Kyungpook Math. J. Volume 20, Number 2 December 1980.

SOME REMARKS ON θ -RIGIDITY

By James E. Joseph

Let X be a topological space and let $A \subset X$. We will denote by cl(A) and

 $\Sigma(A)$ the closure of A and the family of open subsets of X which contain A, respectively. Veličko [V] has defined the θ -closure of A (cl_{θ}(A)) to be { $x \in X$: each $V \in \Sigma(x)$ satisfies $A \cap cl(V) \neq \phi$ }; A is θ -closed if $cl_{\theta}(A) = A$. If Ω is a filterbase on X, the θ -adherence of Ω (ad_{θ} Ω) is $\bigcap_{\Omega} cl_{\theta}(F)$. It is known [J] that $cl_{\theta}(A) = \bigcap_{\Sigma(A)} cl(V)$ and, consequently, that $ad_{\theta}\Omega = ad \bigcup_{\Omega} \Sigma(F)$ for any filterbase Ω on X. A is θ -rigid in X [DP₁] if each filterbase Ω on X satisfying $F \cap cl(V) \neq \phi$ for all $F \in \Omega$ and $V \in \Sigma(A)$ also satisfies $A \cap ad_{\theta}\Omega \neq \phi$. Dickman and Porter [DP₁] have found θ -rigid subsets to be useful in the study of the extension function problem for θ -continuous functions between Hausdorff spaces. A is quasi H-closed [QHC] relative to X if each filterbase Ω on A satisfies $A \cap ad_{\theta}\Omega \neq \phi$ [H]. If X is QHC relative to X we say that X is an H(i) space [PT]. A Hausdorff H(i) space is an H-closed space and a QHC relative to X subset is called an H-set if X is Hausdorff [V]. The author has shown [J] that $cl_{\theta}(A)$ is QHC relative to X if x is an H(i) space. It is known that a θ -rigid subset

of any space is QHC relative to the space and that a θ -rigid subset of a Hausdorff space is θ -closed [DP₂].

In this paper we establish that a θ -closed subset of an H(i) space is θ -rigid and, consequently, that the family of θ -rigid subsets of an *H*-closed space coincides with the family of θ -closed subsets. As a consequence of this realization, we are able to improve a number of known results on subsets of *H*closed spaces, to offer a characterization, in terms of θ -rigid subsets of various spaces, of those Hausdorff spaces in which the Fomin *H*-closed extension operator commutes with the projective cover (absolute) operator, and to offer some new characterizations of locally *H*-closed spaces. We also present a product theorem for θ -rigid subsets.

In our first result we give some characterizations of θ -rigid subsets which will be used in the sequel. We recall that a filterbase Ω on a space X θ -convergential $x \in X$ ($\Omega \rightarrow_{\theta} x$) if for each $V \in \Sigma(x)$ there is an $F \in \Omega$ satisfying

246 James E. Joseph

$F \subset \operatorname{cl}(V)[V].$

PROPOSITION 1. The following statements are equivalent for a space X and $A \subset X$:

- (a) A is θ -rigid in X.
- (b) Each open filterbase Ω on X satisfying $V \cap W \neq \phi$ for all $V \in \Omega$ and $W \in \Theta$ $\Sigma(A)$ also satisfies $A \cap ad\Omega \neq \phi$.
- (c) Each filterbase Ω on X satisfying $V \cap W \neq \phi$ for all $V \in \bigcup \Sigma(F)$ and $W \in \bigcup \Sigma(F)$ $\Sigma(A)$ also satisfies $A \cap ad_{\theta} \Omega \neq \phi$.
- (d) Each base, \mathcal{U} , for an ultrafilter on X satisfying $F \cap cl(W) \neq \phi$ for all $F \in \mathcal{U}$ and $W \in \Sigma(A)$ θ -converges to some point in A.

PROOF. It is obvious that (a) implies (b); that (b) implies (c) follows easily from the remarks in paragraph 1. Under the hypothesis of (d), we see that all $V \in \bigcup_{W} \Sigma(F)$ and $W \in \Sigma(A)$ satisfy $V \cap cl(W) \neq \phi$ and, consequently, $V \cap W \neq \phi$. Hence, assuming (c), $A \cap \operatorname{ad}_{\theta} \mathscr{U} \neq \phi$. Since \mathscr{U} is a base for an ultrafilter on X, it follows that $\mathcal{U} \to_{\theta} x$ for each $x \in A \cap \operatorname{ad}_{\theta} \mathcal{U}$ and (c) implies (d). Now assume (d), and let Ω be a filterbase on X such that all $F \in \Omega$ and $W \in \Sigma(A)$ satisfy $F \cap cl(W) \neq \phi$. Let \mathscr{U} be an ultrafilter on X containing $\Omega \cup \{cl(W) : W \in \Sigma(A)\}$. Then all $B \in \mathcal{U}$ and $W \in \Sigma(A)$ satisfy $B \cap cl(W) \neq \phi$. Hence $\mathcal{U} \to_{\theta} x$ for some $x \in A$. Since $x \in A \cap ad_{\theta}\Omega$ we conclude that A is θ -rigid and that (d) implies (a). The proof is complete.

Our next result is a product theorem for θ -rigid subsets. If $\{X_{\alpha} : \alpha \in A\}$ is a family of sets we denote the product of these sets by $\prod_{A} X_{\alpha}$ and, for $\alpha \in A$, we denote the projection of $\prod X_{\alpha}$ onto X_{α} by π_{α} .

THEOREM 2. Let $\{X_{\alpha}: \alpha \in \Delta\}$ be a family of spaces and, for each $\alpha \in \Delta$, let A_{α} be a nonempty subset of X_{α} . A necessary and sufficient condition for $\prod A_{\alpha}$ to be θ -rigid in $\prod_{\alpha} X_{\alpha}$ is that A_{α} be θ -rigid in X_{α} for each $\alpha \in \Delta$.

PROOF. The necessity of the condition follows from the readily established fact that an open continuous image of a θ -rigid subset is θ -rigid. For the proof of the sufficiency, let \mathscr{U} be a base for an ultrafilter on $\prod_{\alpha} X_{\alpha}$ satisfying $B \cap cl(W)$ $\neq \phi$ for all $B \in \mathcal{U}$ and $W \in \Sigma(\prod A_{\alpha})$. Then, for $\alpha \in A$, $\pi_{\alpha}(\mathcal{U})$ is a base for an

247 Some Remarks on θ -Rigidity

ultrafilter on X_{α} . If $V \in \Sigma(A_{\alpha})$, then $\pi_{\alpha}^{-1}(V) \in \Sigma(\prod_{\alpha} A_{\alpha})$ and, therefore, any $B \in \mathbb{Z}$ satisfies $B \cap \pi_{\alpha}^{-1}(cl(V)) = B \cap cl(\pi_{\alpha}^{-1}(V)) \neq \phi$. Hence $\pi_{\alpha}(B) \cap cl(V) \neq \phi$ is satisfied for all $B \in \mathcal{U}$ and $V \in \Sigma(A_{\alpha})$. Consequently, from Proposition 1 (d), there is an $x_{\alpha} \in A_{\alpha}$ such that $\pi_{\alpha}(\mathcal{U}) \to_{\theta} x_{\alpha}$. Let $x \in \prod X_{\alpha}$ with $\pi_{\alpha}(x) = x_{\alpha}$ for all $\alpha \in \mathcal{A}$. Then $x \in \prod_{A} A_{\alpha}$ and $\mathcal{U} \to_{\theta} x$. The proof is complete.

The following theorem improves a number of known results and is used extensively in the remainder of this paper.

THEOREM 3. A θ -closed subset of an H(i) space is θ -rigid in the space.

PROOF. Let Ω be an open filterbase on the H(i) space X, let A be θ -closed in X and suppose that $V \cap W \neq \phi$ is satisfied for all $V \in \Omega$ and $W \in \Sigma(A)$. Then $\Omega_1 = \{V \cap W : V \in \Omega, W \in \Sigma(A)\}$ is an open filterbase on X. Hence $\phi \neq \operatorname{ad} \Omega_1 \subset \Omega_1$ $cl_{\theta}(A) \cap ad\Omega = A \cap ad\Omega$. Therefore, by Proposition 1 (b), A is θ -rigid. The proof is complete.

COROLLARY 4. A subset of an H-closed space X is θ -rigid in X if and only if it is θ -closed in X.

COROLLARY 5. [J]. A θ -closed subset of an H(i) space is QHC relative to the space.

COROLLARY 6. [V]. A θ -closed subset of an H-closed space is an H-set.

Before moving to other results in this paper, we need some additional definitions and terminology. An open filter on a space X is a nonempty collection of open sets Ω satisfying the following properties: (1) $\phi \notin \Omega$, (2) If V, $W \in \Omega$, then $V \cap W \in \Omega$, and (3) If $V \in \Omega$ and W is open in X with $V \subset W$, then $W \in \Omega$. An open ultrafilter is an open filter which is maximal in the collection of open filters. Let X be a Hausdorff space and let $X^* = X \cup \{\mathcal{U} : \mathcal{U} \text{ is a free open}\}$ ultrafilter on X}. For each open V of X, let $0(V) = V \cup \{\mathscr{U} \in X^* - X : V \in \mathscr{U}\}$. Then $\{0(V) : V \text{ open in } X\}$ is an open base for a topology on X^* . X^* with this topology is an H-closed extension of X[F] called the Fomin extension of X and denoted by σX ; X* with the topology generated by the open base $\{V:V\}$ open in $X \} \cup \{V \cup \{\mathscr{U}\} : V \in \mathscr{U}, \ \mathscr{U} \in X^* - X\}$ is an H-closed extension of X [K] called the Katetov extension of X and denoted by κX .

248

James E. Joseph

THEOREM 7. Let X be a Hausdorff space. The following statements are equivalent for $A \subset X$:

- (a) A is θ -rigid in κX .
- (b) A is θ -rigid in X.
- (c) A is θ -rigid in σX .
- (d) A is θ -rigid in some H-closed extension of X.

PROOF. The proof follows easily from Corollary 4 above, (2.2) from $[DP_2]$, and (3.2) from $[DP_2]$.

Now, for a Hausdorff space X, let ∂X denote $\{\mathcal{U}: \mathcal{U} \text{ is an open ultrafilter}\}$ on X}. For each open V in X, let O(V) denote $\{\mathcal{U} \in \partial X : V \in \mathcal{U}\}; \{O(V) : V \text{ open in } V \in \mathcal{U}\}$ X is a base for an extremally disconnected, compact Hausdorff topology on θX [IF]. By Theorem 5.2 in [PV] there is a θ -continuous, perfect irreducible function $\pi: \theta X \to \sigma X$ defined by $\pi(\mathcal{U}) = \mathcal{U}$ for each free open ultrafilter \mathcal{U} on X and $\pi(\mathcal{U}) = x$ where x is the unique convergent point of the fixed open ultrafilter \mathscr{U} . It is established in $[DP_2]$ that if X is a Hausdorff space and $A \subset X$, then $\pi^{-1}(A)$ is compact if and only if A is θ -closed in κX . In view of this result and Corollary 4 above, the following theorem follows.

THEOREM 8. If X is a Hausdorff space and $A \subset X$, then $\pi^{-1}(A)$ is compact if and only if A is θ -rigid in κX .

For a Hausdorff space X, the subspace $\{\mathcal{U} \in \partial X : \mathcal{U} \text{ is fixed}\}$ of ∂X is denoted by EX and is called the *absolute of X*. Using Corollary 4 above and Corollary (3.5) of $[DP_2]$ we obtain the following characterization of those Hausdorff spaces in which the Fomin H-closed extension operator commutes with the absolute operator.

THEOREM 9. Let X be a Hausdorff space. Then $\sigma(EX) = E(\sigma X)$ if and only if the set of nonisolated points of X is θ -rigid in κX .

A Hausdorff space X is *locally* H-closed if each point in X has an H-closed neighborhood [O]. Properties of locally H-closed spaces have been studied in [P]. A number of characterizations appear in [P], [PV]. In our next theorem we utilize Corollary 4 above to offer two new characterizations.

THEOREM 10. The following statements are equivalent for a Hausdorff space X:

Some Remarks on θ -Rigidity

(a) X is locally H-closed.
(b) κX-X is θ-closed in κX.
(c) κX-X is θ-rigid in κX.

PROOF. The equivalence of (b) and (c) follows directly from Corollary 4. To see that (a) implies (b), let $x \in X$ and let H be an H-closed neighborhood of

x in X. If \mathscr{U} is a free open ultrafilter on X there is a $W \in \mathscr{U}$ satisfying $H \cap W = \phi$. Otherwise $\operatorname{ad} \mathscr{U} \neq \phi$. Hence $\operatorname{cl}_{\kappa X}(H) = H$ and (b) holds. Now assume (b) and let $x \in X$. Then, since $\kappa X - X$ is θ -closed in κX , there is a $V \in \Sigma(x)$ in X such that $\operatorname{cl}_{\kappa X}(V) \cap (\kappa X - X) = \phi$. Hence $\operatorname{cl}_{\kappa X}(V) = \operatorname{cl}(V)$. Let Ω be a family of open subsets of X such that $\Omega_1 = \{F \cap \operatorname{cl}(V) : F \in \Omega\}$ is an open filterbase on $\operatorname{cl}(V)$. Since $\operatorname{cl}_{\kappa X}(V) = \operatorname{cl}_{\kappa X}(V) = \operatorname{cl}_{\kappa X}(V) = \operatorname{cl}(F \cap \operatorname{cl}(V))$, we have $\phi \neq \bigcap_{\Omega} \operatorname{cl}_{\kappa X}(F \cap \operatorname{cl}_{\kappa X}(F)) = \bigcap_{\Omega} \operatorname{cl}_{\kappa X}(F \cap V) = \bigcap_{\Omega} \operatorname{cl}(F \cap \operatorname{cl}(V))$. Therefore $\operatorname{cl}(V)$ is an H-closed subset of X, X is locally H-closed, (b) implies (a) and the proof is complete.

Finally, we note that the classic example of a minimal Hausdorff non-compact space [B] has an element x and an open set V satisfying $x \in cl_{\theta}(cl(V))-cl(V)$. So cl(V) is not θ -closed and, consequently, not θ -rigid. Hence $cl_{\theta}(A)$ could fail to be θ -rigid for a subset A of an H-closed space.

Department of Mathematics,

Howard University, Washington, D.C. 20059.

REFERENCES

- [B] N. Bourbaki, Espaces minimaux et espaces completement séparés, C.R. Acad. Sci. Paris 212(1941), 215-218.
- [DP₁] R.F. Dickman, Jr. and J.R. Porter, θ-perfect and θ-absolutely closed functions, Illinois J. Math. 21(1977), 42-60.
- [DP₂] R. F. Dickman, Jr. and J. R. Porter, θ-closed subsets of Hausdorff spaces, Pacific J. Math., 59(1975), 407-415.
- [F] S. Fomin, Extensions of topological spaces, Ann. Math., 44(1943), 471-480.
- [H] L. L. Herrington, H(i) spaces and strongly-closed graphs, Proc. Amer. Math. Soc.,

2**50**.

James E. Joseph

58(1976), 277-283.

. .

•

•

- [IF] S. Iliadis and S. Fomin, The method of centred systems in the theory of topological spaces, Uspekhi Mat. Nauk., 21(1966), 47-76=Russian Math. Surveys 21(1966), 37-62.
 [J] J. Joseph, Multifunctions and cluster sets, Proc. Amer. Math. Soc., 74(1979), 329-337.
 [K] M. Katětov, Über H-abgeschlossene und bikompakte Räume, Časopis Pěst. Mat. Fys., 69(1940), 36-49.
- [O] F. Obreanu, Espaces localement absolument fermés, Ann. Acad. Repub. Pop. Române, Sect. Sti. Fiz. Chim., Ser. A3(1950), 375-394.
- [P] J. Porter. On locally H-closed spaces, Proc. London Math. Soc. (3) 20(1970), 193-204.
- [PV] J.Porter and C. Votaw, *H-closed extensions*. [], Trans. Amer. Math. Soc., 202 (1975), 193-209.
- [PT] J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc., 138(1969), 159-170.
- [V] N. V. Veličko, H-closed topological spaces, Mat, Sb., 70(112) (1966), 98-112;
 English transl., Amer. Math. Soc. Transl. (2) 78(1968), 103-118.