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1. Introduction

Dugdale? determined coplanar strip yield
zone by cancelling the singularity. Recently
Atkinson and Kanninen® also used this
condition in their superdislocation model
where there was, however, no information
for the plastic zone size. Many other inves-
tigators’~® studied an inclined strip yield
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model since the plastic deformation at the
region of the crack tip is usually confined
to two slip systems inclined to the crack
plane. Rice® analyzed approximately this
model by applying the BCS model®. Vitak®
and Riedel® improved the approximate solu-
tion by Bilby and Swinden®, but obtained
different results because of their different
approach. Cherepanov” solved a boundary
value problem of the inclined strip yield
model with the Wiener-Hoph equation for
small scale yielding. Lo® also studied this
model using a complex potential method.
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Unfortunately, however, there is little agre-
ement between these investigators due to
the difference in their mathematical models.

The inclined strip yield model is recon-
sidered in this paper with continuum crack
and lattice dislocations. Moreover, the vali-
dity of the singularity cancelling condition
for the plastic relaxation of the crack tip
is examined by regarding the plastic zone
size as a reference.

The J-integral and the crack opening dis-
placement (COD, 8) are widely accepted pa-
rameters in fracture mechanics for detecting
the initial stage of crack growth. Rice!”
first applied the concept of the force on an
elastic singularity introduced by Eshelby!®
to the fracture mechanics. Vitak® first eva-
luated the J-integral on the inclined strip
yield model with computer. Many other in-
vestigators'>-'® studied the relationship be-
tween COD and J, experimentally. However,
in simple models such as BCS model and
Dugdale model, the relationship between ]
and COD is given by

J=0+0y-

Thus we first try to evaluate J by choo-
sing a shrunk path for obtaining a direct
relationship between J and COD in the in-
clined strip yield model which is a reasona-
ble model of the semi-brittle plastic tensile
crack.

2. Formulation of the Model

The inclined-strip-yield continuum-disloca-
tion model of an isolated, elastic-plastic cra-
ck in uniform tension is shown in Fig. I
Let f(%0), —c<xe<c, be the crack-dislocati-
on-density function and g(x;), 0<x1<p, the
lattice-dislocation-density function. Then,
Sf(x0) and g(x,) must satisfy the following

simultaneous, singular integral equations
derived by:!”

Ua/A_,fix ‘—ZC(%Q + ,Z:—l jZBio (xo, 51‘)g(51’) df,--':o,,
(1a)
(s—on) (A=-[ | £EL L " B'e, 05 0a

+3, (B (5,608 (8)dsi=0,  (1D)

Fig. 1 Inclined-strip-yield continuum-dislocation
model.

where eqn. (la) is a force equilibrium
equation for the crack dislocations and eqn.
(1b) that for the lattice dislocations on the
slip band of branch 1 in Fig. 1 Each kernel
Bj’ represents corresponding interaction stre-
sses on the dislocations in the branch ; due
to the dislocations in the branch 7 normalized
with respect to A=Db(D=p/22(1—v)), where
#,v and b mean, respectively, shear modulus,
Poisson’s ratio and Burgers vector. And o,,
ov,0r, osand p are applied tensile stress, flow
stress, f[riction stress, resolved shear stress
on the slip plane and length of strip yield
zone (plastic zone size), respectively. Leng-
ths are all normalized to half the crack, c.

Performing inversions'® of Eqns.(1) with
unbounded end conditions for f, and one end
(x1=0) unbounded and the other (x; = p)
finite for g reduces the singular integral
equations into Fredholm integral equations.
Changing the order of the double integrals

in the Fredholm integral equations and
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taking Cauchy principal values for the sin-
gular integrals give simultaneous linear
equations for given points of %, and x, by
replacing the integrals by sums with weight
factors. Then we obtain numerical Isolutions
of f and g for given numbers of base points
of gaussian quadrature and for an assigned
value of p. At such points x,=x, (i=1,2,
m), f(x:) and
g (%1;) can be obtained. Various detail exp-

Ln) and x=x; (j=1,2, -,

ressions and derivations of the equations
and the kernels B;’ are given in the [disser-
tation'”.

3. Proper Dislocation Density Functions

In the process of the plastic relaxation by
emitting lattice dislocations at the crack
tips'®, the reduction in magnitude of the
singularity increases the non-singular terms
of the density function of the crack disloca-
tions as in the stress fields of the crack
tip region. Since, however, a satisfactory
forms of the density functions of the crack
dislocations is not known yet, we have in-
vestigated four possible forms of the crack-
dislocation-density function.

As a first candidate, Taylor series expan-
sion is attempted?® for the non-singular
terms with the assumption that non-singular
terms are purely regular;

x Y

QX

vV (1—%)

n-1
+ h; Ay %21 ] , 2)

where we define g, as singularity cancelling
coefficient. This power series may not conv-
erge so well that the value of the singularity
cancelling coefficient fluctuate severely, or
may not converge at all (see Fig. 3).

If the stress:field near the plastically

relaxed crack tip is assumed to be not so
significantly distorted as to change the
essential form of the functions which cons-
titutes the Williams eigenfunction expan-
sion, the second candidate can be proposed

as the following:

Cy G X )

f®="r A ¢(1 x%) A v (1 —x?)
+5g0 (1) T ana (1= |51) (3)
The dominant term of the stress field

which is obtained with this density function
are almost the same form as the Williams
eigenfunction expansion. And sgn (x) and
(1—|x]) in eqn. (3) are taken for {the an-
tisymmetry of the function.

In eqn. (3),
regular functions except the first square

the nonsingular terms are

root term. This study tests the significance
of the square root term effectively by taking
the following density function as the third
candidate,

X Oy a)x

IUa
f(x)=ﬁ «/_(1-962-) T A

+a-sgn (x) ¥ (T=[2]) + :z;:a,,+2x2k—1,
(4)

by replacing thevregular part of the non-
singular terms in eqn. (3) with the Taylor
series expansion. eqn.(4) is called a “mixed
function”.

Finally, this study tests the [N,N] or [N,
N-1] Padé approximant for the non-singular
terms which provides efficient rational fun-
ction®,

Jq X g ax
fM=21 Jaem A Vi
i c,-x"
1. (5)
._Zob,'x{
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where the second term in the bracket is the
[N,M] Padé approximant.

4. Solution with Singularity Cancelling
Condition

An additional condition is needed for the
length of the slip band, p, which depends
on the applied stress, o,and is nonlinearly
involved in eqns. (1). The boundary con-
dition have already used in the inversion
process of eqns. (1), so we takes the sin-
gularity cancelling condition as a necessary
additional condition. Since the true stress
intensity factor is given by

K=y 7z Alim (=0 ()

— (e _

=0y +/7c ( oy al),
the singularity cancelling condition will be
satisfied when the true stress intensity fac-

tor vanishes, that is, when

a,=-2= (6)

ay
Now, we can obtain sets of numerical
values on a; (f=1,2,...,n) with respect to
each of the crack-dislocation-density func-
tions given by eqns. (2-4),
for an assigned value of p under a fixed

respectively,

applied stress. Proper crack-dislocation-den-
sity functions must give smoothly conver-
gent value of a;,, not being necessary the
value of eqn. (6), with increasing values
of n. Under the fixed applied stress, p is
then adjusted so that & may vary. The
plastic zone size, p, can not be fixed until
the adjusted value of p yields a; which
satisfies the singularity cancelling condition,
eqn. (6), within reasonable accuracy.

For the crack-dislocation-density function,
eqn. (5), we have to solve simultaneous
nonlinear equations. The least square me-

thod is used for this purpose with a mini-
mization computer program. The process
for the determination of ¢; and p is essen-
tially the same as the previous cases.

A widely accepted parameter of the crack
opening displacement is given by*~%.

5==26 sin 6 j: g de, Q)

where eqn. (7) is numerically integrated
by using the values of g(x;) and its gaus-
sian quadrature in the above numerical so-

lution of eqgns. (1).
5. The J-integral on the Shrunk Path

For the crack on the plane y,=0, the J-in-
tegral is given by

J=[ p(WdSi~0,:0/2%:dS)), (31=x%, %=0)
(8
where dS; becomes a line element of an in-
tegration contour, I", which goes in an anti-
clockwise direction from the bottom to the
top of the crack surface, as shown in Fig.
2.

Fig. 2 Shrunk path of J-integral in the
inclined strip yield model.

The path-independence of the J-integral
permits us to choose the shrunk path ABC
OC’B’A’ shown with dashed line in Fig. 2
as our integral contour. The integration on
the path AB and B’A’” do not contribute to
the value of J. Thus, on the net shrunk
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path I+I: (I=BCO, I.=0C’B’), the
J-integral of eqn. (8) becomes, on account
of the symmetry of the model,

. . _ BuE 1
J= 2L12 ‘ W sin 8—aq: —5% CosT de, (9)

where o, is the shear stress acting on the
lattice dislocations at the points & on the
strip yield zone, and @ is the inclined angle
of the slip plane. The shear stress oy is
composed of all the interactive shear stres-
ses due to crack and lattice dislocations and
the resolved shear stress of the applied ten-
sile stress. This is written as

sn=a+AlT EEOL Al B, 0f (0 de
o &1—§ —c

+4 :;f:B,‘- (61,808 (8)dé.. (10)

Since all the lattice dislocation are in equ-
ilibrium, eqn. (1) gives

Jg;:~=0R. (11)
Substituting eqn. (11) into eqn. (9) and
considering the positive definiteness of the
elastic strain energy density W, we obtain

1
cosf aé

=2 UF St [ (—an) Bt s

]= - 2‘1‘112005:—?

cos @ |Jo 7% oz ot
2 r o —p(2ut)
~ cosd jog“ ds E
_ 20Rr {?
=298 ['pg (§) s (12a)
50'Y' (12b)

“sinz2g’
where »*, and #~; represent the upper and
lower displacement field of the strip yield
zone, respectively, and Eqn. (7) and the
following relation have been used :

or=0y/2 (Tresca material).

Since the total force, Fy, acting on all the
lattice dislocations on one branch of the strip
vield zones, is given by

Fi={" bow - £(8)de

=" boag(@ds,

the J given by eqns. (12) means the hypo-
thetical force acting at the plastic crack tip
in the direction of the crack plane and the
resolved force of a half the / on the slip
plane is equal to the total force acting on
all the lattice dislocations on one branch of
the strip yield zones. This may be a more
concrete or specific statement of the Eshelby
force concept of the J-integral in the incl-
ined strip yield model of the plastically
relaxed crack.

6. Results and Discussion

The convergency of ¢, is shown in Fig. 3
for the four kinds of the forms of the crack-
dislocation-density function. We can see that
the minimum value of n may be fixed 12
for satisfactory convergence of . The fun-
ction using a Taylor series expansion gives
poor convergence of a; for the lower applied
loads (o./0vy=0.1). The convergence of a, is
poorer with an increase of the applied load

N
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Fig. 3 Convergency of the singularity canc-
elling coefficient.
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and severe fluctuation of the value of a
occurrs for g./or==0.5. The three functions f
of eqns. (3-5) behave well. A fast conver-
gence is achieved by the Padé approximant
but has a defect that simultaneous nonlinear
equations must be solved. Fig. 3 proves that
the square root depenendence is the essential
property in the density function. Fig. 4 shows
that the dependence of p» on the applied
7] — ;?25%7?1515{35 APPROX[MATION

© —3C SMALL SCALE YIELDING(REF.C3 1
- [\ 4 CUR RESULT

0.3 0.4 [
. s n

NORMALIZED PLASTIC ZONE S1ZE
0.2

©.1 0.2 0.3 0.4 0.5 0.6 0.7_ 0.8
NORMALIZED TENSILE STRESS  Gaf,

Fig. 4 Plastic zone size versus applied tensile
stress.
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0-00 0.03 0.06 0.15

AN
Fig. 6 Normalized crack opening displacement
to obtain the linearizing constant.
stress. Here it is noted that the plastic zone
size of this method coincides well with the
Rice’s T-stress approximation®, As far as
the plastic zone size is concerned, resuits of
other Rinvestigators *-%"-® fit well with
that of the Rice’s T-stress approximation in
the small scale yielding regime. Thus our
result will further corroborate the generally
accepted T-stress approximation. Fig. 5
shows the nondimensional COD versus the
applied stress by eqn. (7) as well as Rice’s
T-stress approximation for a comparison.
Another normalized plot for the COD shown

in Fig. 6 is based on the formula

2

K
d=a yorm (13)

where K is the stress intensity factor, E the
Young’s modulus. Present method gives 0.8
and Rice’s method® about 0.59 to the a.
Results of other investigators ranges from
1. 159 to 0.425%17,

Many investigators!?~'® used to present
the relationship between the J and COD of
the form
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where most of the results on the proportio-
nal constant m ranges from 1 to 2 for elastic
perfect plastic materials. However, # attains
up to 3.5 if strain hardening effect is con-
sidered. Several experimental results on the
m are illustrated in the following. Robinson'®
obtained m=1.0 for a low strain hardening
material, En 24 steel, and 2.6 for a high
strain hardening material, En 32 steel. Hal-
Istein and Blauel'® reported m=1.48+0.15
for the reactor pressure vessel steel 22NMo-
Cr37. Broek'® found 2.2 using 7075-T6 and
7079 aluminum. Date, et al.’® obtained 2.0
in low strength steels. Tracy!'® also found
almost the same value 2.0 in his finite
element solution,

In our inclined strip yield model, the pro-
portional constant m is evaluated as

=1
sin2d ’

thus it depends on the angle 4 of the strip
yield zones. Generally, the angle has been
treated as a macroscopically averaged cons-
tant so that the strip yield zone can present
a simple approximation to the diffused ma-
croscopic plastic zone. Rice®, and Atkinson
and Kanninen? wused the angle 6=70.5°
which give the maximum shear stress on
the inclined strip yield zone. Cherepanov?”
obtained #=72°, the angle for the maximum
plastic zone size, in his solution of the strip
yield model with the boundary value problem
technique. Lo® defined the inclined angle for
what minimizes the potential energy of the
crack system, and obtained #=75.1°.

Thus, we see that the proportional con-
stant, m, which relates J with COD can be
fixed within the range

1.589<m<2.01 (14)
with the macroscopic inclined angle ranging

70.5°<0<75.1°.

eqn. (14) shows good agreement with the
most of the experimental results mentioned
above and with some numerical results'®,
The agreement suggest that the inclined
strip yield model is a useful and simple
model for the elastic-plastic tensile crack.
Substituting eqn.'® into eqn. (12b) gves
J=1.43/. (15)
where J. is the J-integral of the elastic crack
(15) agrees
qualitatively with the experimental result

and v=1/3 has been used. eqn.

and theoretical estimation on the J-integral
of the elastic-plastic crack performed by the
EPRI ductile fracture analysis group®”.eqn
(15) shows that the initiation of the growth
of the plastically relaxed crack will take
place more easily than the pure brittle fra-
cture instability. The problem of the semi-
brittle fracture instability in the inclined-
strip-yield continuum-dislocation model have
been clearly studied by Lee and Chung?®.

7. Conclusions

1) The solution of the force equilibrium
equations on the inclined-strip-yield continu-
um-dislocation model has been obtained by
the aid of a singularity cancelling condition
at the tip of eclastic-plastic crack.

2) The
may be the condition for plastic relaxation

singularity cancelling condition

of the crack tip if all the lattice dislocations
emitted from the crack tip are mobile. This
conclusion is based on the coincidence of the
plastic zone size by this method with that
of generally accepted Rice’s T-stress appro-
ximation.

3) The
function has heen obtained. The square root

proper crack-dislocation-density

term is indispensible for the nonsingular
part of the density function. Consequently,
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this means that the square-root stress field
is indispensible in considering the stress field
of the plastically relaxed crack-tip region.

4) The COD varies lineary with K2/Edy
even beyond the limit of the small scale
yielding, that is,

6=0. 8K?/Edy.

5) The J-integral on the shrunk path in
the inclined-strip-yield continuum-dislocation
model is given by

O
J=grss
where the inclined angle, 4, is the macros-
copic, constant angle ranging
70.5° <6<75.1°
This J shows good agreement with the most
of experimental results.

6) Our result on the J-integral on the
shrunk path gives a concrete statement of
the Eshelby force concept of the J-integral
in the inclined strip yield model: J is the hy-
pothetical force acting at the plastic crack
tip in the direction of the crack plane and
the resolved force of a half the J on the
slip plane (strip yield zone) is equal to the
total force acting at the all the lattice dis-
locations on one branch of the slip planes.
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