Z Mo 2st Z A=A M , WX
\
| 30~5~2

Shortest Paths Calculation by Optimal Decomposition

(Jang - Gyu Lee)
Abstract

The problem of {inding shortest paths between every pair of points in a network is solved
employing an optimal network decomposition in which the network is decomposed into a
number of subnetworks minimizing the number of cut-set between them while each subnet-
work is constrained by a size limit. Shortest path computations are performed on individual
subnetworks, and the solutions are recomposed to obtain the solution of the original network.
The method when zpplicd to large scale networks significantly reduces core requirement and

computation time. This is demonstrated by developing a computer program based on the

method and applying it to 30-vertex, 160-vertex, and 273-vertex networks.

1. Intreduction

A path in a network refers to a successive
.chain of links connecting a point called origin
and another point called destination. The shortest
path between the pair is defined, when each link
in the network is associated with cost, as the
path in which the sum of the costs of the links
is a minimum. In this paper, {inding shortest
paths between cvery pair of points in a network
is treated.

The shortest paths calculation is required in
routing problems of transportation system, data
.communication network, large-scale integrated
circuit design, and operations research. A good
example is the routing problem associated with
the demand actuated transportation system (or
-dial-a-ride system) [1]. The demand actuated
transportaticn system is a personalized door-to-
~door public transportation service in which a

fleet of small vehicles serve the customers with-

* JE@A : The Analytic Sciences Corporation Technical
Staff.
A 19814F 477 21

out fixed schedules or routes. As a custome
request arrives, a vehicle is assigned to pick uj
and deliver the customer to its desired destina
tion although not necessarily by a direct path
While moving on its provisional route, the vehicl:
makes detours to pick up and drop off othe
passengers as long as all customers are pickec
up and delivered within reasonable time period
The driver of the vehicle proceeds on a stop-by
stop basis knowing only his next stop at any
time provided by a computer which stores th
complete, tentatively planned tour of each vehicls
at all times. In order to plan the tour, the com
puter has to find shortest paths repeatedly. Thi
is typically done by retreating necessary element
from a shortest paths matrix which is preparec
off-line and contains all the shortest paths infor
mation of the serving area network. In thi
network, street corners and street segments ar
represented by points and links, respectively
The cost of a link represents the traveling
distance or the traveling time; the former implic
a fixed cost and the latter a time-varying cost.

Another application of the shortest paths cal
culation can be found in the routing problem

(297)

— 56 —

f data communication networks. Data commu-
aication networks of various kinds are currently
1 existence or in the process of being set up.
Examples include large-scale computer networks
‘e.g., the ARPA network, the French Cyclades
aetwerk), and multipurpose data networks set
ap or proposed by airline reservation systems,
medical data networks, banking networks, edu-
:ational networks, corporate communication net-
works, and information service networks [2].
The basic routing problem here is that of esta-
olishing a best continuous path, usually incorpo-
rating several links in a network, between any
pair of source and destination points, along which
messages are to be sent. In general, the routing
is centrally determined by a supervisory program
located in an interdata supervisory computer in
order to route messages with minimum average
time delay or response time. Typically, a shortest
path algorithm is used to determine the appro-
priate path from source to destination over which
messages are sent for any particular user. The
path in newly selected each time a user comes
into the network, while other users maintain
their current connections. In this sense, the route
selection process is similar to that used in the
demand actuated tfansportation system; the cri-
tical difference in data communication networks
is that the costs of the links may vary frequently,
requiring frequent shortest path computations.
The shortest paths problem has been an active
research topic, as indicated in the survey papefs
[3.4], :
earlier algorithms, an exhaustive search method
is used in which all possible paths between a
pair are examined to find the shortest one. Alg-
orithms by Dantzig [5] and Floyd [6] are of this
type, both of which require exactly same number

and resulting numerous algorithms. In

of computations though the search orders are
different. Advanced algorithms are proposed by
Tabourier [7] and Rosenthal [8] in which a
sorting technique is introduced to the exhaustive
search, resulting in a significant saving in the
number of computations.

In spite of the significant saving, the above
algorithms are limited by the network size that

RFEEE H30% 5155 19814 5]

can be handled, because shortest paths calculation:
requires an operation of two N? matrices in core
for a network of size N. For example, solving a
500 point (or vertex) network for shortest paths
requires more than 500K words or two megabytes
of core storage if one word uses four bytes. This
core problem of large-scale networks has necessi-
tated decomposition methods whose fundamental
idea is that the large-scale network is broken
into a number of subnetworks of smaller size.
These subnetworks are then treated independently
for solving shortest paths, and the solutions are-
recomposed to obtain the solution of the original
network. Algorithms by Mills [9], Land and.
Stairs (10, and Hu [11] are in this category.
The algorithms require much less core storage
than those without decomposition and offers a
faster solution time than the Dantzig’s or Floyd’s-
algorithms. Yet, the Mills algorithm [9] requests-
a restricted and difficult way of decomposing a
network, and others [10, 113 use an arbitrary
way of decomposition; all [9, 10, 11] employ me-
thods similar to the Dantzig’s or Floyd’s algori-
thm to solve the individual subnetworks.

‘This paper presents a decomposition method
which is different from the other decomposition
methods in the following aspects:

o Decompose a network in an optimal way
to reduce the number of shortest path.
computations

oEmploy a sorting technique
individual subnetworks for shortest paths.

in solving

This method uses less core storage and its solution.
time for large-scale networks is faster than any
other algorithm discussed in this paper.

The above claim is demonstrated in the follo-
wing sections. Beginning from the definitions of
the related terminologies, some preliminary algo-
rithms including Dantzig’s, Rosenthal’s, and an
optimal network decomposition algorithm are
given. A detailed description and proof of the
proposed algorithm are presented, followed by
exercise results of the three algorithms-- Dant-
zig’s, Rosenthal’s, and the proposed--for a number

of networks of various sizes.

(298)

Ayl 9% Ak 24

2. Definitions

The underlying mathematical concept with the
sshortest paths problem ‘is a network which is
«defined as a set of points called vertices and a
set of directed lines called arcs. Each arc joins
two vertices with a specified direction, and it
«can be denoted by

a;i={vi, vi]
*Such an arc ai; is said to be incident from the
vertex v; to the vertex »;. Formally, a network
-G is defined as a pair

G=(V, A)
‘where V represents the vertex set and A the
arc set. Further, a cost is defined for each arc
.as an associated real number with it.

A path is a chain of similarly directed arcs
where the two subsequent arcs in the path
;share a common vertex; the corresponding sequ-
-ence of vertices is another way of specifying
the path. The total cost of a path is the sum of
-costs of its constituent arcs. The shortest path
between two vertices is the path whose total cost
is less than any other path between them in a
given network. The shortest paths problem con-
-gidered in this paper is a problem of finding
shortest paths between all pairs of vertices from
the network.

To formally describe the problem, it is con-
venient to define the cost, minimum cost, and
:Successor matrices associated with a given net-
work G=(V, A). The cost matrix

C=[ci]
is the matrix whose ij** element c¢;; equals the
.cost of the arc connecting the vertex w; to the
vertex v; if v; is incident to wv;; otherwise, cij
-equals infinity. The minimum cost matrix

D=[d]
4s the matrix whose £j** element d;; represents
the total cost of the shortest path from wv; to
‘v;. The successor matrix

S=[s:;]
-is the matrix whose 7j'* element si; is the vertex
number which is adjacent to v; in the shortest
path from v; to v;. Using these representations,

— 57 —

the shortest paths problem is to calculate D and
S from a given C. Upon calculation of D and S,
for any pair of vertices, the minimum cost ui
the shortest path is obtained from D and the
route is obtained from S.

A subnetwork G;=(V,, A;) of a network G=
(V, A) is defined as a network formed by a
subset of vertices V;CV together with a set of
all arcs of A that join any two vertices of V.
In the network G=(V, A), a set of vertices V,
(V.ZV) can be found whose removal with all
the incident arcs from G generates completely
separated subnetworks, and it is called a cut-set.
A process of finding the cut-set in G is called

network decomposition.

3. Preliminary Algorithms

Before the development of the proposed algori-
thm is introduced, the Dantzig's and Ro.enthal’s
algorithms and an optimal network decomposi-
tion algorithm are outlined in this se-tion. These
algorithms are utilized later by the proposed
algorithm.

DANTZIG’S ALGORITHM

The Dantzig algorithm finds all shortest paths
in a network, and it is summarized as follows:
[51

Step 1. Initialize the minimum cost matrix

[dii1=[¢i;] and the successor matrix

[s:53=[J4], where [j] represents a matrix in
which all the elements of j** cclumn
are j.*

Step 2. For 2=3,4,, N, do Steps 3 and 4. N
is the total number of vertices in the
network.

Step 3. For j=1,2,,n—1and for ;=1,2, -, n—
1, where i#j,

(A) dinv=min[d:, dij+djn]
sin=5;; 1f dis is replaced by d;j+d;a.
(B) dus=minld,;, d.i+d;:]
5xi=5n; If da: is replaced by d.;+dj:.
Step 4. For j=1,2,--,#—1 and for i=1,2, -, n

¥ Throughout the algorithm, equal signs are used in the
sense of computer language.

(299)

— 58 —

—1, where i#j,

di;j=min[d;;, din+dai]

sii=sia If di; is replaced by dix+da;.
The idea of the algorithm is to perform an
xhaustive search inductively starting from two
-ertex subnetwork and adding one vertex at a
ime in order to find shortest paths in the sub-
wetwork. When the subnetwork covers all the
-ertices in the original network, the solution is
inal. To explain the algorithm further, let G.
lenote a network obtained from G by deleting
rertices vi+1n, Usezs vy and all incident arcs,
.e., G, is a subnetwork of G composed of verti-
S vy, V', When the main loop for # is
wompleted, [d:;] and [s;;] are the minimum cost
ind successor matrices of G,. In computing the
'di;], for instance in Step 3 (A), the element d;,
nust be either ¢, or else for some j a shortest
ath di; in G,_; followed by d;.. The (B) step is
‘he same in the reverse direction. Once all di.
nd d,; are found, d;; for G, should be either the
ame as G,_; or else di,+d,;. Whenever a new
sath is introduced for [d:;], [s:;] must be updated
wccordingly.

ROSENTHAL’S ALGORITHM

The Rosenthal algorithm [6] is an extension
f Dantzig’s algorithm, and Step 3 is modified
s follows:

Step 3. For j=1,2,-,2—1 and for i=1,2,-,n

—1, where %/,

3.1 (A) Sort {cia: i<z} and denote the result
as ¢, 56, <=6y

8.2 (A) Set d, ,=c,, and initialize a linear list

SAz{ix)-

3.3 For £=2,3, -, n—1,

3.8.1 (A) dip==min[c ;
iefa

iy, di,,j_’_cj,,]
3.3.2 (A) 5=,
+c,;
In-

3.3.3(A) If d,.=c set S,=S,U {7:}.

The otner steps remain unchanged, and, for

. if d,,, is replaced by 4, ;

ign,

simplicity, (B) operations which are just reverse
firection of (A) are not shown. The idea of this
ilgorithm is to sort newly introduced arcs and
;0 save redundant computations. In the algorithm,
S, contains all ¢; which must be considered

BRBEIE H30% H5 W 19814 55

when finding the shortest path d,, If in 3.3.3
(A) d; <, it is not needed to go from the
vertex #; directly to », and hence this arc may
be ignored in all future computations. Computa-
tion time savings over Dantzig’s algorithm is.
rather significant for large-scale sparse networks,.
as demonstrated in a later section.

4. Optimal Network Decomposition

An algorithm based on the optimal network
decomposition theorem of Ref. [12] is presented
in this subsection. The algorithm decomposes a
network into a number of smaller subnetworks
with a minimum number of cut-set and a size
limit for each subnetwork.

Step 1. Given the total number of vertices N

in a network and a size constraint K
for each subnetwork, calculate the

minimal number of subnetworks given

by
—_[N—-1
’”—[K]
N-—1 .4
Where[ye } indicates the closest
integer no smaller than NIEI

Step 2. For m subnetworks, do Steps 3~6.
Initially m=mn.

Step 3. Choose m initial vertices, one for each.
subnetwork.

Step 4. Form a boundary vertex set for each
subnetwork such that the removal of
the set isolates the subnetwork from.
the rest of the whole network. Any
vertex contained in more than two-
boundary vertex sets becomes a mem-
ber of cut-set and it is removed.
from the list of boundary vertices.

Step 5. Select a vertex from each boundary
vertex set and add it to the correspon-
ding subnetwork such that the number-
of vertices of the resulting boundary
vertex set decreases maXimum or
increases minimum.

Step 6. Repeat Steps 4~5 until every vertex

is assigned to a subnetwork or cut-set.

(300)

HAEH Yo AT 32 =A4

Step 7. Repeat Steps 3~6 to find the best
solution. If a solution not violating the
constraint is found, stop. Otherwise,
increase = by 1 and go to Step 2.

5. Algorithm

Shortest paths calculation by optimal decompo-
sition involves: 1) optimally decomposing a net-
work into a number of subnetworks; 2) sclving
shortest paths for each subnetwork in considera-
tion with its interconnectivity to others; and 3)
calculating shortest paths between vertices of
different subnetworks. The first task is taken
care of by the optimal nestwork decomposition.
For the other two tasks, two theorems are first
presented. Theorem 1 describes a sufficient con-
dition that warrants the shortest paths solution
of a subnetwork calculated independent of cther
subnetworks. Theorem 2 shows a methodclogy
to calculate the shortest paths between vertices
of different subnetworks provided that shortest
paths of each subnetwork are known.

Theorem 1: Given G=(V, A) and a subnetwork
Gi=(V,, A) of G, define G;=(V;, &) such that
V:UVi=V and A;U4:=A4, and V.AV.=V,, ie.,
V. is a cut-set between G; and G;, and G; repre-
sents the complement of G; only overlappsd by
the cut-set. Then, shortest raths between any
two vertices in G;, whether all intermediate
vertices of the shortest paths are in G; or not,
can be obtained by considering only the subnet-
work G; if conditional shortest paths between
all pairs of V, in G; are known.

Proof: Consider a shortest path calculation
between a pair v, and v, in G.. If the shortest
path lies entirely in G, it is sufficient to carry
out the calculation considering only G;.

Assume then that there are many subpaths in
the shortest path which contain vertices of @..
This is shown symbolically in Fig. 1. Since both
the starting vertex v, and the terminal vertex
vy are in G;, and V, is a cut-set whose removal
together with the incident arcs separates G
from Gi, any subpath that contains vertices of
G: must begin and end with vertices in V.. In

— 59 —

Fig. 1. Shortest Path Computation in a
Subnetwork

Fig. 1, two such subpaths can be identified, and,
by the assumption, their minimum costs and
shortest routes are known. Treating the subpaths
as additional arcs in G; having the minimum
costs, all the information needed to compute the
shortest path between v, and ve are beund in G,.
The akove reasoning holds for any vertex pair
of G: and any number of the subpaths. Thus,
the shortest path between any vertex pair is
obtainable considering only G; as long as shortest
paths between all pairs of V, in G: are known.
Q.E.D.

Theorem 2: Let Gi=(V;, A;) and G;=(Vi, A;)
be subnetwerks of G=(V, A), joined by a cut-set
V., ie., VinV;=V,. Then, for veV, vie Vi, and
vi,vieV,, the following holds,

dij=min(di+ds)
uhsvx

and
di=min (djx+ds)
TiV g

where di; represents the shortest path from the
vertex wv; to v;, etc.

Proof: A path from a vertex of G; to another
vertex of G; must pass at least ome vertex in
V. because of the definition of cut-set. In compu-
ting the shortest path between these two vertices,
if a minimum is taken over all vertices in V,,
Q.E.D.

Based on the optimal network decompositior
algorithm and the above two theorems, the algo
rithm calculating shortest paths by optima
decomposition is now given.

then it is the minimum.

Step 1. Decompose a given network using the
optimal network decomposition algori

(301)

thm, and obtain the decomposed cost
and initial successor matrices.

Step 2.
all vertex pairs of cut-set considering
all possible paths in the network.

Step 3. Compute the shortest paths for each
subnetwork.

Step 4. Compute the shortest paths between all

pairs of a vertex in a subnetwork and

a vertex in another subnetwork.

Step 1 decomposes the network into a number
of subnetworks minimizing the number of cut-set
while each subnetwork has a limited size. In the
decomposed network, any path from a vertex in
a subnetwork to a vertex in another subnetwork
must include at least one intermediate vertex in
the cut-set. This does not exclude a possibility
that the shortest path from a vertex in a sub-
network to another vertex in the same subnet-
work passes through vertices in any number of
other subnetworks as long as there is at least
one cut-set vertex con a path between two vertices
in different subnetworks.

‘The arrangement of the cost matrix according
to the decomposition forms the bordersd block-
diagonal matrix shown in Fig. 2.

In Fig. 2, Ci contains all the arcs in the sub-
network £ except the ones incident with the

Cmi

Fig. 2., Cost Matrix in Bordered Block-Diagonal
Form

Compute the shortest paths between -

EXEHE E308 H55 10814 57

cut-set. C,, contains the arcs of subnetwork %
incident to the cut-set, while C,, contains those
incident from the cut-set. Only shaded subma-
trices contain nontrivial elements and they con-
stitute the bordered block-diagonal form. The
corresponding successor matrix is handled simil-
arly. For convenience, in the following descript-
ions of the algorithm, the successor matrix is
not explicitly treated. However, it can be inferred
from the shortest path algorithms presented in
the previous section without much difficulty.

Shortest paths between all vertex pairs of the
cut-set are obtained by repeated shortest paths
computations beginning subnetwork 1 through
subnetwork m. First perform shortest paths
computation for subnetwork 1 sfarting from the
following cost matrix

e=[gs e
and resulting in
b:=[5: 5]

where the tildes indicate incomplete minimum
cost matrices obtained by considering only sub-
network 1. D,,! is an incomplete minimum cost
matrix of the cut-set. In computing the matrices,
Rosenthal’s algorithm is used.

Next,
initialized as

c.=[c 5in]
resulting in
_[B2 o]

the cost matrix for subnetwork 2 is

It should be noted, that for this subnetwork, ,,
is used in the cost matrix instead of C,. D.,?
represents the incomplete minimum cost matrix
of the cut-set taking into account subnetwork 1
and subnetwork 2. This procedure is continued.
At subnetwork m, the initial cost matrix is

given by
C’lﬂl CDIS
C - CS‘ DI‘ _x]
and the resulted matrix is
_[D.... D..

This completes Step 2, and D..” is now the

complete minimum cost matrix of the cut-set.

(302)

Ayl g 2A=E 244

The above resultant matrix actually becomes
the minimum cost matrix of subnetwork sz, fol-
lowing Theorem 1, since D..* ! represents the
conditional shortest paths of the cut-set taking
into account subnetworks 1 through m—1. The
shortest path computation for the subnetwork
m results in the solution of the subnetwork.
Therefore, the above matrix may be written as

_[Dun D
Dn_ DZ“ DSS

representing the minimum cost matrix of the
subnetwork nz.

Shortest paths for the rest of m—1 subnetworks
.can be computed by employing D.. as the condi-
tional shortest paths of the cut-set. This may
Dbe done in any order, and again Rosenthal’s
algorithm is used. At the end of Step 3, the
.shortest paths for the shaded blocks in Fig. 2
are all found.

The rest of the blocks in the figure are taken
.care of in Step 4. The procedure described in
Theorem 2 is employed to perform the step. For
example, an element of Dj; is computed from
the equation

du=1’§iisll}£du+du}

~where di; and d,; are the elements of D; and Dj,

_respectively.
6. Exercise

The three shortest path algorithms described
in the previous two sections are coded as compu-
ter programs, and they are exercised for 30-,
160-, and 273-vertex networks. The latter two
are partial networks of the Haddonfield, New
Jersey street network in which street corners
and street segments represent vertices and arcs,
respectively, and the distances represent costs of
the arcs.

The Dantzig algorithm, though the formulation
is different, requires exactly the same number
of computer operations as Floyd’s which is the
most widely known by virtue of its simplicity.
Therefore, the results g the Dantzig algorithm
can represent those of cue Floyd's algorithm as

well. In Rosenthal’s algorithm, the heapsort
method [13] which is the most commonly used
sorting method is employed for sorting. For the
proposed algorithm, the 30-vertsx network is
decomposed into two subnetworks decomposed
into two subnetworks; the 160-vertex network
into two and three subnetworks; and the 273-
vertex network into two through five subnet-
works. The exercise results are shown in Tables
1 and 2.

The programs are written in Fortran and they
are executed on the IBM 370/4341 machine. Two
variables are chosen to compare the performances
of the algorithms. The core requirement (Table
1) is the data block storage requirement in core
to execute the program; the core storage required
to compile the program source file is not inclu-
ded. The CPU time (Table 2) indicates the com-
puter time required, to carry out the shortest
path computation in the algorithm; the computer
time spent for the data input and output are
not included. Consequently, time spent for net-
work decomposition in the proposed algorithm is
not included, since the decomposition is considered
part of data preparation. Once a network is
decomposed, this step is not required unless the
network configuration is changed. In general,
network decomposition is performed once off-
line, and then shortest paths for the network
are repeatedly computed for various cost func-
tions.

Table 1 shows that the Rosenthal algorithm
requires slightly more core storage than Dantzig’s
algorithm. This is due to differences in core
space used for sorting. The proposed algorithm
consistently uses less core storage than the other
two algorithms. In the 273-vertex network case,
the proposed algorithm uses only one-third as
much storage space as the Rosenthal and Dantzig
algorithms. CPU time savings for the proposed
algorithm are less apparent. For small size net-
works, Rosenthal’s algorithm is quite effective;
it improves the solution time by about four times
over Dantzig’s algorithm. The advantage of the
proposed algorithm is clearly revealed as the
network size increases and the network is divided

(303)

— 62—

ERBHE H30% F 59 19814 57

Table 1. Core Requirements for Shortest Path Algorithms

Dantzig’s | Rosenthal’s Proposed Algorithm (K Bytes)
Network Algorithm | Algorithm T
(K Bytes) (K Bytes) |2-Subnetwork 3—Subnetwork14—SubnetW0rk 5-Subnetwork
273-Vertex I
Network 598. 50 602.86 317.24 253.90 236.36 201.26
160-Vertex
Network 206. 16 208.72 117.74 100. 86
30-Vertex
Network 7.52 8.00 6.29
Table 2. CPU Time for Shorest Path Algorithms
Dantzig’s | Rosenthal’s Proposed Algorithm (Seconds)
Network Algorithm | Algorithm -
(Seconds) (Seconds) [2-Subnetwork 3—Subnetwork[4—Subnetwork[5—Subnetwork
273-Vertex
Network 1,013.72 295.58 237.20 148. 60 130.74 ‘ 97.12
160-Vertex
Network 200.67 42.61 43.82 30.18
30-Vertex
Network 1. 06 0.31 0.50

into more subnetworks. As shown in Table 2,
the CPU time for the proposed algorithm can be
as little as one-tenth that for the Dantzig algo-

rithm.
7. Conclusion

A shortest path algorithm using optimal net-
work decomposition is introduced in this paper.
The algorithm first decomposes a network by
minimizing the number of cut-set between sub-
networks, while each subnetwork is limited by
its size. Then, individual subnetworks are treated
independently of others for shortest paths calcu-
lation. Savings in core requirement and CPU time
of the algorithm results from the fact that it
solves shortest paths for a series of smaller size
networks instead of one large size network. The
magnitude of the savings depends on the sizes
of the individual subnetworks which, in turn
depend on decomposition. The optimum criterion
and the constraint of the optimal network deco-
mposition work for the best result.

The proposed algorithm, when applied to large-
scale networks, greatly reduces the core require-

ment and solution time in comparison with other:
algorithms. In Tables 1 and 2, the core require-
ments and solution times for the proposed algor--
ithm are shown for a serial mode operation, i.e.,.
all the minimum cost and successor matrices.
of subnetworks are stored in a core block and
the shortest paths calculation is done for a time.
If it is performed in a parallel mode, i.e., the:
matrices of each subnetwork are handled by a
string of computed in parallel (e.g., using a
the core
requirement and solution time will be further
reduced by about 1/m when the network is
decomposed into m subnetworks.

multi-process microprocessor system),

The comparatively small core requirement of’
the proposed algorithm results in a computer-
cost reduction since a smaller size computer can.
be used to compute shortest paths. Further, if a
parallel processing technique using a number of
micropocessors is adopted, the cost reduction will
be very large. It is especially significant when.
a dedicated computer system is employed for a
real-time calculation of shortest paths, as in the-
case of some dynamic syggsms. Fast solution time-
is also essential for those cases. For example, if

(304)

ARy o A zA4

arc cost represents travel time in a transporta-
tion system, frequent shortest paths calculations
are desirable as the traffic volume is changed
affecting the travel time. In data communication
network, frequent shortest paths calcualtions
are required as users come in and out of system,
thereby producing fluctuating data volume in
each communication link. For these applications,
the proposed algorithm can provide an economical
way of solving shortest paths through its speed
and reduction in computer cost.

References

1. Vogt, W.G., Mickle, M.H., Aldermeshian,
H., Amir-Ebrahimi, K., Lee, J.G., Trygar,
T.A., and Wright, G.L.: “Comparison of
Variable and Fixed Routes for Demand Ac-
tuated Transportation Systems,” Technical
Report for UMTA Grant No. PA-06-0030,
University of Pittsburgh, Department of
Electrical Engineering, Pittsburgh, PA, Au-
gust 1974,

2. Schwartz, M.; Computer-Communication Net-
work Design and Analysis, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1977.

3. Dreyfus, S.E.; “An Appraisal of Some Shor-
test-Path Algorithms,” Operations Research,
Vol. 17, 1969, pp.395~412.

4. Pierce, A.R.; “Bibliography on Algorithms
for Shortest Path, Shortest Spanning Tree,

10.

11.

12.

13.

(305)

— 63 —

and Related Circuit Routing Problems (1956"
~1974)," Networks, Vol. 5, 1975, pp.129~-
149.

Dantzig, G.B.; “On the Shortest Route thr--
ough a Network,” Management Science, Vol.
6, 1960, pp.187~190.

Floyd, R.W.; “Algorithm 97: Shortest Path,”
Comm. ACM, Val. 5, 1962, p.345.

Tabourier, Y.; “All Shortest Distances in a
Graph. An Improvement to Dantzig’s Induc--
tive Algorithm,” Discrete Mathematics, Vol..
4, 1973, pp.83~87.

Rosenthal, A.; “On Finding Shortest Paths:
in Nonnegative Networks,” Discrete Mathe-
matics, Vol. 10, 1974, pp.159~162.

. Mills, G.; “A Decomposition Algorithm for-

the Shortest-Route Problem,” Operations Re-
search, Vol. 14, 1966, pp.279~291.

Land, A.H., and Stairs, S.W.; “The Extension
of the Cascade Algorithm to Large Graphs,”
Management Science, Vol. 14, No. 1, Septe-
mber 1967, pp.29~33.

Hu, T.C.; “A Decomposition Algorithm for
Shortest Paths in a Network,” Operations.
Research, Vol. 16, No. 1, 1968, pp. 91~102.

Lee, J.G., Vogt, W. G., and Mickle, M.H.,
“Optimal Decomposition of Large-Scale Net-
works,” IEEE Transactions on Systems,.
Man, and Cybernetics, Vol. SMC-9, No. 7,

July 1979, pp.369~375.

Knuth, D.E.; The Art of Computer Progra--
mming, Vol. 3, Addison-Wesley Pub. Co.,.
Reading, Mass., 1973.

