Kyungpook Math. J. Volume 20, Number 2 December, 1980

A NOTE ON THE STRUCTURE OF IDEALS IN A EUCLIDEAN SEMIRING

By Louis Dale

In the paper "The Structure of Ideals in a Euclidean Semiring," appearing in this Journal Volume 17, Number 1, June 1977, pp.21—29, there is an error in the statement of theorem 11. This theorem stated as follows:

Let A be an ideal in E and $a \in A$. If d divides a and $a+d \in A$, then $dT_a \subset A$. The ideal dT_a in the theorem should be dT_{a^2} . The correct statement of the theorem (with proof) is as follows.

THEOREM. Let A be an ideal in E and $a \in A$. If d divides a and $a+d \in A$, then $dT_{a^2} \subset A$.

PROOF. Let a=dm and $x \in dS[a^2, a(a+e)]$. Then $dS[a^2, a(a+e)] = dS[d^2m^2, d^2m^2+dm]$ and it follows that $x=d^3m^2+z$ where $\phi(z) \leq \phi(d^2m)$ and d divides z. Hence z=kd for some $k \in E$. Now $d^2m = pz+r$ where $\phi(r) < \phi(z)$ or r=0 and since E is a principal semiring, we have both d=f+e and p=q+e for some $f, q \in E$. All of this gives

$$x = d^{3}m^{2} + z = dm(pz+r) + z = a(pz+r) + z = (apz+z) + ar$$

= $k(apd+d) + ar = k[a(f+e)(q+e)+d] + ar$

=k[a(fq+f+q)+(a+d)]+ar.

Since $a \in A$ and $a+d \in A$, it follows that $x \in A$. Consequently, $dS[a^2, a(a+e)] \subset A$ and it follows from lemma 10 that $dT_{a^2} \subset A$.

It should be noted that theorem 11 is a generalization of lemma 6 which states: Let A be an ideal in a Euclidean semiring E. If there exists $a \in A$ such that $a+e \in A$, then $T_{a^2} \subset A$.

It should also be noted that on page 28 line four (4) from the bottom the set $V = \{p | dT_p \subset A\}$ should be $V = \{p | kT_p \subset A\}$ where $k \in W$ such that $\phi(k)$ is minimum.

University of Alabama in Birmingham Birmingham, Alabama 35294

.

By Louis Dale

REFERENCES

 [1] Dale, L. and Hanson, D., The structure of ideals in a Euclidean semiring, Kyungpook Math. Journal 17(1977), 21-29.

.

· · · · ·

· •

_

.

,

•

•