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COMPLETE LIFT OF F-STRUCTURE MANIFOLD 

By Lovejoy S. K. Das 

1. Introduction 

Let F be a non zero tensor field of type (1, 1) and of class C∞ on an n-di

mensional manifold V n such that [1] 

K + 1 ~ ~ , ""W , / , W + I (1.1) F" +( _)n. '"F=O and F" +( -)" -r- 1F~O for 1 <W <K 

where K is a fixed positive integer greater than 2. Such a structure on V n is 

called an F -strcutμre 0/ raηk ‘7 ’ and degree K. If the rank of F is a constant 

and r= r(F), then V n is called an F -structμre mani/old 0/ degree K(늘3). The 

case when K is odd has been considered in this paper. 
Let the operators on V n be defined as follows [1] 

K ~K-l , T. / ， K+l~K-l (1. 2) 1=( - Y. F"-. and m=I十(-r'.F

where 1 denotes the identity operator on V n' 

From the operators defined by (1. 2) we have [1] 

(1 .3) 1+ηz=I and l2=l, and m2=m. 

For F-satisfying (1. 1), there exist complementary distributions L and M cor

responding to the projection operators 1 and m respectively. 

If rank (F)=constant on V n then dim L=r, and dim M=(n-r). We have 

following results [1] 

(a) FI=IF=F and Fm=mF=O 
(1. 4) 

(b) F K - 11= -1 and FK一1m=o

2. Complete Iift of F-structure in tangent bundle 

Let V" be an n-dimensional differentiable manifold of class C∞ and T pCV n) 

the tangent space at a point P of V" and T(V ,,) = _UT p(V ,,) is the tangent 
“ .• 

PEV. “ 

bundle over the manifold V n' 

Let us denote by 
‘
r:cv_) , the set of all tensor fields of class C∞ and of S"". n 

type (r, s) in V" and T(V ,,) be the tangent bundle over V". The comp미lete lifts 

F C 0아f a때ne려빼le밍mer 
form [때 2낌 ] 
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Now we obtain the following results on the complete lift of F satisfying (1.1). 

THEOREM 2. 1. For Fε칸(Vn) , the complete 1힘 FC 01 F is an F strμctrere 

il it is lor F also. Then F is 01 rank r , ill F
C 

is 01 ra깨 2r. 

PROOF. Let F , G εy칸7녁~(αVκζ7끼;짜n 
C ~C~C 

(2.2잉) (FG)v=FvG 

Replacing G by F in (2. 2잉) we obtain 

(2.3) 

C ~C~C (FF)V=FVF 

or, (F2
)C = (FC

)2 

K-l. /'ro. ....... , 0 ___ ,.,. /'-4,,'\ -'-____ ~~_1_' .L 1 ___ f"_ 'T:\K-l N ow putting G = F lI. -! in (2. 2) since G is (1, 1) tensor field therefore F 

is also (1,1) so we obtain 
K-l,C ~C ，. "K-l， C (F F II. -L)v=FV(F"-')V which in view of (2.3) becomes 

K ,C ,. "C, K (2.4) (Fn)v=(Fv) 

Taking complete lift on both sides of equation (1.1) we get 
K ,C ,,.,. , K+l ", C (F")V + (( _ Y. ,. F)V =0 

which is in consequence of equation (2.4) gives 
C, K ,,. ， K十l~C(2.5) (Fvy. + (-Y. ,. FV =0 

Thus equation (1.1) and (2.5) are equivalent. The second part of the theorem 

follows in view of equation (2.1). Let F satisfying (1. 1) be an F-structure of 
C •• • C 

rank r in Vn• Then the complete lifts r of 1 and m~ of m are complementary 

projection tensors in T(V n)' Thus there exist in T(Vκ) two complementary dis
c 

tributions L C and M C determined by lC and m
C respectively. 

3. IntegrabiIity conditions of F-structure in tangent bundle 

Let Fε칸(Vιtensor field of the type (1. 2) given by [2] 

(3. 1) a) NF(X, Y) = [FX, FY] - F [FX, Y] - F [X, FY] + F2 [X, Y] • 

C 
Let N

C be the Nijenhuis tensor of F
C 

in T(V n) of F in V n' then we 'have 
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C l' 'TC TTC, ,. 'Y'",.c on'C T'lc.T7"C, ..-.C .. ..;...C or,.C ... ,.C b) N"'(XV
, y"')= [F'" X"' , F"'Yν] 一F-[r X V

, y V] 

C r -.rC .,...,.cT7C" /" ..-.2 ,- C t' w,r,. C "P p c. _ F V [XV, FVY"'] + (r)'"' [X"', y"). 

For any X , Yε캠(Vn) and Fε킥(Vn) we have [2) 

(3.2) a) [X
C, yCJ=[X, YJC and (x+Yl=xC+yC 

C~.C b) F"'X"'=(FX)v. 

From (1. 4)a and (3.2)b we have 
C C ,_ ,r. 

(3.3) F'"' m'"' = (Fm)""' =0. 

THEOREM 3. 1. The lollowz'ng z'dentiUes hold 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(i) 

(ii) 

(iii) 

(iv) 

N C (mC X C, mCyC) = (FCi [mC X C, mCyCJ. 
C uC r -vC T7'C, ... C r -nC .. "C -nCT"C n"'NV(X"', Y"')=m"[F"X'"' , F'"'Y'"' ], 

C :l. TC /,C ,,.C .,CT, C, C ,. T"'IC .,.C ..... CTTC m'" NV (l'" X"' , rY")=m'" [F'" X'"' , F"Y"' ], 

K C •• C ，， _C， K一2~.C(- y'm"'N"'((F"'Y'-"'X'"' , (F"')" -~y"')= 

C r ,C ... C ,CT"C =m"'[I"'X
V

, r"'Y"]. 
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PROOF. The proofs of (3.4) to (3.7) fo lIow by virtue of equations (1. 4), 
(3. I)b and (3.3). 

THEOREM 3. 2. For any X , Yε킥(V，기 ， the lollowing coηdi때ns are eqμfνa
lent. 

(i) mCNC(XC, yC)=O, 

(ii) mCNC(lCXC, lYC) =0, 

C .. C,, _K-2, C_.C , _K- '2 J: •• C (iii) (-)"mνN"'((Fa - ~)" Xν， (F “ ~)"Yν)=0. 

PROOF. In consequence of equation (3. I)b and equation (1.4), it can be eas. 
C/ ,C .. TC ,CTrC, r\. "rr;' , K :l. TCr /" ro.K-2, C.,.C r -nK-2, CT7'C ily proved that N"' (lvxv , I"'YV)=O iff (-y'N"'((F"-"')"X"' , (Fn.-",),",y ,, )=O 

for aII X , Yε칸(Vn). 
Now r. h. s. of equations (3.5) and (3.6) are equal which in view ofthe above 

equation shows that conditions (i), (ii) & (iii) are equivalent to each other. 

C 
THEOREM 3.3 The comþlete ltft M'" 01 the dz'strz-buUon M z'n T(V’‘) z's z'nte-

grable zfl M is i1ztegrable in V n. 
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PROOF. It is known that the distribution M is integrable in V n iff [3]. 

(3.8) l[mX, mY] =0 for any X , Yε‘칸(Vn) 
Taking complete lift of both sides of (3.8) we get 

C , C~.C C .. C (3.9) 1" [m" X'"' , m"Y'"'] =0 
C ,. ,c. C 

where I"= (I -m)ν=I-m , is the projectlon tensor complementary to mc. Thus 

the conditions (3.8) and (3.9) are equivalent. 

THEOREM 3. 4. 

때 V n zJ[ N(ηzX， 

Foγ aηy X , YεY~(Vn)' let the dz.str t"but t"on M be t"ηtegrable 
C mY) =O. Theη 쩌e d z"strz"bution M" t"s iηtegγable t"n T(V n) zJ[ 

C .. C / C ~.C C~TC I"N'"'(m" X'"' , m"Y")=O or eqlà’ valently, 
C/ C ~.C C~rC 

N'"'(m~ X~， m'"'Y'"') =0. 

PROOF. By virtue of condition (3.4) we have 
C /' C -':TG C TTC, /' T'"\C" 2 r C "YTC CTTC N'"'(m" X'"' , m'"'Y'"') = (F'"') ‘ [m'"' X", m"Y"]. 

Multiplying throughout by I
C 

we get 
C .. C / C ... C . CTTC' / ,.,C, 2 ,C r C T.C CTTC r N" (m'"' X V, m'"'Y'"') = (E'"'YI'"' [m" X'"' , m"y'"'] 

which in view of equation (3.9) becomes 
C .. C , C ~.C CTrC (3.10) 1" N'"' (m'"' X'"' , m"Y'"') =0. Also in view of (3.3) we have 

C .. C/ C~rC C .. C (3.11) m"N" (m'"'X v , m"YV)=O. 

Adding (3. 10) C. C, "C / C ~rC and (3.11), we obtain (r +m")N"(m'"' X'"' , 11ZCyC)=o. 

C , C TC T _ '- ___ "C / C TrC CTTC Since 1"+m"=r=I, we have N'"'(m'"'X v
• m"Y'"') =0. 

THEOREM 3.5 For any X , Yε킥(V n) let the d t"stribuUon L be inle향able 
C 

t"n V n that z.s mN(X , Y) =0 then the d z"stribuUon L~ iη z·ηtegrable t"n T(Vn) 짜f 

anyone o[ the conditio 1Zs o[ theorem (3.2) is satis[ied. 

PROOF. The distribution L is integrable in V" iff m [1 X , IY] =0. 

C"C ~.C ，C~rC Thus distribution LC is integrable in T(V ,,) iff m C [l C X C, ICY
c ] =0. 

so the theorem follow by making use of equation (3.7). We now define 

following 

(i) distribution L is integrable 

(ii) an arbitrary vcctor ficld Z tan앙cnt to an intcgral manifold of L. 



Comþlete Lift of F-Structure Manifold 23!S 

* (iii) the operator F , such that F Z=FZ. 

* In view of equation (1. 4) , the induced structure F of F is an almost complex 
* 

structure on each integral manifold of L and F makes tangent spaces invariant 

of every integral manifold of L. 

DEFINlTION. We say that F-structure is þartz"ally integrable if the distríbu
* tion L is integrable and the almost complex structure F induced from F on each 

integral manifold of L is also integrable. 

* Let us denote the vector valued 2-form N(Z. W) , the Nijenhuis tensor cor-

responding to the Nijenhuis tensor of the almost complex structurc inuced from 

F-structure on each integral manifold of L and 1"or any two Z , Wε‘칸(Vn) 
tangent to an integral manifold of L , then we havc 

* * * * * * *2 (3. 12) N(Z, W) = [FZ, Wl - F [FZ. Wl 一 F[Z. FWl 十r[z, Wl 

which in vicw of (3.1)b and (3.12) yields 

G, .. C." .,.C ., CT7C, "*'TC t"' 1C "T?C rCTTC (3.13) N" (t"X" , I"Y")=N" (l"Xv , l"Y") 

THEOREM 3.6. For any X , YE건(V n) let the F -structμre be partt"ally z'ηte

grable in V n z'. e. , N (t X , IY)=O. Then the necessaryaηd sufficieηt conditon for 

C / .. C ""'Y'G .,GT 7"C 
F-strμctμre to be partially integrable z'η T(Vn) z's that NV(rXV, I"YV)=O or 

eqμivalently 

N C((FK - 2/XC
’ 

(FK
-

2lyC)=o 

PROOF. In view of equation (1. 4) and equation (3. l)b, we can prove casily 

that 

C",C 'VC ,CTTC, _^ '~C "Crr ""K-2,C T?C r~K-2， CTTC NV (lVX" , l"Y")=O iff N"((r'-~)"x"， (F 一)vyV)=O

for any X , Yε킥(V，.). 

Now by making use of (3. 13) and theorem (3.5) the result foJ]ows immedi

ately. 

When both distributions L and M are integrablc we can choose a local co 

ordinate system such that all L and M are representcd by putting (n - r) locaJ 

coordinate constant and r-coordinate constant respectively. We call such a 

coordinate system an adapted coordinate system. It can be supposed that in an 

adapted coordinate system the projection operators 1 and m havc the component 

of the form 
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m= 
O 

O 

0 

In_r 

respectively where Ir denotes the unit matrix of order 'r’ and In_r is of order 

(n 一 r).

Since F satisfies equation (1. 4)a. the tensor F has components of the form 

F 0 
F=I . 

o 0 

is an adapted coordinate system where Fr denotes rXr square matrix. 

DEFINITION 찌Te say that an F-structure is iηtegrable if 

(i) The structure F is partially integrable, 

(ii) The distribution M is integrable i.e. N(mX, mY)=O 

(iii) The components of the F-structure are independent of the coordinates 

which are constant along the integral manifold of L in an adapted system. 

THEOREM 3.7 For any X , Yε‘칸 (V낀et F strzectztre to be integrable in V n 

zlf N(X, Y)=O. Then the F-structure z's integrable in T(Vn) 짜f 

C, _C T~C NV(XV, Y~)=O. 

PROOF. In view of equations (3. l)a and (3. l)b we get 

C/ T7 C TrC 
NV(X~， YV)=(N(X, y))V, 

since F-structure is integrable in V n thus we obtain the resu1t. 
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