective module ([2]).

Corollary 2.10. A ring R is completely reducible (=semisimple Artinian) if and only if every R-module is direct injective.

Proof. By Proposition 2.8 and Corollary 2.9, it is trivial.

Definition 2.11. A ring is called a left (right) dc-ring if every left (right) cyclic R-module is direct injective. A ring is called a dc-ring if it is a left and right dc-ring. Obviously every pc-ring is a dc-ring. A ring is said to be self
On Direct Injective Modules

Direct injective if R is direct injective as an R-module. Trivially, any left dc-ring is self direct injective.

Lemma 2.12. Let R be a ring and I two sided ideal of R contained in the annihilator of M. Then M is direct injective over R if and only if it is direct injective over R/I.

Proposition 2.13. A ring R is left dc if and only if R/A is left dc for each two sided ideal A of R.

Proof. Let R be a left dc-ring and A an ideal of R. Let I/A be any left ideal of R/A. Then, by [2], $(R/A)/(I/A)\cong R/I$ as an R-module. Since A annihilates the R-module R/I, we may consider R/I as R/A-module. Since R is a left dc-ring, R/I is R-direct injective. By Lemma 2.12, R/I, considered as an R/A-module, is R/A-direct injective. Hence any cyclic R/A-module is R/A-direct injective. i.e. R/A is a duo-ring.

Proposition 2.14. Every factor ring of a dc-ring R is self direct injective. Conversely if each factor ring of a dc-ring R is self direct injective, then R is a dc-ring.

Proof. Let A be an ideal of a duo-ring R. Then R/A is a dc-ring and hence self direct injective. Conversely, let M be a cyclic R-module. Then $M\cong R/A$ for some left ideal A of R. By hypothesis, R/A is R/A-direct injective. Hence, by Lemma 2.12, R/A is R-direct injective.

Kyungpook University

References

