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THE COMPUTATION OF THE GENERALIZED INVERSL
By Kern O.Kymn,* J.R. Norsworthy, and Tatsuo Okamoto

The purpose of this paper is to report our computer experience of computing
the generalized (g—) inverse on a UNIVAC 1108 utilizing two formulas for the
g-inverse given by Graybill[1]. The two formulas for the g-inverse that we
have selected are the ones given 1 in Theorems 6.5.1 [pp.108—10,1] and 6.5.8
(pp. 117—8,1]. In this paper we briefly describe the algorithms and program-
ming of the two selected formulas and evaluate their relative performances in
computing g-inverses. The evaluation was accomplished in terms of CPU time
clapsed and accuracy evidenced in computing the g-inverse.

We begin our discussion with the definition of a generalized inverse.

DEFINITION. Let A be an m X7 matrix. If a matrix A% exists that satisfied

the following four conditions, A° is a generalized (g—) inverse of A. (i) AA®
is symmetric (ii) 4%4 is symmetric (iii) A4%4=A4 (iv) A%A4A4°%=A°5.

We applied this definition to check the accuracy of the calculation each time
after the g-inverse was computed.

In the following, we briefly describe the two selected algorithms to relate

them to their programmingz.

THEOREM 1. If b is a nonzero vector, then bg=(b’b)‘1 b,

PROOF. (1) bb® =b(b’b)—1 b’, symmetric
2 B¥b='6)"" B’b=I, symmetric
(3) bbEB=b(b'B) ™" B'b=b
(4) B56b8 =(o'b) "B (b D) T b =(bB) b =bF

The definition of a g-inverse is satisfied. % is the g-inverse of .
We utilized Theorem 1 whenever a g-inverse of a nonzero vector was needed.
THEOREM 2. For any matrix A, we get

(AA,-)gz(Ag)r Ag-
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PROCF. (A)*=(4%). (445 =(A")5A=(4%) 4°.

We utilized Theorem 2 whenever A° was known and the computation of
(AA")® was required.

ALGORITHM 1. Algorithm 1 describes the iterative scheme given by Graybill
[Theorem 6.5.1, pp.108—9,1] to find the g-inverse of a matrix A.

Let A be an mX? matrix; let B, be an m X% matrix that consists of the fir

k columns of A4; let A, _; be a matrix that consists of the first (—1) colum
of B,, and let ¢, be the F" column of B,. Partition B, by
‘ B,=(4,, ap)=(a,, ap) |
The g-inverse of B, is given by

g_ 48 g
BE— Ay -4y @, b,
=

~ g
b2

where ((I—-A,AB)a, if a,#A,Aa,

b'—:q

79 \ , [1"]_32’(14-114-1!)3. az] (A1A1’1)gcz2

’ N8 8
a, (A A,) (4,4, ) a,

. _ g
1f az—AlAl 62_. |

Next we partition B by
B3:(A21* @'3) ZCBQ: 33)
The g-inverse of B; is given by

B;—BEa, b}

g __
BB""

. b3

where |
- (I-B,B5)a, iflﬂs#Bz-Bg%
by =

W

(1+ay'(ByBy)) a) (BB Y'ey .
, ~E . if a3=B,B, a,
33 (Bng) (BZBZ ) /4

\

We continue until we paf;tii;ibn B,=A by
B‘f:(At_]_r df)z(Bg;1: | at) |
The g-inverse of B, is given by
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g ng g

7 B,_—B, ;40
Bt_ | bg
¢

where

[I-B,_,B% ) a, if ¢,#B,_,B, % aq,

%=\ l+a,(B,_, B,_D°)(B, B, )*q,
“;(Bt-—iB;—l)g(Bt—lBr—1)g Z,

e o _—pn n&
if ¢,=B, B,_, a.

\

Since B,=A, we have the desired result Ag=Bf.

i
|
f
:
!

We utilized Theorem 1 to compute b‘j.', 7j=2, 3, -, &

We utilized Theorem 2 to compute (5B ;)g in b'j +1s

. ]
j=2, 3, t-1

Flow Chart I translates Algorithm 1. ' B i

 FLOW CHART I

B i o e mm i r BT el romm— - - — -

SUBROUTINE GINV (A4, B, NR, NC, CC)
WHERE: o

A i1s a matrix to beé inverted.

—_ e - wEm, - pmem L -E—m g

B is the G-inverse of A.

NR is the row dirm%:nsion of A. ~

NC is the column dimension of A.

A
B

P i) snecilies the submatrix of the first 7 columns of A.

Gixary SPECifies the submatrix of the first 7 rows of B.

A; and B, specify the ¢ column and row of A4 and B respectively.

CC must be dimensional at least (nyXur)-+(3Xiuc).
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ALGORITHM 2. Algorithm 2 describes another computing formula given by
Graybill [Theorem 6. 5. 8, pp.117—38, 1] to {ind the g-inverse of a matrix A.

Tet 4 be an mXn matrix of rank . The g-inverse of A 1s found by the
tollowing steps:
B=A"A
C,=1
C,=I (1/1) tr C,B—-C,B
C,=1I (1/2) tr C,B—-C,B
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C=I (1/,_) tr C,_,B~C,_,B

Terminate the interation if C , +IB =0.

We have

A®=rC,A4’/tr (C,B), tr (C,B)#0.
Flow Chart II translates Algorithm 2.

and initialize

Dimcnsion arrays l

:

B=AA

Compute B )

J

v

1 1 [

Compute Cy
C:':-'I

—

l

Sct 1=1

7i=the Smallest of NR and NC ]

YIS

Compute C;B
and TR (_CIB)

!

P

4

Compute Ciyg

Ciav=I (/i) TR (C.-B)—C;B]

4

Compute Ci\B
and TR(C: B)

!

/\ vig
1

‘R(C:' -HB) - 0"

N

Y

Compute )

D=I1(C,A/TR(CR) and D is
the G-inverse of A, (R=1)

!

"END
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FLOW CHART 1
SUBROUTINE CINVX (4, D, NR, NC, CC)
WHERE:
A 1s a matrix to be inverted.
D is the G-inverse of A.
NR is the row dimension of A.
NC is the column dimension of A.
R specifies the rank of A.
TR(X) specifies the trace of a matrix X. .
CC must be dimensioned at least SX(NCXNC).

Table 1 summarizes our computer experience of computing g-inverses utilizing

Algorithms 1 [Theorem 6. 5. 1, pp.108, 10, 1] and 2 [Theorem 6. 5. 8, pp.117
—8, 1i].

It was found that Algorithm 1 gave accurate g-inverses in all the cases. -
Algorithm 2 produced errors in most of the cases excepting small-size matrices
that are perhaps calculable utilizing a desk calculator.

In Flow Chart 1, two separate computing steps have been each marked by
an asterisk. It was found that the summing operation in each starred step was

the major contributor to errors. When the size of matrices grew, the summing
operation in forming each element of B=A"A and the summing of the diagonal
elements of C,B in computing the trace of C.B each became the main source of

errors.

Also it was found that Algorithm 1 required far shorter CPU time than
Algorithm 2 excepting small-size matrices. Among varying sizes of matrices,
however, computing g-inverses by Algorithm 1 required sharply increased CPU

time as the size of a matrix grew. In Flow Chart [, two separate computing
steps have been each marked by an asterisk while a third one has been marked

by double asterisks. As %2 became large, it appeared that progressively longer
CPU time was required in the computing steps that are marked by a single
asterisk. As the row dimension of the matrix became larger, increasingly longer

CPU time was required in the computing step that is marked by double

asterisks.
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Table 1. Performances of two G-Inverse Computing Formulas

CPU Time (Seconds. Milliseconds) and Accuracy®
Order of Matrix® . .
Algorithm 1 Algorithm 2

1. Singular
5Xo 4,264 (*) 3.563 (*)
1010 4.386 (*) 4,161 (%)
2020 | 6.981 (*) 10.918 (**)
50X 50 1:02.220° (*) (N)

2. mXn (m#=n)
5X15 4,104 (™) 4.819 (%)
1020 5 127 (™) 6.313 (%)
20X 30 10.306 (*) 20,437 (*%)
50X 100 5:11.250¢ () (N)

——

a. Random numbers generated by RANDU, a UNIVAC systems software. Each element
consists of 6 digits decimal fractions.

b. Includes check and random number generating time. The symbols represent no error
(*), error (**), no trial (N). No trial is recorded if an immediately preceding matrix
produced too large an error warranting no trial on a larger matrix.

¢. 1 minute 2 seconds 220 milliseconds, and 5 minutes 11 seconds 250 milliseconds.

It was concluded that Algorithm 2 should not be applied to compute g-inver-
ses of martrices excepting small-size matrices that are perhaps calculable by a
desk calculator. Evaluated in terms of CPU time and accuracy, Algorithm 1
was concluded to be a recommendable formula to compute g-inverses of the
size of matrices that would reruire a computer processing.

Footnotes

* Kern O. Kymn’s research for this project was supported by Contract DACA
31-73-C-0058, U.S. Army Corps of Engineers. The conclusions and opinions
expressed in this paper do not necessarily reflect those of the General Serv-
ices Administration, the U.S. Army Corps of Engineers or the Bureau of
Labor Statistics.

1. Graybill recommends the formula given in Theorem 6. 5. 1 as perhaps the
most useful for digital computers if a matrix is large.

2. Each element of the matrices in this paper was generated by utilizing RAN-
DU, a UNIVAC 1108 random number generating systems software. Singular
matrices were formed by equating the components in the first column to
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those in the second column.

3. We applied the definition of the g-inverse to check the accuracy of compu
tation. The numbers were printed out to the fifth decimal place utilizin
floating point format.

West Virginia University
Bureau of Lavor Statistics
and General Service
Administration
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