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Empirical process optimization through

response surface experiments and model building *

SUNG H. PARK * *

Abstract

In many industrial processes, there are more than two responses (i.e., yield, percent impurity,

etc.) of interest, and it is desirable to determine the optimal levels of the factors (i.e., temperature,

pressure, etc.) that influence the responses. Suppose the response relationships are assumed to be

approximated by second-order polynomial regression models. The problems considered in this

paper is, first, to propose how to select polynomial terms to fit the multivariate regression

surfaces for a given set of data, and, second, to i)ropose how to analyze the data to obtain

an optimal operating condition for the factors, The proposed techniques were applied for empirical

process optimization in a tire company in Korea. This case is presented as an illustration.

1. INTRODUCTION

In empirical investigations of the relationship
between a response variable (y) and several
independent variables (x, , x,, ..., X;) to determine
optimum operating conditions for process control,
the response relationship is often assumed to be
approximated by a second-order polynomial
regression model,

k k
y=8, + ia Bix; + i?j Bijxix;te

where the values of the xis are in some region
of interest, R, over which the polynomial approxi-
mation is to be used, and e is a random error
whose distribution is usually normal with mean
zero and variance ¢®. However, a question is
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raised in using the polynomiial model. Does he
have to include every term in the polynomial
to fit the response surface?

One of the problems considered in this paper
is that of selecting subsets of polynomial terms
and model-building from a given polynomial model
so as to achieve “improved” response surfaces
in estimation of the response. Such improvement
in fitting the response surfaces would be very
helpful to determine optimum operating condi-
tions of independent variables for quality control,
and to explore the functional relationship with
better precision.

The author has proposed a criterion in PARK



[8] to select subsets of polynomial terms to fit
the response surface, when the precision of
response over a region of interest is of main
concern. This selection technique is applied in
this paper for determination of a proper model.
For other selection techniques, see DRAPER
& SMITH [3], MALLOWS [6], HELMS [5]
and PARK {9, 10].

In empirical response surface experiments
engineers frequently need to analyze multi-response
data, and it is desirable to find the optimal
levels of the independent factors that influence
the responses. Several authors (BOX & DRAPER
[1], HELLER & STAATS [4]1, MYERS &
CARTER [7], BOX ET AL. [2]) have considered
a variety of estimation problems associated with
multi-response data. However, the special case
discussed in this paper has not been treated
explicitly. Suppose we have q responses on k
independent factors, X = (X;, X, .., X), and
the following relationships are assumed to be
true in a region of interest,

R =((X,, Xa, oo Xi) T aSx,Sbyi=1,2,., k1,

Yo (l)=fm (E)+em (Eq 1)

where

k k
fm(L():Bmo + E ﬁmi Xx; t E ﬁmij X; Xj-
-1 L=y}

Without loss of generality, suppose y,(X) is
the primary response (most important response)
and y,(x), yv;(x), ..., yq® are the secondary
responses (the responses which should satisfy
some levels of specification). What the engineers
and scientists usually want to know is to find
the optimal levels of x such that

Maximize y,(x) (Eq. 2)
X

subject to ¥,(x) > C, (or<Cph), m=2,3,
s q X €R,

where ym(x) is a proper estimate of fy(x) for

a given set of data on (¥,;, Y35 - Yais X1:
Xziy ooy Xy 1= 1, 2, ..., 0. It is suggested that
one select the necessary polynomial terms from
(Eq. 1) by the technique proposed by PARK [8]
and fit the regression models to obtain ym(x)
by the ordinary least squares method.

2.  SELECTION CRITERION

Suppose there are n < t observations on
a t-vector of input polynomial terms, x' = (1, x,,
Xz, . Xf, X3, X1 X, ...). The response variable
is frequently expressed in vector notation as

y=xB+e (Eq. 3)

where § is the t-vector of unknown regression
coefficients and it is assumed that the residuals,
e, are identically and independently distributed
with mean zero and unknown variance, 0°. Let
r denote the number of terms which are deleted
from (Eq. 3), and p = t - r denote the number
of terms which are retained in the final equation.

Let (Eq. 3) be written in partitioned vector
form as

y=x,8, + % 8, te

where X, contains the retained terms and x,

contains the deleted terms. Let é with components
@ » and é, denote the least squares estimator of
B and let §, denote the subset least squares
estimator of §, when the polyhomial terms in
X, are deleted from the model.

That is,

=(X%" X'Y and §, =(X,X,)" X,Y

where X and X, are the matrices of values taken
by the polynomial terms in x and x,, respectively,
at each of the design points, and Y is the n-vector
of observed responses. If ‘we use the full model
then the estimated value of the response at a
particular input x is ?(_)g) = Z‘.ﬁ On the other
hand, if the subset model with x; deleted is used,



the estimated response is ¥,(X,) = X, B5.

The proposed criterion is to select the
p polynomial terms which maximize the quantity,

Q=/r [MSE(y)-MSE(y,)] dW(x).

which is integrated over the region of inferest,
R. In this W(x) is a weighting function that
can be treated as a probability distribution func-
tion on R. The W(x) allows for differential
importance of the estimator of f(x) at different
points in the region and can be specialized to
a discrete set of points if desired.

PARK [8] shows that, after replacement of the
parameters 0 and §, by their estimates from
the current data using the full model, the quantity
to be miximized is

-~ ~

Q=64 T, (XX M] - T AX,X;) M, ]
-8 [A'M,, A-2A'M,, + M, §., (Eq.4)

where

M= R xx' dW(x),
M;;=/R )_(ﬂ_(idw()_()
A=(GX,)" XX, ,

-and T, denotes trace. The first term in 6 is the
integrated difference of Var(y) - Var(¥,), which
is always non-negative, and the last term in Q is
the integrated squared bias of y,. Therefore,
in essence, the criterion is to look for a subset
of polynomial terms whose gain in precision
is not offset by the squared bias over the whole
region of interests, R.

3. OPTIMIZATION PROCEDURE

Suppose we select the proper polynomial terms
from the method proposed in the previous sec-
tion, and fit q equations by the least squares
method, and obtain q estimated responses, ¥, (x),
m =1, 2, ... 49, where x =(X;, Xz, ..., X;) in this

section. We want to find x € R which maximizes
¥,(x) subject to

Ym(® <Cn ,m=2,3..,q

as described in (Eq. 2).

Let R*={(x): y. (X) =C,, ,m=2,3, ..,q,
and x € R}. This R* is the region for x such
that every point x € R* satisfies the secondary
response constraints. Suppose R* ={ (x) : ¥, (x)

< cm, x € R}. Then, obviously, R* is the inter-
section of R¥, m = 2, 3, ..., q. That is,

R*=RINRINNR;. (Eq. 5)

Usually, it is difficult to obtain R% for each
¥m(X). To obtain R% easily, a computer program
was written to sketch the contours- of §m(§),
so that R’,",. can be identified. The computer
program was written in FORTRAN IV, and can
be obtained from the author by request.

Suppose x* is the optimal point of x Which
belongs to R*, and -maximizes y,(x). The point
x* and its vicinity can be obtained by plotting
the contours of ¥,(x) and observing the values
of 3’1 (x) on R*. This -whole procedure can be

best explained by the following industrial experi-

ments, which the author heiped for the experi
mental design and the analysis of the data.

4. EXAMPLE

The data used in this example were provided
by a tire manufacturing company in Korea.
The company conducted an experiment in 1979
to find a better combination of raw materials
for tire-making to improve the reliability of an
industrial tire, named 1100-20. The company
achieved its foal to find a better combination
through the experimental design and the analysis
of data which will be the experimentai design
and the analysis of data which will be described
in the rematinder of this raper.



The laboratory scientists of the company found

that the 300% modulus (y,) would be the:

primary response, and the amount of heat (y,)
would be the secondary response. Also they
found that two raw materials of chemicals, R101
and U100 (called x, and x, respectively), are
the factors of interest which might affect the
two responses. They decided to choose the 3°
factorial disign with 3 replicates for y, and 2
repliate for y, in each level combination, and
the levels of each factor are (-3, a, a+3)=(-1,
0, +1) for x, and (f-1, B, f+1) = (-1, 0, +1)
for x,, where (xi, x,) = (&, B) is the present
level of combination for the two chemicals.

What they want to find out is the best
combination of x, and x, in the range of (-1, +1)
that will maximizes y, subject to the constraint
that y, is not greater than a certain level of
response. Table 1 and Table 2 show the data
for this 3* factorial experiments.

x, =-1 X, =0 X, =+1

(@-3) () (@+3)
Xa=-1 90 114 108
@ -1 85 100 124
93 100 112
o = 133 97 109
’(ﬁ) 119 114 102
108 97 122
X, =+1 108 100 125
@+1) 103 105 112
109 107 121

Table 1: 300% modulus (y, ) data

x, =-1 X, = X, =+1

(a-3) (@ | (@+3)
X; =-1 17.2 20.3 23.8
@B-1n 14.4 211 22.8
x; =0 17.5 21.4 211
B 18.5 19.7 22.7
X, =+1 17.7 20.3 22.1
@B+ 17.5 19.4 221

Table 2 : Amount of heat (y, : °C) data

The second-degree polynomial regression model
was fitted for y; and y,, respectively, and the
selection rule proposed in Section 2 was applied.
The result is that all polynomial terms (x., x;,
x2' x3, x,x,) for y, are retained in the model,
but for y,, all terms except x, are retained in the
model. Therefore, the resulted least squares
equations obtained from the computer program
are:

¥,(x) = 106.96 + 4.83x, + 3.56x, +6.39x}
-4.78x%% -3.17x, x,,

$,(x) = 20.51 + 2.65x, - 0.58x] - 0.21x}
- 0.78X| XQ.

Also the computer program gives Fig. 1 and
Fig. 2 for the contours of ¥,(X) and ¥,(X),
respectively, in the range of (-1, +1) for x,
and x,.
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Fig. 2: Contours for y,(x).



The company wants to find out the. values
of x; and x; in the region of interest, R = {(x,,
X;):-1=5x;<1,i=1, 2}, such that

Maximize ¥.(x)
X

subject to ¥, (x) < 18.0 °C.

The satisfactory region R* for the secondary
response is sketched in Fig. 1, and in this
region of (x,, x,) the secondary response is not
greater than 18 degrees of temperature. Next,
this region R* is sketched in Fig. 2 to identify
the optimal point x* € R* that maximizes
¥,(x). It turns out that the shaded dark part
in Fig. 2 is the optimal region and the top part
of the region is the point, x*. Therefore, the
present levels of x; and x. should move to
the vicinity of (-1, 0.5) for (x,, X:) to improve
the 300% modulus while the secondary response
is satisfactory.

The company found that the new optimal
levels, (x;, x.) = (-1, 0.5) = (-3, B+V), are
really bettern than the previously used optimal
levels (x,, x;) = (0, 0) = (a, f), and the company
decided to take this new combination for the
two chemicals. Also the company found that
the reliability of the tire is increased by 10%
by the adoption of this new combination.

5. ACKNOWLEDGEMENT

This work was pertially supported by the
research fund of the Ministry of Education,
Korea Government, in 1979. The author is
grateful for the graduate students in the depart-
ment of computer science and statistics, Seoul
National University, who helped me in writing
the computer program used in this paper.

REFERENCES

{1] Box, G.E.P. and Draper, N.R.; “The Baye-
sian Estimation of Common Parameters from
Several Responses”; Biometrika, Vol. 52,
1965, pp. 355-365.

[2] Box, G.E.P,, Hunter, W.G., MacGregor, J.E.
and Erjavec, J.; “Some Problems Associated

- with the Analysis of Multiresponse Data”;
Technometrics, Vol. 15, 1973, pp. 33-49.

(3] Draper, N. and Smith, H.; Applied Regres-
sion Analysis; John Wiley & Sons; New
York; 1966.

[4] Heller, N.B. and Staats, G.E.; “Response
Surface Techniques for Dual Response
Systems”; Technometrics, Vol. 15, 1973,
pp. 113-123.

[5] Helms, R.; “The Average Estimated Variance
Criterion for the Selection of Variables
Problem in General Linear Models”; Techno-
metrics, Vol. 16, 1974, pp. 261-274.

[6]- Mallows, C.; “Some Comments on Cp”s
Technometrics, Vol. 15, 1973, pp. 661-675.

{7] Myers, R.H. and Carter, W.H.; “Response
Surface Techniques for Dual Response
Systems”; Technometrics, Vol. 15, 1973,
pp. 301-318.

[8] Park, S.H.; “Selection of Polynomial Terms
for Response Surface Experiments”; Riomet-
rics, Vol. 33, 1977, pp. 225-229.

[9] Park, S.H.; “On Screening of Variables for
Response Surface Experiments with Mix-
tures”; The Journal of the Korean Statistical
Society, Vol. 6, 1977, pp. 103-116.

[10] Park, S.H.; “Selecting Contrasts among
Parameters in Scheffe’s Mixture Models:
Screening Components and Model Reduc-
tion™; Technometrics, Vol. 20, 1978, pp.
273-279.



