COMPLETE LIFT OF F-STRUCTURE MANIFOLD

By Lovejoy S.K. Das

1. Introduction

Let F be a non zero tensor field of type $(1,1)$ and of class C^{∞} on an n-dimensional manifold V_{n} such that [1]

$$
\begin{equation*}
F^{K}+(-)^{K+1} F=0 \text { and } F^{W}+(-)^{W+1} F \neq 0 \text { for } 1<W<K \tag{1.1}
\end{equation*}
$$

where K is a fixed positive integer greater than 2. Such a structure on V_{n} is called an F-strcuture of rank ' r ' and degree K. If the rank of F is a constant and $r=r(F)$, then V_{n} is called an F-structure manifold of degree $K(\geq 3)$. The case when K is odd has been considered in this paper.

Let the operators on V_{n} be defined as follows [1]

$$
\begin{equation*}
l=(-)^{K} F^{K-1} \text { and } m=I+(-)^{K+1} F^{K-1} \tag{1.2}
\end{equation*}
$$

where I denotes the identity operator on V_{n}.
From the operators defined by (1.2) we have [1]
(1.3) $\quad l+m=I$ and $l^{2}=l$, and $m^{2}=m$.

For F-satisfying (1.1), there exist complementary distributions L and M corresponding to the projection operators l and m respectively.
If rank $(F)=$ constant on V_{n} then $\operatorname{dim} L=r$, and $\operatorname{dim} M=(n-r)$. We have following results [1]
(a) $F l=l F=F$ and $F m=m F=0$
(b) $F^{K-1} l=-l$ and $F^{K-1} m=0$

2. Complete lift of \boldsymbol{F}-structure in tangent bundle

Let V_{n} be an n-dimensional differentiable manifold of class C^{∞} and $T_{p}\left(V_{n}\right)$ the tangent space at a point P of V_{n} and $T\left(V_{n}\right)=\bigcup_{P \in V_{n}} T_{P}\left(V_{n}\right)$ is the tangent bundle over the manifold V_{n}.
Let us denote by $\mathscr{T}_{s}^{r}\left(V_{n}\right)$, the set of all tensor fields of class C^{∞} and of type (r, s) in V_{n} and $T\left(V_{n}\right)$ be the tangent bundle over V_{n}. The complete lifts F^{C} of an element of $\mathscr{J}_{1}^{-1}\left(V_{n}\right)$ with local components F_{i}^{h} has components of the form [2]
(2.1)

$$
F^{C}:\left(\begin{array}{cc}
F_{i}^{h} & 0 \\
\partial F_{i}^{h} & F_{h}^{i}
\end{array}\right)
$$

Now we obtain the following results on the complete lift of F satisfying (1.1).
THEOREM 2.1. For $F \in \mathcal{G}_{1}^{1}\left(V_{n}\right)$, the complete lift F^{C} of F is an F structure if it is for F also. Then F is of rank r, iff F^{C} is of rank $2 r$.

PROOF. Let $F, G \in \mathscr{T}_{1}^{1}\left(V_{n}\right)$. Then we have [2]

$$
\begin{equation*}
(F G)^{C}=F^{C} G^{C} \tag{2.2}
\end{equation*}
$$

Replacing G by F in (2.2) we obtain

$$
\begin{array}{r}
\quad(F F)^{C}=F^{c} F^{c} \\
\text { or, }\left(F^{2}\right)^{C}=\left(F^{C}\right)^{2} \tag{2.3}
\end{array}
$$

in (2.2) since G is $(1,1)$ tensor field therefore F^{K-1} is also $(1,1)$ so we obtain
($\left.F F^{K-1}\right)^{C}=F^{C}\left(F^{K-1}\right)^{C}$ which in view of (2.3) becomes

$$
\begin{equation*}
\left(F^{K}\right)^{C}=\left(F^{C}\right)^{K} \tag{2.4}
\end{equation*}
$$

Taking complete lift on both sides of equation (1.1) we get

$$
\left(F^{K}\right)^{c}+\left((-)^{K+1} F\right)^{C}=0
$$

which is in consequence of equation (2.4) gives

$$
\begin{equation*}
\left(F^{C}\right)^{K}+(-)^{K+1} F^{C}=0 \tag{2.5}
\end{equation*}
$$

Thus equation (1.1) and (2.5) are equivalent. The second part of the theorem follows in view of equation (2.1). Let F satisfying (1.1) be an F-structure of rank r in V_{n}. Then the complete lifts l^{C} of l and m^{C} of m are complementary projection tensors in $T\left(V_{n}\right)$. Thus there exist in $T\left(V_{n}\right)$ two complementary distributions L^{C} and M^{C} determined by l^{C} and m^{C} respectively.

3. Integrability conditions of \boldsymbol{F}-structure in tangent bundle

Let $F \in \mathscr{T}_{1}^{-1}\left(V_{n}\right)$, then the Nijenhuis tensor N_{F} of F satisfying (1.1) is a tensor field of the type (1.2) given by [2]
(3.1) a) $N_{F}(X, Y)=[F X, F Y]-F[F X, Y]-F[X, F Y]+F^{2}[X, Y]$.

Let N^{C} be the Nijenhuis tensor of F^{C} in $T\left(V_{n}\right)$ of F in V_{n}, then we have
b) $N^{C}\left(X^{C}, Y^{C}\right)=\left[F^{C} X^{C}, F^{C} Y^{C}\right]-F^{C}\left[F^{C} X^{C}, Y^{C}\right]$

$$
-F^{C}\left[X^{C}, F^{C} Y^{C}\right]+\left(F^{2}\right)^{c}\left[X^{C}, Y^{C}\right] .
$$

For any $X, Y \in \mathscr{T}_{0}^{1}\left(V_{n}\right)$ and $F \in \mathscr{G}_{1}^{1}\left(V_{n}\right)$ we have [2]
a) $\left[X^{C}, Y^{C}\right]=[X, Y]^{C}$ and $(X+Y)^{C}=X^{C}+Y^{C}$
b) $F^{C} X^{C}=(F X)^{C}$.

From (1.4)a and (3.2)b we have

$$
\begin{equation*}
F^{C} m^{C}=(F m)^{C}=0 . \tag{3.3}
\end{equation*}
$$

THEOREM 3.1. The following identities hold

$$
\begin{equation*}
\text { (i) } \quad N^{C}\left(m^{c} X^{C}, m^{c} Y^{C}\right)=\left(F^{c}\right)^{2}\left[m^{c} X^{C}, m^{C} Y^{C}\right] \tag{3.4}
\end{equation*}
$$

(3.5) (ii) $\quad m^{C} N^{C}\left(X^{C}, Y^{C}\right)=m^{C}\left[F^{C} X^{C}, F^{C} Y^{C}\right]$,
(3.6) (iii) $\quad m^{C} N^{C}\left(l^{C} X^{C}, l^{C} Y^{C}\right)=m^{C}\left[F^{C} X^{C}, F^{C} Y^{C}\right]$,
(3.7) (iv) $(-)^{K} m^{C} N^{C}\left(\left(F^{C}\right)^{K-2} X^{C},\left(F^{C}\right)^{K-2} Y^{C}\right)=$ $=m^{c}\left[l^{c} X^{c}, l^{c} Y^{c}\right]$.

PROOF. The proofs of (3.4) to (3.7) follow by virtue of equations (1.4), (3.1)b and (3.3).

THEOREM 3.2. For any $X, Y \in \mathscr{T}_{0}^{1}\left(V_{n}\right)$, the following conditions are equivalent.
(i) $\quad m^{c} N^{c}\left(X^{c}, Y^{C}\right)=0$,
(ii) $\quad m^{C} N^{C}\left(l^{C} X^{C}, l^{c} Y^{C}\right)=0$,
(iii) $\quad(-)^{K} m^{C} N^{C}\left(\left(F^{K-2}\right)^{C} X^{C},\left(F^{K-2}\right)^{C} Y^{C}\right)=0$.

PROOF. In consequence of equation (3.1)b and equation (1.4), it can be easily proved that $N^{C}\left(l^{C} X^{C}, l^{C} Y^{C}\right)=0$ iff $(-)^{K} N^{C}\left(\left(F^{K-2}\right)^{C} X^{C},\left(F^{K-2}\right)^{C} Y^{C}\right)=0$ for all $X, Y \in \mathscr{T}_{0}^{1}\left(V_{n}\right)$.

Now r.h.s. of equations (3.5) and (3.6) are equal which in view of the above equation shows that conditions (i), (ii) \& (iii) are equivalent to each other.

THEOREM 3.3 The complete lift M^{C} of the distribution M in $T\left(V_{n}\right)$ is integrable iff M is integrable in V_{n}.

PROOF. It is known that the distribution M is integrable in V_{n} iff [3].

$$
\begin{equation*}
l[m X, m Y]=0 \text { for any } X, Y \in \mathscr{T}_{0}^{-1}\left(V_{n}\right) \tag{3.8}
\end{equation*}
$$

Taking complete lift of both sides of (3.8) we get

$$
\begin{equation*}
l^{C}\left[m^{C} X^{C}, m^{C} Y^{C}\right]=0 \tag{3.9}
\end{equation*}
$$

where $l^{C}=(I-m)^{C}=I-m^{C}$, is the projection tensor complementary to m^{C}. Thus the conditions (3.8) and (3.9) are equivalent.

THEOREM 3.4. For any $X, Y \in \mathscr{F}_{0}^{1}\left(V_{n}\right)$, let the distribution M be integrable in V_{n} iff $N(m X, m Y)=0$. Then the distribution M^{C} is integrable in $T\left(V_{n}\right)$ iff

$$
\begin{aligned}
& l^{C} N^{C}\left(m^{c} X^{C}, m^{c} Y^{C}\right)=0 \text { or equivalently, } \\
& N^{c}\left(m^{c} X^{c}, m^{c} Y^{C}\right)=0 .
\end{aligned}
$$

PROOF. By virtue of condition (3.4) we have

$$
N^{C}\left(m^{c} X^{C}, m^{C} Y^{C}\right)=\left(F^{C}\right)^{2}\left[m^{c} X^{C}, m^{c} Y^{C}\right] .
$$

Multiplying throughout by l^{C} we get

$$
l^{C} N^{C}\left(m^{C} X^{C}, m^{C} Y^{C}\right)=\left(E^{C}\right)^{2} l^{C}\left[m^{C} X^{C}, m^{C} Y^{C}\right]
$$

which in view of equation (3.9) becomes

$$
\begin{align*}
& l^{c} N^{C}\left(m^{c} X^{C}, m^{c} Y^{C}\right)=0 . \text { Also in view of (3.3) we have } \tag{3.10}\\
& m^{C} N^{C}\left(m^{c} X^{C}, m^{c} Y^{C}\right)=0 . \tag{3.11}
\end{align*}
$$

Adding (3.10) and (3.11), we obtain $\left(l^{C}+m^{C}\right) N^{C}\left(m^{C} X^{C}, m^{C} Y^{C}\right)=0$.
Since $l^{C}+m^{C}=I^{C}=I$, we have $N^{C}\left(m^{C} X^{C}, m^{C} Y^{C}\right)=0$.
THEOREM 3.5 For any $X, Y \in \mathscr{T}_{0}^{1}\left(V_{n}\right)$ let the distribution L be integrable in V_{n} that is $m N(X, Y)=0$ then the distribution L^{C} in integrable in $T\left(V_{n}\right)$ iff anyone of the conditions of theorem (3.2) is satisfied.

PROOF. The distribution L is integrable in V_{n} iff $m[l X, l Y]=0$.
Thus distribution L^{C} is integrable in $T\left(V_{n}\right)$ iff $m^{C}\left[l^{C} X^{C}, l^{C} Y^{C}\right]=0$.
so the theorem follow by making use of equation (3.7). We now define following
(i) distribution L is integrable
(ii) an arbitrary vector field Z tangent to an integral manifold of L.
(iii) the operator $\stackrel{*}{F}$, such that $\stackrel{*}{F} Z=F Z$.

In view of equation (1.4), the induced structure $\stackrel{\rightharpoonup}{F}^{*}$ of F is an almost complex structure on each integral manifold of L and $\stackrel{*}{F}^{*}$ makes tangent spaces invariant of every integral manifold of L.

DEFINITION. We say that F-structure is partially integrable if the distribution L is integrable and the almost complex structure F induced from $\stackrel{*}{F}$ on each integral manifold of L is also integrable.
Let us denote the vector valued 2 -form $\stackrel{*}{N}(Z, W)$, the Nijenhuis tensor corresponding to the Nijenhuis tensor of the almost complex structure inuced from F-structure on each integral manifold of L and for any two $Z, W \in \mathscr{G}_{0}^{-1}\left(V_{n}\right)$ tangent to an integral manifold of L, then we have

$$
\begin{equation*}
\stackrel{*}{N}(Z, W)=\left[\stackrel{*}{F} Z,{ }_{W}^{W}\right]-\stackrel{*}{F}[\stackrel{*}{F} Z, W]-\stackrel{*}{F}[Z, \stackrel{*}{F} W]+\stackrel{*}{F}^{2}[Z, W] \tag{3.12}
\end{equation*}
$$

which in view of (3.1)b and (3.12) yields

$$
\begin{equation*}
N^{c}\left(l^{c} X^{c}, l^{c} Y^{C}\right)=\stackrel{*}{N}^{c}\left(l^{c} X^{C}, l^{c} Y^{C}\right) \tag{3.13}
\end{equation*}
$$

THEOREM 3.6. For any $X, Y \in \mathscr{G}_{0}^{1}\left(V_{n}\right)$ let the F-structure be partially integrable in V_{n} i.e., $N(l X, l Y)=0$. Then the necessary and sufficient conditon for F-structure to be partially integrable in $T\left(V_{n}\right)$ is that $N^{C}\left(l^{C} X^{C}, l^{C} Y^{C}\right)=0$ or equivalently

$$
N^{C}\left(\left(F^{K-2}\right)^{C} X^{C},\left(F^{K-2}\right)^{C} Y^{C}\right)=0
$$

PROOF. In view of equation (1.4) and equation (3.1)b, we can prove easily that

$$
N^{C}\left(l^{C} X^{C}, l^{c} Y^{C}\right)=0 \text { iff } N^{C}\left(\left(F^{K-2}\right)^{C} X^{C},\left(F^{K-2}\right)^{C} Y^{C}\right)=0
$$

for any $X, Y \in \mathscr{T}_{0}^{-1}\left(V_{n}\right)$.
Now by making use of (3.13) and theorem (3.5) the result follows immediately.

When both distributions L and M are integrable we can choose a local coordinate system such that all L and M are represented by putting ($n-r$) local coordinate constant and r-coordinate constant respectively. We call such a coordinate system an adapted coordinate system. It can be supposed that in an adapted coordinate system the projection operators l and m have the component of the form

$$
l=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right), \quad m=\left(\begin{array}{ll}
0 & 0 \\
0 & I_{n-r}
\end{array}\right)
$$

respectively where I_{r} denotes the unit matrix of order ' r ' and I_{n-r} is of order ($n-r$).

Since F satisfies equation (1.4)a, the tensor F has components of the form

$$
F=\left(\begin{array}{ll}
F_{r} & 0 \\
0 & 0
\end{array}\right)
$$

is an adapted coordinate system where F_{r} denotes $r \times r$ square matrix.
DEFINITION We say that an F-structure is integrable if
(i) The structure F is partially integrable,
(ii) The distribution M is integrable i.e. $N(m X, m Y)=0$
(iii) The components of the F-structure are independent of the coordinates which are constant along the integral manifold of L in an adapted system.

THEOREM 3.7 For any $X, Y \in \mathscr{G}_{0}^{1}\left(V_{n}\right)$ let F structure to be integrable in V_{n} iff $N(X, Y)=0$. Then the F-structure is integrable in $T\left(V_{n}\right)$ iff

$$
N^{C}\left(X^{C}, Y^{C}\right)=0
$$

PROOF. In view of equations (3.1)a and (3.1)b we get

$$
N^{C}\left(X^{C}, Y^{C}\right)=(N(X, Y))^{C}
$$

since F-structure is integrable in V_{n} thus we obtain the result.

Acknowledgements:

The author wishes to express his deep gratitude to Dr. M. D. Upadhay for his constant guidance in the preparation of this paper.

Department of Mathematics and Astronomy, Lucknow Universiy, Lucknow (INDIA)

REFERENCES

[1] Kim, J. B., Notes on f-manifold, Tensor (N.S.) Vol. 29(1975), pp. 299-302.
[2] Yano, K. and Ishihara, S. Tangent and cotangent bundles, Marcel Dekker, Inc., N. Y. 1973.
[3] Ishihara, S. and Yano, K. On integrability of a structure f satisfying $f^{3}+f=0$, Quart. Jour. Math. Oxford, Vol. 25 (1964), pp. 217-222.

