Kyungpook Math. J.

ON C.P-MODULES AND ANNIHILATOR SUBMODULES

By Kim Ju Pil

1. Introduction

As usual, a ring R is called a left p.p-ring if every principal left ideal of R is projective. In this paper, we define a left R-module M is $c . p$-module if every cyclic submodule of M is projective. R. Ware said ${ }_{R} M$ is regular if M is projective and every cyclic submodule of M is a direct summand of M. Hence c.pmodule is a generalization of $p . p$-ring and regular module.

Throughout R will represent an associative ring with identity, and R-modules are unitary. For a subset S of ${ }_{R} M, l(S)=\{r \in R \mid r S=0\}$. Recall that the left singular submodule of ${ }_{R} M$ is $Z(M)=\left\{z \in M \mid l(z)\right.$ is large in $\left.{ }_{R} R\right\} . M$ is called singular (resp. non-singular) if $Z(M)=M$ (resp. $Z(M)=0$). For left R-module M, and any subset T of R, define $r_{M}(T)=\{m \in M \mid T m=0\}$. Note that $r_{M}(T)$ is not necessarily submodule of M. If any submodule N of M is the form $r_{M}(T)$ for some subset T of R, N is called annihilator submodule of M.

LEMMA 1. If I is a right ideal of R, then $r_{M}(I)$ is a submodule of M for any left R-module M.

PROOF. Let $r \in R, x \in r_{M}(I)$, then $I(r x)=(I r) x \subset I x=0$. Hence $r x \in r_{M}(I)$.
LEMMA 2. If N is a submodule of ${ }_{K} M$, then $r_{M}(l(N))$ is also submodule of M.
PROOF. Since $l(N)$ is an ideal [6, p.417, Theorem 1.4.], $r_{M}(l(N))$ is a submodule of M by Lemma 1 .

Lemma 3. For any left R-module $M, M=r_{M}(l(M))$.
PROOF. If $M \neq \dot{r}_{M}(l(M))$, there exists an x in M such that $x \notin r_{M}(l(M))$. So $l(M) x \neq 0$ and since $l(M) \subset l(x)$, we have $l(x) x \neq 0$. But this is contradicts to $l(x) x=0$.

LEMMA 4. If I is a large submodule of ${ }_{R} M$, then $(I: x)_{R}=\{r \in R \mid r x \in I\}$ is
large in ${ }_{R} R$ for any x of M.
PROOF. Let K be a non-zero left ideal of R. If $K x=0$, then $K x \subset I$ and so $K \subset(I: x)_{R}$. Hence $K \cap(I: x)_{R} \neq 0$. If $K x \neq 0$, then $K x \cap I \neq 0$ since I is large in M. Hence there exists a $k x(\neq 0)$ in I, where $k \in K$. Thus $k(\neq 0) \in(I: x)_{R} \cap K$.

A submodule A of a module M is said to be a closed submodule of M if A has no proper large extensions inside M, that is, if N is a submodule of M and A is large in N, then $A=N$.

LEMMA 5. ${ }_{R^{M}}$ is non-singular if and only if $l(S)$ is closed in $R_{R} R$ for any subset S of M.

PROOF. (\Rightarrow). Let S is a subset of M and $l(S)$ is large in N, where N is a left ideal of R. For any $n \in N,(l(S): n)_{R}$ is large in ${ }_{R} R$ by Lemma 4. Since $(l(S): n)_{R} n S=0, n S \subset Z(M)$. By hypothesis, $n S=0$ and so $n \in l(S)$. Therefore $N=l(S)$.
(\Longleftrightarrow). If $x \in Z(M)$, then there exists a large left ideal L such that $L x=0$. Since L is contained in $l(x), l(x)$ is large in ${ }_{R} R$. But $l(x)$ is closed in ${ }_{R} R$ by hypothesis. So $l(x)=R$ and we have $x=0$.

2. c. p-modules

A ring $A(\neq 0)$ is called a left(resp. right) s-unital ring if $a \in A a$ (resp. $a \in$ $a A$).

LEMMA 6. If F is a finite subset of a right s-unital ring (resp. an s-unital ring) A, then there exists an element e in A such that $a e=a(r e s p . e a=a e=a)$ for all a of F.

PROOF. [1, Theorem 1].
THEOREM 1. The following statements are equivalent:
(1) $R m$ is projective left R-module for any m of ${ }_{R} M$.
(2) $l(m)$ is a direct summand of $R_{R} R$ for any m of $R_{R} M$.
(3) $R m$ is isomorphic to a direct summand of ${ }_{R} R$ for any m of $R_{R} M$.
(4) $R m$ is flat and $l(m)$ is finitely generated left ideal of R for any m of $R_{R} M$.

PROOF. (1) \Longrightarrow (2). Since $R m \cong R / l(m)$, it is obvious.
(2) \Rightarrow (3). $l(m)=l(e), e=e^{2} \in R$ by [10, Theorem 2]. Hence $R m \cong R / l(m)=$
$R / l(e) \cong R e$.
(3) \Longrightarrow (1). ${ }_{R} M$ is projective if and only if it is isomorphic to a direct summand of a free module [4, p. 84, Corllary]. Hence $R m$ is projective for any m of ${ }_{R} M$ since ${ }_{R} R$ is free.
(4) \Rightarrow (2). $R / l(m) \cong R m$ is a flat left R-module if and only if $l(m)$ is a right s-unital ring [1, Proposition 1]. Let $l(m)=R a_{1}+R a_{2}+\cdots+R a_{n}\left(a_{i} \in R\right)$, then by Lemma 6 there exists an element e in $l(m)$ such that $a_{i} e=a_{i}$ for all $i=1,2, \ldots$ n. That is $l(m)$ has right identity, hence $l(m)$ is a direct summand of ${ }_{R} R$ by [10, Theorem 2].
$(2) \Longrightarrow$ (4). Since every projective module is flat, it is obvious.
We call ${ }_{R} M$ satisfying the equivalent conditions of Theorem 1 c.p-module. Examples of $c . p$-modules.
(1) Left p.p-ring is a special case of $c . p$-module since every $c . p$.module ${ }_{R} M$ is a left $p . p$-ring when $R=M$.
(2) Every regular module is $c . p$-module [7, proposition 2.1].

THEOREM 2. Let ${ }_{R} M$ is $c . p-m o d u l e$, then
(1) M is non-singular.
(2) Soc M is projective.
(3) Every submodule of $R_{R} M$ is $c . p$-module.

PROOF. (1). Let $m(\neq 0)$ is an clement of M, then there exists a left ideal J of R such that $l(m) \oplus J=R$. Since $l(m) \neq R, J \neq 0$. So $l(m)$ is not large left ideal of R, that is $m \notin Z(M)$.
(2). Since soc M is a direct sum of simple submodules of M, every simple module is cyclic, we have soc M is a direct sum of cyclic submodules of M. By hypothesis and [4, p. 82, Proposition 3], soc M is projective.
(3). Trivial.

COROLLARY 1. In left p.p-ring $R, \operatorname{soc}\left({ }_{R} R\right)$ is a direct summand of R_{R} if and only if $\operatorname{soc}\left({ }_{R} R\right)$ is finitely generated right ideal of R.

PROOF. Since R is left non-singular ring, $\left(R / \operatorname{soc}\left({ }_{R} R\right)\right)_{R}$ is flat [5, p. 37, Exercises 24]. Hence $\operatorname{soc}\left({ }_{R} R\right)$ is a left s-unital ring [1, Proposition 1]. So $\operatorname{soc}\left({ }_{R} R\right)$ is a direct summand of R_{R} if and only if $\operatorname{soc}\left({ }_{R} R\right)$ is finitely generated right ideal of R.

THEOREM 3. $\left\{_{R} M_{i}\right\}_{i \in I}$ is c.p-module for cach $i \in I$ if and only if $\sum_{i \in I} M_{i}$ is c. p-module.

PROOF. ($\Rightarrow)$. Let $x \in \underset{i \in I}{\prod_{i}} M_{i}$, then $x=x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n}}, x_{i_{j}} \in M_{i_{j}}, j=1,2, \cdots$, $n_{\text {: }}$ Then $R x=R x_{i_{i}} \oplus R x_{i_{2}} \oplus \cdots \oplus R x_{i_{n}}$. Since each $R x_{i_{j}}$ is projective, $R x$ is also projective.
(\Leftarrow). Trivial.
LEMMA 7. If R is a left p.p-ring, then $\operatorname{soc}\left({ }_{R} R\right)$ is an idempotent ideal.
PROOF. Since the class of all non-singular left R-modules is closed under submodule [5, p.32, Proposition 1.22(a)], $Z\left(\operatorname{soc}\left({ }_{R} R\right)\right)=0$. Hence $\operatorname{soc}\left(\operatorname{soc}\left({ }_{R} R\right)\right)$ $=\operatorname{soc}\left({ }_{R} R\right) \operatorname{soc}\left({ }_{R} R\right)\left[5, \operatorname{p.35}\right.$, Corollary 1.20] . So that we have $\operatorname{soc}\left({ }_{R} R\right)=(\operatorname{soc}($ $\left.\left.{ }_{R} R\right)\right)^{2}$.

LEMMA 8. If the Jacobson radical $J(R)$ of a ring R is projective, then R is semiprimitive.

PROOF. If $J(R)$ is non-zero, then $J(J(R))=J(R) J(R)$. But this contradicts to $J(R) J(R) \neq J(R)$.

LEMMA 9. $I f_{R} M$ is c.p-module, then the intersection of all maximal submodules of $\operatorname{soc}\left({ }_{R} R\right) M$ (denoted by $J\left(\operatorname{soc}\left({ }_{R} R\right) M\right)$ is $J(R)$ socM.

PROOF. Since ${ }_{R} M$ is non-singular, $\operatorname{soc} M=\operatorname{soc}\left({ }_{R} R\right) M$, and $J(R) \operatorname{soc} M=$ $J(\operatorname{soc} M)$ from the fact that $\operatorname{soc} M$ is projectivc. Hence we have $J\left(\operatorname{soc}\left({ }_{R} R\right) M\right)$ $=J(\operatorname{soc} M)=J(R) \operatorname{soc} M$.

3. Annihilator submodules

A left R-module M is faithful if $l(m)=0$.
THEOREM 4. If N is a maximal submodule of R_{R}, then N is either annihilator submodule of M or $l(N)=l(M)$, but not both.

PROOF. Since $l(N) N=0, N \subset r_{M}(l(N))$ By maximality of $N, N=r_{M}(l(N))$ or $r_{M}(l(N))=M$ but not both. If $r_{M}(l(N))=M$, then $l(N) M=0$. So we have $l(N)$ $\subset l(M)$. But $l(M) \subset l(N)$ since $N \subset M$, so that $l(N)=l(M)$. Next, if $N=r_{M}(S)$ for some subsct S of R, then $S N=0$ and so $N=r_{: 2}(S) \supset r_{M}(l(N))$. Hence $r_{M}(l(N))$
$\neq M$. If $l(N)=l(M)$, then $M=r_{M}(l(M))=r_{M}(l(N)) \neq M$, a contradiction.
COROLLARY 2. If M is a maximal left ideal of R, then M is either two sided ideal of R or M is faithul as a left R-module.

PROOF. Either $M=r_{M}(l(M))$ or $l(M)=l(N)$. Since $l(M)$ is an ideal and $l(R)=0, M$ is two-sided or $l(M)=0$.

THEOREM 5. The following statements are equivalent:
(1) R is a regular ring.
(2) Every cyclic R-module is p-injective.
(3) Every semisimple R-module is p-injective.

PROOF. (1) \Leftrightarrow (2). [2, Theorem 2]
(3) \Rightarrow (2). Let M be a cyclic R-module, then M is simple and so semisimple. Hence M is p-injective.
(1) \Longrightarrow (3). Trival.

THEOREM 6. The following statments are equivalent:
(1) R is completely reducible.
(2) R is left non-singular and every large left ideal is lef̈t annihilator.
(3) R is a semi-prime ring whose large left ideals are left annihilator.
(4) R is a semi-prime ring whose maximal left ideals are left annihilator.
(5) R is a left V-ring whose maximal left ideals are left aiminilator.
(6) R is a fully left idempotent ring whose maximal lefi ideals are left annihilator.
(7) R is a right V-ring whose maximal left ideals are left annihilator.
(8) R is a right p - V-ring whose maximal left ideals are left annihilator.
(9) R is a right $p-V-r i n g$ whose large left ideals are left annihilator.
(10) Every cyclic R-module is projective.
(11) Every R-module is non-singular.
(12) Every simple R-module is non-singrular.
(13) Every semisimple R-module is projective.
(14) Every semisimple R-noodule is injective.
(2)'-(9)' The right-left analogues of (2)-(9).

PROOF. The implications (1) $\Longrightarrow(7) \Longrightarrow$ (8) and (11) \Longrightarrow (12) are obvious. (8) $\Longrightarrow(1)$. Every right $p-V$-ring is fully right idempotent and every fully right idempotent ring is a left non-singular [1, Proposition 6 and 7]. So every max-
imal left ideal is not large since every annihilator is closed in ${ }_{R} R$ by Lemma 5 . Thus R is completely reducible.
(9) $\Rightarrow(1)$. Since R is left non-singular, R has no proper large left ideal. Therefore R is completely reducible.
$(10) \Longrightarrow(1)$. For any maximal left ideal M of $R, R . M$ is a simple R-module. Since every simple R-module is cyclic, R / M s projective and so M is a direct summand of R.
(12) \Longrightarrow (1). Since every simple R-module is either singular or projective [5, Proposition 1. 24], R / M is projective for any maximal left ideal M of R. Hence R is completely reducible.
(13) \Longrightarrow (1). Let A be an any simple R-module, then A is semisimple and so projective. Hence every simple R-module is projective.
(14) $\Rightarrow(1)$. [9, Theorem 3.2].
(1) $\Longrightarrow(9),(1) \Longrightarrow(10),(1) \Longrightarrow(13),(1) \Longrightarrow(14)$ are trivial.
(1) $\Rightarrow(11)$. If R is completely rcducible, every R-module is completely r ducible and so every R-module is a $c . p$-module. Hence every R-module is nonsingular from Theorem 2.

Soong Jeon University
Dae Jeon, Korea.

REFERENCES

[1] H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18(1976), 117-133.
[2] H. Tominaga, On s-unital rings II, Math. J. Okayama Univ. 19(1977), 171-182.
[3] K. Kishimoto and H. Tominaga, On decompositions into simple rings II, Math. J. Okayama Univ. 18(1975)39-41.
[4] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass. 1966.
[5] K. R. Goodearl, Ring theory, Marcel Dekker, Inc. 1976.
[6] T. W. Hungerford, Algebra, New York; Holt, Rinehart, Winston (1974).
[7] R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971), 233-259.
[8] R. Yue Chi Ming, On annihilator ideals, Math. J. Okayama Univ. 19(1976), 51-53.
[9] G.O. Michler and O.E. Villamayor, On rings whose simple modules are injective,
J. Algebra 25(1973), 185-201.
[10] Kim Ju Pil, notes on P-injective modules (to appear).

