ON C.P-MODULES AND ANNIHILATOR SUBMODULES

By Kim Ju Pil

1. Introduction

As usual, a ring R is called a left $p.p$-ring if every principal left ideal of R is projective. In this paper, we define a left R-module M is c.p-module if every cyclic submodule of M is projective. R. Ware said $_RM$ is regular if M is projective and every cyclic submodule of M is a direct summand of M. Hence c.p-module is a generalization of $p.p$-ring and regular module.

Throughout R will represent an associative ring with identity, and R-modules are unitary. For a subset S of $_RM$, $I(S)=\{r\in R|rS=0\}$. Recall that the left singular submodule of $_RM$ is $Z(M)=\{x\in M|l(x)$ is large in $_RR\}$. M is called singular (resp. non-singular) if $Z(M)=M$ (resp. $Z(M)=0$). For left R-module M, and any subset T of R, define $r_M(T)=\{m\in M|Tm=0\}$. Note that $r_M(T)$ is not necessarily submodule of M. If any submodule N of M is the form $r_M(T)$ for some subset T of R, N is called annihilator submodule of M.

LEMMA 1. If I is a right ideal of R, then $r_M(I)$ is a submodule of M for any left R-module M.

PROOF. Let $r\in R$, $x\in r_M(I)$, then $l(rx)=(Ir)x\subseteq Ix=0$. Hence $rx\in r_M(I)$.

LEMMA 2. If N is a submodule of $_RM$, then $r_M(l(N))$ is also submodule of M.

PROOF. Since $l(N)$ is an ideal [6, p.417, Theorem 1.4.], $r_M(l(N))$ is a submodule of M by Lemma 1.

LEMMA 3. For any left R-module M, $M=r_M(l(M))$.

PROOF. If $M\neq r_M(l(M))$, there exists an x in M such that $x\in r_M(l(M))$. So $l(M)x\neq 0$ and since $l(M)\subseteq l(x)$, we have $l(x)x\neq 0$. But this is contradicts to $l(x)x=0$.

LEMMA 4. If I is a large submodule of $_RM$, then $(I:x)_R=\{r\in R|rx\in I\}$ is
large in RR for any x of M.

PROOF. Let K be a non-zero left ideal of R. If $Kx=0$, then $Kx \subseteq I$ and so $K \subseteq (I:x)_{\text{RR}}$. Hence $K \cap (I:x)_{\text{RR}} \neq 0$. If $Kx \neq 0$, then $Kx \cap I \neq 0$ since I is large in M. Hence there exists a $kx(\neq 0)$ in I, where $k \in K$. Thus $k(\neq 0) \in (I:x)_{\text{RR}} \cap K$.

A submodule A of a module M is said to be a closed submodule of M if A has no proper large extensions inside M, that is, if N is a submodule of M and A is large in N, then $A=N$.

LEMMA 5. RM is non-singular if and only if $l(S)$ is closed in RR for any subset S of M.

PROOF. (\Rightarrow). Let S be a subset of M and $l(S)$ is large in N, where N is a left ideal of R. For any $n \in N$, $(l(S):n)_{\text{RR}}$ is large in RR by Lemma 4. Since $(l(S):n)_{\text{RR}}nS=0$, $nSCZ(M)$. By hypothesis, $nS=0$ and so $n \in l(S)$. Therefore $N=l(S)$.

(\Leftarrow). If $x \in Z(M)$, then there exists a large left ideal L such that $Lx=0$. Since L is contained in $l(x)$, $l(x)$ is large in RR. But $l(x)$ is closed in RR by hypothesis. So $l(x)=R$ and we have $x=0$.

2. c. p-modules

A ring $A(\neq 0)$ is called a left (resp. right) s-unital ring if $a \in Aa$ (resp. $a \in aA$).

LEMMA 6. If F is a finite subset of a right s-unital ring (resp. an s-unital ring) A, then there exists an element e in A such that $ae=a$ (resp. $ea=ae=a$) for all a of F.

PROOF. [1, Theorem 1].

THEOREM 1. The following statements are equivalent:

(1) Rm is projective left R-module for any m of RM.

(2) $l(m)$ is a direct summand of RR for any m of RM.

(3) Rm is isomorphic to a direct summand of RR for any m of RM.

(4) Rm is flat and $l(m)$ is finitely generated left ideal of R for any m of RM.

PROOF. (1) \Rightarrow (2). Since $Rm \cong R/l(m)$, it is obvious.

(2) \Rightarrow (3). $l(m)=l(e)$, $e=e^2 \in R$ by [10, Theorem 2]. Hence $Rm \cong R/l(m)$ =
On C. P-Modules and Annihilator Submodules

\(R/l(e) \cong Re. \)

(3) \(\implies \) (1). \(_RM \) is projective if and only if it is isomorphic to a direct summand of a free module \([4, \text{p.} 84, \text{Corollary}]. \) Hence \(Rm \) is projective for any \(m \) of \(_RM \) since \(_RR \) is free.

(4) \(\implies \) (2). \(R/l(m) \cong Rm \) is a flat left \(R \)-module if and only if \(l(m) \) is a right \(s \)-unital ring \([1, \text{Proposition 1}]. \) Let \(l(m) = Ra_1 + Ra_2 + \cdots + Ra_n (a_i \in R), \) then by Lemma 6 there exists an element \(e \) in \(l(m) \) such that \(a_i e = a_i \) for all \(i = 1, 2, \cdots n. \) That is \(l(m) \) has right identity, hence \(l(m) \) is a direct summand of \(_RR \) by \([10, \text{Theorem 2}]. \)

(2) \(\implies \) (4). Since every projective module is flat, it is obvious.

We call \(_RM \) satisfying the equivalent conditions of Theorem 1 a \(c.p \)-module. Examples of \(c.p \)-modules.

(1) Left \(p.p \)-ring is a special case of \(c.p \)-module since every \(c.p \)-module \(_RM \) is a left \(p.p \)-ring when \(R = M. \)

(2) Every regular module is \(c.p \)-module \([7, \text{proposition 2.1}]. \)

THEOREM 2. Let \(_RM \) is \(c.p \)-module, then

(1) \(M \) is non-singular.

(2) \(\text{Soc } M \) is projective.

(3) Every submodule of \(_RM \) is \(c.p \)-module.

PROOF. (1). Let \(m(\neq 0) \) is an element of \(M, \) then there exists a left ideal \(J \) of \(R \) such that \(l(m) \oplus J = R. \) Since \(l(m) \neq R, \) \(J \neq 0. \) So \(l(m) \) is not large left ideal of \(R, \) that is \(m \notin Z(M). \)

(2). Since \(\text{soc } M \) is a direct sum of simple submodules of \(M, \) every simple module is cyclic, we have \(\text{soc } M \) is a direct sum of cyclic submodules of \(M. \) By hypothesis and \([4, \text{p.} 82, \text{Proposition 3}]. \) \(\text{soc } M \) is projective.

(3). Trivial.

COROLLARY 1. In left \(p.p \)-ring \(R, \) \(\text{soc}(R) \) is a direct summand of \(R_R \) if and only if \(\text{soc}(R) \) is finitely generated right ideal of \(R. \)

PROOF. Since \(R \) is left non-singular ring, \((R/\text{soc}(R))_R \) is flat \([5, \text{p.} 37, \text{Exercises 24}]. \) Hence \(\text{soc}(R) \) is a left \(s \)-unital ring \([1, \text{Proposition 1}]. \) So \(\text{soc}(R) \) is a direct summand of \(R_R \) if and only if \(\text{soc}(R) \) is finitely generated right ideal of \(R. \)
THEOREM 3. \(\{R_{M_i}\}_{i \in I} \) is c.p-module for each \(i \in I \) if and only if \(\sum_{i \in I} M_i \) is c.p-module.

PROOF. \((\Longrightarrow)\). Let \(x \in \sum_{i \in I} M_i \), then \(x = x_{i_1} + x_{i_2} + \cdots + x_{i_n} \), \(x_{i_j} \in M_{i_j} \), \(j = 1, 2, \ldots, n \). Then \(Rx = Rx_{i_1} \oplus Rx_{i_2} \oplus \cdots \oplus Rx_{i_n} \). Since each \(Rx_{i_j} \) is projective, \(Rx \) is also projective.

\((\Longleftarrow)\). Trivial.

LEMMA 7. If \(R \) is a left p.p-ring, then \(\text{soc}(R) \) is an idempotent ideal.

PROOF. Since the class of all non-singular left \(R \)-modules is closed under submodule [5, p.32, Proposition 1.22(a)], \(Z(\text{soc}(R)) = 0 \). Hence \(\text{soc}(\text{soc}(R)) = \text{soc}(R) \text{soc}(R) \) [5, p.35, Corollary 1.23]. So that we have \(\text{soc}(R) = (\text{soc}(R))^2 \).

LEMMA 8. If the Jacobson radical \(J(R) \) of a ring \(R \) is projective, then \(R \) is semiprimitive.

PROOF. If \(J(R) \) is non-zero, then \(J(J(R)) = J(R)J(R) \). But this contradicts to \(J(R)J(R) \neq J(R) \).

LEMMA 9. If \(_RM \) is c.p-module, then the intersection of all maximal submodules of \(\text{soc}(R)M \) (denoted by \(J(\text{soc}(R)M) \)) is \(J(R)\text{soc}M \).

PROOF. Since \(_RM \) is non-singular, \(\text{soc}M = \text{soc}(R)M \), and \(J(R)\text{soc}M = J(\text{soc}M) \) from the fact that \(\text{soc}M \) is projective. Hence we have \(J(\text{soc}(R)M) = J(\text{soc}M) = J(R)\text{soc}M \).

3. Annihilator submodules

A left \(R \)-module \(M \) is faithful if \(I(m) = 0 \).

THEOREM 4. If \(N \) is a maximal submodule of \(_RM \), then \(N \) is either annihilator submodule of \(M \) or \(I(N) = I(M) \), but not both.

PROOF. Since \(I(N)N = 0 \), \(N \subseteq r_M(I(N)) \) By maximality of \(N \), \(N = r_M(I(N)) \) or \(r_M(I(N)) = M \) but not both. If \(r_M(I(N)) = M \), then \(I(N)M = 0 \). So we have \(I(N) \subseteq I(M) \). But \(I(M) \subseteq I(N) \) since \(N \subseteq M \), so that \(I(N) = I(M) \). Next, if \(N = r_M(S) \) for some subset \(S \) of \(R \), then \(SN = 0 \) and so \(N = r_M(S) \supseteq r_M(I(N)) \). Hence \(r_M(I(N)) \)...
\begin{align*}
\neq M. \text{ If } l(N) = l(M), \text{ then } M = r_M(l(M)) = r_M(l(N)) \neq M, \text{ a contradiction.} \\
\end{align*}

COROLLARY 2. If \(M \) is a maximal left ideal of \(R \), then \(M \) is either two sided ideal of \(R \) or \(M \) is faithful as a left \(R \)-module.

PROOF. Either \(M = r_M(l(M)) \) or \(l(M) = l(N) \). Since \(l(M) \) is an ideal and \(l(R) = 0 \), \(M \) is two-sided or \(l(M) = 0 \).

THEOREM 5. The following statements are equivalent:

1. \(R \) is a regular ring.
2. Every cyclic \(R \)-module is \(p \)-injective.
3. Every semisimple \(R \)-module is \(p \)-injective.

PROOF. (1) \(\iff \) (2), [2, Theorem 2]

3. \(\implies \) (2). Let \(M \) be a cyclic \(R \)-module, then \(M \) is simple and so semisimple. Hence \(M \) is \(p \)-injective.

(1) \(\implies \) (3). Trival.

THEOREM 6. The following statements are equivalent:

1. \(R \) is completely reducible.
2. \(R \) is left non-singular and every large left ideal is left annihilator.
3. \(R \) is a semi-prime ring whose large left ideals are left annihilator.
4. \(R \) is a semi-prime ring whose maximal left ideals are left annihilator.
5. \(R \) is a left \(V \)-ring whose maximal left ideals are left annihilator.
6. \(R \) is a fully left idempotent ring whose maximal left ideals are left annihilator.

7. \(R \) is a right \(V \)-ring whose maximal left ideals are left annihilator.
8. \(R \) is a right \(p \)-\(V \)-ring whose maximal left ideals are left annihilator.
9. \(R \) is a right \(p \)-\(V \)-ring whose large left ideals are left annihilator.

10. Every cyclic \(R \)-module is projective.
11. Every \(R \)-module is non-singular.
12. Every simple \(R \)-module is non-singular.
13. Every semisimple \(R \)-module is projective.
14. Every semisimple \(R \)-module is injective.

(2) \(\iff \) (9). The right-left analogues of (2)\(\iff \) (9).

PROOF. The implications (1) \(\implies \) (7) \(\implies \) (8) and (11) \(\implies \) (12) are obvious. (8) \(\implies \) (1). Every right \(p \)-\(V \)-ring is fully right idempotent and every fully right idempotent ring is a left non-singular [1, Proposition 6 and 7]. So every max-
imal left ideal is not large since every annihilator is closed in \(_RR \) by Lemma 5. Thus \(R \) is completely reducible.

(9) \(\Rightarrow \) (1). Since \(R \) is left non-singular, \(R \) has no proper large left ideal. Therefore \(R \) is completely reducible.

(10) \(\Rightarrow \) (1). For any maximal left ideal \(M \) of \(R \), \(R M \) is a simple \(R \)-module. Since every simple \(R \)-module is cyclic, \(R/M \) is projective and so \(M \) is a direct summand of \(R \).

(12) \(\Rightarrow \) (1). Since every simple \(R \)-module is either singular or projective [5, Proposition 1. 24], \(R/M \) is projective for any maximal left ideal \(M \) of \(R \). Hence \(R \) is completely reducible.

(13) \(\Rightarrow \) (1). Let \(A \) be an any simple \(R \)-module, then \(A \) is semisimple and so projective. Hence every simple \(R \)-module is projective.

(14) \(\Rightarrow \) (1). [9, Theorem 3.2].

(1) \(\Rightarrow \) (9), (1) \(\Rightarrow \) (10), (1) \(\Rightarrow \) (13), (1) \(\Rightarrow \) (14) are trivial.

(1) \(\Rightarrow \) (11). If \(R \) is completely reducible, every \(R \)-module is completely reducible and so every \(R \)-module is a c.p-module. Hence every \(R \)-module is non-singular from Theorem 2.

Soong Jeon University
Dae Jeon, Korea.

REFERENCES