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Abstract

This paper describes two methods which generate all the prime implicants (PI's) quickly by
using the directions of adjacency table (DA-table) that gives the knowledge of adjacency

relations among the given minterms. One is a graphical mehtod that enables us to generate PI’s
by hand, the other is a checking method that determines the existance of PI's quickly when

it is programmed on a digital computer.

And a fast minimization algorithm will be shown in

this paper that can be implemented with reduced computational effort by selecting essential

prime implicants (EPI’s) first of all and using the concept of the integration of the PI

identification and selection procedure.

The procedure, proposed in this paper, has all the advantages of Karnaugh mapping, so the

procedure is simple and easy.

I. Introduction

The switching function minimization problem
is very important in the design of switching cir-
cuits. Unfortunately there is no completely gene-
ral criterion for the simplest expression of
switching function because of the myriad possible
forms of Boolean expressions. However it is pos-
sible to define a simplest form of the two level,
or minimum delay time, circuit.

It becomes a difficult task to minimize a swi-
tching function, as the number of switching
variables increases. But a wide variety of techni-
ques (11—(9] have been developed by many
researchers because of its importance.

Most of them need several itearative procedures
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to generate the prime implicants of a Boolean
expression. Especially to generate the higher-
ordered PI from the lower-ordered implicants
needs much effort because of comparing them
one another,

Some advanced techniques were developed in
(4) and {9). Hwa(4} generated the PI's with
reduced procedures but these procedures still
contain complex comparisons of implicants in the
multiple-PI case and treatment of binary numb-
ers. In (9], the

multiple PI's covering the same minterm to be

RAD-directed procedure allows

identified directly but it makes much effort to
search for PI’s by considering all the combina-
tions of the
(RADs).

In our RAD-tree method by DA-table, only one
-cubes are identified as RAD’s and larger PI's

required adjacency direction’s

are obtained easily by only tracing the given
paths in DA-table.
And a new method (group checking method}
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provides with a useful checking procedure that
determines the existance of PI's quickly without
checking all the given minterms repeatedly.

These two methods are suitable for identifying
all the PI's that cover a selected minterm.

The minimization procedure can be devided into
two parts: 1) the identification of PI's; and 2)
the selection of PI's for a minimal cover. In the
past, many works (1]—{6] treated the first part
as a main part. Nowadays, a lot of attentions have
been paid to the second part in(7)—(9]). Biswas
(7) tried to select all the EPI's in each step of PI
identification procedure and used an approximate
method to select PI’s for a minimal cover. In
(8), the concept of integration of the PI iden-
tification and selection procedure was suggested.
The above concept was extended in (9].

In our paper, this concept of integration is also
used, but the EPI’s are selected first of all, there
by reducing the time required by the searching

procedure remarkably.
II. DA-Table

We define that any minterm m(I) isSADJACENT
to another m{J), if the binary representation of
them differs in only one bit.

{Theorem)

Let the decimal integers assigned to the min-
terms B and T be By and 7; respectively and
difference R=T,—Bs be equal to 2¢ (/=0,1,--,
n—1). Iff the integer part of B./R even number,
two minterms 7T; and B, satisfy the relation of
adjacency eliminating #-th bit. Then R(=2%) is
a RAD of B;, and —R(=-2%) is a RAD of T,.

The proof was given in Hwang’s paper(6].

(Lemma)

If a minterm m(I) has a RAD R;, where I is
m(I), then there
must exist a corresponding minterm m(I+R,) in

the decimal value of minterm

the given switching function.

Proof. A RAD R, of a minterm m(I) means
that R;=X~—J (when R;>0) or —R;=I—X(when
R;<0) by theorem, where X is the decimal value
of a minterm m(X) that is given in the switching

ERBEE $£30% F 2% 19814 25

function. Therefore there exists a minterm m(X)
=m(I+R;) in the given switching function.

(i) Constrution of DA-Table

A new method to construct the DA-table without
the Simple Table defined in [6) is represented in
following steps.

Step 1. Choose a lowest decimal-valued minterm
m(l) among the given minterms that are not
chosen yet. If all the given minterms have been
chosen, this process terminates. If not, make
=0 and go to step 2.

Step 2. If the square (2') of the chosen min-
term in this table is empty, check if the integer
part of m(l)/2° is even number and go to step 3.
If not, go to step 5.

Step 3. If the integer part of m(l)/2' is even
number, add 2¢ to the chosen minterm m(l) and
go to step 4. If not, go to step 5.

Step 4. Compare the sum obtained in step 3
with only higher decimal-valued minterms. If
there is a minterm that is equal to the sum, fill
the related square(2?) of the chosen minterm
with the symbol 0 and the related square(2?) of
the correaponding minterm with the symbol 1.
If not, go to step 5.

Step 5. Increase 7 by one. If i>#»—1, where z
is the number of variables, go to step 1. If not,
skip to the next square(2’) of the chosen min-
term m(l) and go to step 2.

(ii) Properties of DA-Table

The DA-table obtained from above steps has the
following properties.

Property 1

The symbol 0 (symbol 1) of a minterm in DA-
table means that this minterm has a larger(smaller).
minterm as a couple

Property 2

Each couple of the symbols 0 and 1 means that
two related minterms have the same valued bits
except only one bit and the union of two min-
terms can be reduced to one after eliminating
that bit.

Property 8
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Since eall the reducible relations are represented
completely in DA-table, the larger PI’s can be
generated easily.

Property 4

The symbol 0’s and I's of a minterm in DA-
table are equal to the original bits of that min-

term when it is expressed in binary numbers.

IIl. Expansion of Minterms

When minimizing the switching functions, we
must generate all the PI’s that are related to a
chosen minterm in order to select a PI that will
be listed on the cover of the given switching
function. This process is designated as the expan-
sion of minterms.

Minterms are categorized into three subsets, as

1) a true form (7TF) if m(7) ia a true minterm;

2) a false form (FF) if m(7) is a false minterm;

3) a redundancy (XF) if m(7) is unspecified.

We will give two expansion procedures; One is
the RAD-tree method for a manual method, the
other is the group-checking method for an auto-
mated method.

(i) RAD-Tree Method

This method is a graphical method and the pro-
cedure is similiar to that of Karnaugh mapping,
so PI's are identified easily. The concept of the
RAD-tree defined in (6] is used in the following
process.

D No.of

m 4 | 2| 1] RAD

o {0 3

N\ =V

2 \@-— 0 3

z 10 h} 1 3

4 A 0 2

e |Wi1]o 3

7 1 1 2

Fig. 1. RAD-tree in DA-table
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A TF minterm is selected as a starting point and
or TF,. Then we
can obtain a pair of TF's(or a TF-XF pair) that
generates an l-ordered{or 1-cube) implicant con-

referred to as the origin 7TF,

taining TF; by finding a corresponding minterm
to TF,. The set of these two minterms is desig-
nated as the set of minterms of 1-ordered impli-
cant, or SMI(1). See if there is the same RAD
in both minterms. If so, we can obtain the four
minterms that generate a 2-ordered implicant by
finding two minterms related to SMI(1). The set
of these four minterms is designated as SMI(2).

See if there is the same RAD in the four min-
terms in order to obtain the eight minterms that
generate a 3-ordered implicant. If so, the set
of these eight minterms is designated as SMI(3)

and we repeat this process to obtain the
higher-ordered PI covering TF,. We can obtain
SMI(4), SMI(5), and so on. If a SMI(7)
identified, we store the SMI{;—1) as a PI covering
TF, and choose another path to obtain another
PI covering TF, and repeat above precess, We
should try to obtain the undominated PI's by
related to 7F,

is not

considering all the paths in the

DA-table.

In an actual application, this procedure is very
easy because all the paths to the large PI's are
represented in the DA-table.

An example of a RAD-tree in DA-table is shown
in Fig. 1. The origin TF is m(0) that has three
RAD's;+1(=2%), +2(=2Y), and +4(2?). And we
assume that there is not m(5) in the given swit-

0
+1\Ti +4
(0;1) 7(0,2)
+2\‘\+4 &b
(0.1, 4,5)
(06,1,2,3)

+4
(9,4,5,3,4,5,6,7)

(0,4)

(0,2,4,6)

Fig. 2. RAD-tree in (9)
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ching function. First of all, we cbtain m (1) re-
lated to m(0). These two minterms have the same
RAD +2, so we obtain the SMI(2) {m(0), m(1),
;51(2), m(3)}. But these four minterms don’t have
the same RAD, so the SMI(2) is a 2-ordered PI
that covers m(0). Next,
m(2)} can be obtained by adding the RAD -+2 of
m(0). These two minterms have the same RAD
—+4, so the SMI(2) {m(0), m(2), m@), m(6)}
can be obtained. But these four minterms don’t
have the same RAD, so the SMI(2) is a 2-ordered
PI. Another pair {m(0), m(4)} is dominated by
the PI{m(0), m(2), m(4), m(6)}. Therefore the
PI’s covering m(0) are as follows:

PLi={m(0), m(1), m(2), m(3)}

PL={m(0), m(2), m({4), m(6)}

A RAD-tree in (9] that is changed a little is
shown in Fig. 2., where real lines represent su-
ccess paths and dotted lines represent failure
paths. We do not have to identify (0,1,4,5) and
0,1,2,3,4,5,6,7) in this RAD-tree method because
of their failure paths.

(ii) Group-Checking Method

It takes much time to identify the high-ordered
PI's in a digital computer, so a new technique
(group-checking method) is developed, which de-
termines the existance of PI quickly by checking
the RAD’s of a few selected minterms.

First of all, it is tested whether the higher-
ordered PI is identified successfully, If it is iden-
tified successfully, no attempt is made to identfy
the dominated lower-ordered implicants. We try
to identify the only undominated PI's by con-
sidering the RAD’s that consist of the PI iden-
tified already. If the higher-ordered PI
identified successfully, it is checked quickly by

is not

group-checking and then we skip to the other
PI's that are not checked yet. This process en-
ables us to save much efforts.

(a) Determination of 2-ordered PI

We assume that a 7F minterm m(I) has two
RAD's (R, R)). If a TF minterm m(I+R;+Rj)
has two RAD’s (—R;, —R;), then these two RAD’s
generate 2-ordered PI. This property can be

another pair {m(0),
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justified as follows.

By the lemma, there must be two minterms
{m(I+R), m(I+R;)}) related to m(I) in the
given switching function. These four minterms
{m(D), m(I+R), m(I+R)), m(I+R;+R;)} con-
gist of 2-ordered PI.

(b) Determination of 3-ordered PI

We assume that a TF minterm m(I) has three
RAD’s (R;,R;,Ry). If a TF minterm m(I+R;+
R;+R,) has three RAD’s (—R;, —R;, —R,), then
these three RAD’s generate 3-ordered PI. This
property can be justified as follows.

By the lemma, there must be three minterms
{m{I+R;), m(I+R;), m(I+R,)} related to three
RAD’s (R, Rj, R,) of m(I) respectively and three
minterms {m{(I+R;+Ri), m(I+R,+R,), m(I+R;
+ Ry} related to three RAD’s (—R,, —R;, —R;) of
m(I+ R;+R;+R,) respectively in the given swi-
tching function. These eight minterms {m(I), m
(I+R), m(I+R;), m(I+Ry), m(I+R;+R;), m(I
+Ri+R), m{I+R+R;), m{I+R+Ri+R))
consist of 3-ordered PI.

(c) Determination of higher than three-ordered

PI

We assume that a TF minterm = (I) has » num-

ber of RAD’s(R,, R;, Rs,...R,.1, R,). If there are

n-38

ST ("fs) =2""% TF minterms {m(I), m(I+R), m

i=1

+R5), cvenrennn. m({I+R,), m(I+R~-R;), m(I+
R+Re),...om(I+R, .+ R,), m{I+R, ,+R), m
(I+ R+ R;+Rs),..., m(I+R,+R;+...+RD}L Gm
(INeach member of which has three RAD’s (R,
R;, R;) and 2°"* TF minterms Gm(I+R,-~R,+R;)
each member of which has three RAD’s (—R,,
—R,, —R;) in the given switching function, then
n-ordered PI can be identified successfully. This
property can be justified as follows.

By the property of (b), each of 2*°% couples (m
(I, m(I+R+R;+Ry)), (m(I+R), m(I+R,+R,
+Rs+RD]), ..., im(I+R,+Rs+...+R,), m(I+R;+
R;+Rs+...+R,)] has six minterms. Therefore 2*
(=2""*x8) minterms that consist of z-ordered PI
exist in the given switching function and z-or-
dered PI is identified successfully.

Example 1
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We assume that a TF minterm m(5) has six
RADs (—1,2, —4,8,16,3D)

minterms

and sixteen TF

m(5) : —1,2,—4,8, 16, 32

m(13=5+8) : —1,2,—4, -8, XX

m(21=5+16) : =1,2, -4, X, —-16, X

m(37=5+32) : —1,2, -4, X, X, —32

m(29=54-8+16) : —1,2, —4, —8,—16,X

m(53=5+16+32) : -1,2,—4,X,—16,—32

m(45=5+32+8) : —1,2, —4,—-8,X,—32

m(61=5+8+16+32) : -1,2, —4, —8,—16,—32

m2=5+4) 1, -2,4,8,16,32

m(10=5+4+8) 11, -2, 4, -8,X X

m(18=5+4+16) 1 1, -2, 4,X,—-16, X

m(34=5+4+32) i1, —-2,4,X, X, 32

m(26=5+4+8+16) : 1, —2,4,—8,—16, X

m(50=5-+4+16-+32) : 1, 2,4, X, —16,—32

m(A2=5+4+32+8) : 1, —2,4, —8, X, —52

m(58=5+d+8+16+32) 11, —-2,4,—8, —16, —32
(X means the unspecified RAD and 4=(-1)+2+
(—H=-3)

exist in the given switching function. Then,
by the property of (b), we know that a couple
(m(5), m(2)) has six minterms {m@), m(7),
m(l), m(3), m0), m6)} and a couple(m(13),
m(10)) has six minterms (m12), m(15), m(9),
m(11), m(8), Therefore
there exist 2¢(=64) minterms in the given swi-

m(14)}, and so on.

tching function and six-ordered PI is identified
successfully.

Example 2.

Let's generate all the PI's related to a minterm
m(0) in the following switching function.

F(A,B,C)=xm(0,1,2,3,4,6,7)

In Fig. 1. we know that m(0) has three RAD’s
(+1,+2,+4). First of all, the existance of 3-
ordered PI is checked. Since m(7=0+1+2+4)
doesn’t have a RAD (—2), the 3-ordered PI is
not identified. Next, we check that any 2-ordered
PI’s are identified successfully. The TF minterm
m(3=0+1+2) has two RAD's (—1,-2), so a 2-
ordered PI is identified successfully. This PI is
Pl,={m(0), m(1), m(2), m(3)). And another PI
is obtained from the two RAD’s (—2,—4) of the

TF minterm m(6=0-+2+4). That PI is Pl,={m(0),
m(2), m(4), m(6)}. As a next step, we check
that any l-ordered PI's are identified success-
fully. They are not identified because each RAD’s
are dominated by the RAD’s generating 2-ordered
PI’s. Therefore, only two PI's are identified.

IV. DA-SBearch Algorithm (Fast Mini-
mization)

This algorithm will generate only those PI's
which are essential or necessary for a minimal
sum of products of a given switching function
by considering the properties of the don’t care
minterms.

At first, we try to get the EPI’s. The proper-
ties of the EPI's are given as follows;

1) A minterm that has less than two RAD's
generates an EP] Lecause it has cnly one chance
to cover itself.

2) If a TF minterm that has » number of
RAD’s generates a n-ordered PI, then this PI is
an EPI because this TF minterm generates only
it. (This observation was first noted by Eiswas
and Sureschander used it as a key part of his
procedure).

The EPI’s obtained from akove are listed on
the cover of switching function and all the TF’s
contained within them are changed to XF status.

Select a 7F minterm ( TF,) that has the fewest
number of RAD’s and expand it. It generates
more than one PI’s because all the minterms that
generate only one PI was covered already as the
EPI's. This set of PI’s that cover 7F, is desig-
nated as {Pl},.

All the members of {PI}, are compared, pairwise,
to see if any row dominance is present; if so, the
dominated PI's are deleted from {Pl},. Further,
all but one of a group of PI’s that are equal in
TF.coverage and cost can be deleted. This may
reduce {PI}, toa single pseudoessential PI(PEPI),
which is then added to the cover of switching
function, and all TF’s within it are changed to
XF status.

If dominance cannot reduce {PI}, to a single
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member, then the search for PI’s is continued,
using another 7F that has the fewest number of
RAD’s among the unexpanded 7F minterms in
the list, as a next origin 7TF for expansion. That
TF can be designated as TF,, and the PI’s that
cover it as the set {PI},. the re-
moval of dominated or equaled PI’s, it reduces
to a single PEPI, then that PI is added to the
cover of switching function and all 7TF’s contai-
Any

If, following

ned within it are changed to XF statue.
newly dominated Pl’s in the {Pl}, are deleted.
If this reduces {PI}, to a PEPI, then that PI is
added to the cover of switching function, and its
TF'’s are changed to XF status.

If, however, either {PI}, or {PI}, (or both)
still contain two or more PI’s, then another TF
that has the fewest number of RAD’s among the
unexpanded minterms in the list is chosen and
another expansion is made. This can lead to
{PI},, {PI}s, and so on. Each time PEPI is iden-
tified, it is added to the cover of switching func-
tion and all TF’s within it are changed to XF
status, The effects of this change upon all of the
remaining sets of PI’s are noted, and new PEPI’s
are selected, where identified. This iterative
expansion process continues until all of the TF's
in the list have been covered or expanded.

If all the remaining set(s) of PI’s have two or
more members, then a cyclic condition must be
resolved by appropriate method to get the best

cover of a switching function.

Y. Examples

To illustrate the DA-search algorithm, four
examples are given as follows.

Example 1

F(A,B,C,D,E,F,G,H,I})=%_m(6,7, 22, 23, 38, 70,

102, 134, 262)

Its DA-table is shown in Fig.3. Minterms m(134)
and m(262) have one RAD. Thus Pl,={m(134),
m(6)) and PL,={m(262), m(6)} are selected as
the EPI’s and added to the cover of F. Four TF
minterms contained within them are changed
to XF status. Minterms m(7) and m(38) that have
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two RAD’s generate 2-ordered PI’s, Thus Pl,=
{m(7), m(6),m(22),m(23)} and Pl,= {m(38), m(6),
m(70),m(102)} and selected as the EPI's and
added to the cover of F. All the 7F’s contained
within them are changed to XF status, then all
the given rminterms become XF’s. Thus the algo-
rithm terminates. The solution is F=PI,+PI,+
PI;+PI..
Example 2

F(A,B,C,D,E)=xm(0,1,5,7, 10, 15, 16, 26, 30) +

d(14)

This example is given toillustrate the treatment
of don’t care minterms. Its DA-takle is shown
in Fig. 4. Two EPl's PI,={m(16),m(0)} and PI,
={m(10),m(14),,(26),m(30)} are selected and
all the TF’s contained within them are changed
to XF status. Next, m(l) is chosen and expanded,
because it is one of minterms that have the
fewest number of RAD’s among the remaining TF
minterms. Two PI's can be identified; Pl,={m
(1), m(0)} and Pl,={m (1), m(5)}). Pl, isdominated
by PI,, because m(0) is a XF., Thus PI, is selec-
ted as a PEPI and two minterms m (1) and m(5)
are changed to XF status. Next, a TF minterm
m(7) is chosen and expanded, then two PI's are
identified; PlL={m(7),m(5)} and Pl,={m(7),
m(15)}. PI; is dominated by Pl,, so Pl is selec-
ted and added to the cover of F. Two minterms
m(7) and m(15) are changed to XF status. Then
all the given minterms are changed to XF status,
s0 we terminate the algorithm. In this example,
no attempt is made to cover m(14) but it is used
to extend the PI,. The solution is F=PI,+PIl,+

PI+PI.
Example 3
F(A,B,C,D,E)=Y"m(1,4,5,7,8, 9,11,13, 14, 15,

18,19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30)

Its DA-table is shown in Fig. 5. Four EPI's
are identified; Pl,={mQ),m(5),m(9),m(13), PI,
={m@),m(®5),m20),m(21)}, Pli={m(8),m(9),
m(24),m(25)}, and Pl,={m(18),m(19), m(26),
m(27)}. All the TF’s contained within them are
changed to XF status. The TF minterm = (14)
generates two PI's; PI;={m(14),m(30)} and PIl,
={m(14),m(15)). These two PI’s are indepandent
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F(A,B,C,D,E,F,G,H,I)=Ym (6,7, 22, 23, 38,70, 102, 134, 262)

=z EPI':
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F(A,B,C,D,E,F,G,H,I)=7IEDEFGHT-H?EDEFGHT—(-ZEEDFCH—I—ZEEFGHY
Fig. 3. An example of a function with 9 variables

F(A,B,C,D,E)=¥m(0,1,5,7,10, 15, 16, 26, 30} +d (14)

m
all EPI's| IEPI's
<t
~
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o | a 15 O
n 16 8 4 2 1 = v = [ 1=
0ol O r—O 214 = -
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F(A,B,C,D,E)=BCDE +BDE + ABCE+ACDE
Fig. 4. An example of Rhyne’s with don’t care minterm
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F(A,B,C,D,E)=3m(1,4,5,7,8,9,11,13, 14, 15,18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30)
=ADE+BCD+EBCD-+ACD+ BCDE+EBCE+ABE+ABD

2
E EPI's PEPI's
DA TABLE -
c:ramlan'gk Wg '
W . (el T T 155|855 | &8 | 3
1 -0 | 0 21®
4| 0 rof2 ®
5 | o -0 |1 (o5 [=]> * >
7| o [do Lo 3 + &
8 0 roj2 @
9[Moq (=1 [Fofrolle1ls|=] {= -
11 0 0 | L 3 & *
13 0 1 ||t | -0 41> * >
14 C Oy 2 @*
15 L1 et [ (L1 ]l 4 * | x B
13 i o coff2 )
19 L0 | 0 Ll 3 >
20 -1 -0 l_o 3 > *
21 ||l [l 1fo 0|11 4 > > *
2% | [{” Lo L°'1 3 =
24 | L ~0 r‘o ro 4 - > %
25 1 o [+o [L1 ]l 4 > * >
26 w1 0 [k [ ~0 |l 4 > *
27 1+ [l 4 [ =
28 Lot [l -0 [0 4 * (S *
29 1 1= |le1 [l Ll x =
30 1 Lai | Lot 3 > *

Fig. 5. An example of Biswas’s

each other, so we store them. The 7F minterm
m(7) generates two PI's that are indepandent
each other; PlLi={m(7),m(5),m(13),m(15)} and
Pli={m(7),m(5),m(21),m(23)}. The TF minterm
m(11) generates two PI's; Ply={m@11),m(9),
m(13),m(15)} and Pl,o={m (11),7(9),m(25),m(27)}.

PI,, is dominated by Pl,, so Pl, is selected as a

PEPI and added to the cover of F. All the TF’s
contained within PI, are changed to XF status,
then PI; and PI, dominate PI, and PI, respecti-
vely. Thus PI; and PI, are added to the cover of
I as the PEPI’s and all the TF’s contained wi-
thin them are changed to XF status. There re-
main only two TF minterms m (28) and m(29) in
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F(A,B,C,D)=3m(0,1,3,4,6,7,9,10,11, 13, 14, 15)

]
A
=
DA TABLE o EPI's| CYCLIC CHART
(o]
. [=
(o] (& a 10 O A
mn 8 4 2 1]l=l =) < = Mm@
1] o o i ] 3 o
3| Loldofle 3 o
4 Le1 I'_O 2 .
6|p0 Lo ro|3 g
7o Lot i3 > |
10 +—0 [—O 2 @
11 {Lv1 |0 | Lst |—~1 4 {l= | = = [
1% | —0 2 ')
14 Js1 {1 I-—O 3=
15 1 [L=1 | bst l——1 4l | & = >

F(A,B,C,D)ZAC-FAD%-ZCD+1§D+EC
Fig. 6. An example of Slagle’s with cyclic condition

F. The TF minterm m(28) is chosen and expan-
ded, then three PI’s are identified; Pl;,={m(28)
m(20), m(21),m(29)}, Pl,={m(28),m(24),m(25),
m(29)}, and Pl,,={m(28),m(24),m(26),m(30}.
Pl,; is dominated by PI,; and PI,,, so PI,, is dele-
ted. PI,; and PI,, have the same cost and they
are equal in TF-coverage, so any one can be sel-
ected arbitrarily. This is an option case. The
solution is F=PI,+PI,+PI,+PL+PI,+-Pl+Ply,
(or Ply,).
Example 4
F(A,B,C,D)=2nz{0,l,3,4,6,7,9,10,11,13,14,15)
This example is given to illustrate the cyclic
condition. Its DA-table is shown in Fig. 6. Two
EPI's are identified; Pl,={m(10),m(11),m(14),

m(15)) and Pl,= {m(13), m(9),m(11),m(15)}. They
TF’s
contained within them are changed to XF status.

are listed on the cover of F and all the

Next, we generate the PI’s related to the re-
maining TF minterms, but the PEPI’s are not
found in the each set of PI’s. Thus we must re-
solve this cyclic condition by appropriate method,
such as Petrick method. The solution of cyclic
condition resolved by Petrick method is given
as follows. :

PLi={m(0),m(4)}

Pl.={m(6),m(7),m(14), m(15)}

Pl.={mQ),m(3),m(9),m(11)}

The solution of Fis F=PI,+PI,+PI,+PI,+PI,.
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VI. Cenclusions

In the DA-table, the concept of adjacency used
in Karnaugh mapping is extended to large swi-
tching functions. The graphical relation of min-
terms in the DA-table is similiar to the relation
of adjacent squares in the Karnaugh map. There-
fore, in the DA-table, the large PI’s can be
identified easily by inspection and the largest PI
that can cover the selected TF minterm can be
identified quickly without having to identify all
the smaller implicants contained within it. But
the DA-table method has no problem in dealing
with the switching function having more than
six variables as against the Karnaugh mapping.

In the RAD-tree method, we need not try to
obtain the PI’s by complex comparisons because
all the paths to the larger PI's are given in the
DA-table. All the PI’s that cover a selected TF
minterm can be obtained easily by only tracing
the given paths in the DA-table.

In the group-checking method, eight minterms
.are checked simultaneously and we try to obtain
the larger PI’s without checking all the smaller
‘implicants contained within it. This method can
be implemented with reduced time because there
.are only a few comparisons in the PI identifica-
tion procedure.

Both PI identification methed can Le applied
‘to other works [1)~(7) if a special algorithm that
-can keep us from generating the PIl’s identified

already is designed.

In the DA-search algorithm, we try to get the
EPI's before everything and change TF’s con-
tained within them to XF status. The effects of
this change on determining the PEPI’s are no-
table, reducing the search procedure. The expan-
sion of minterms is made from a 7F minterm
that has the fewest number of RAD’s because its
expansion is easy and it generates a few Pl’s.

The treatment of data in a manual method is
easy because all the data are treated in decimal
numbers.

The treatment of input sources in a digital
computer is very simple because the number of
them is proportional to that of true and redun-
dant minterms.

This algorithm is suitable for obtaining the
minimization concept (especially the concept of
EPI’s and row dominance) because the procedure
is visible and simple.

In an actual case, this algorithm is well suited
to minimization of most functions of more than
six variables,

As a comparison, we have run a set of example
minimization problems,using FortranIV language.
The results of these comparisons are summarized
in Table I. These are only loose comparisons.
Table I shows that the DA method is faster. The
memory capacity required for a computer program
is smaller than the others, because it is propor-
tional to the number of minterms given as the
input sources.

Table I. Results of comparison between the DA method and another algorithm in [5)

Brample | Number of Variabies | Riccttioptincleed | Bxccwion timetee | Ratoof
1 4 2.0 1.0 2.0
2 4 2.0 1.0 2.0
3 5 3.0 2.0 L5
4 5 2.0 1.0 2.0
5 6 3.0 2.0 1.5
6 6 4.0 2.0 2.0
7 7 8.0 4.0 2.0
8 8 5.0 2.0 2.5
9 9 6.0 2.0 3.0

(
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