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Fault Analysis in Multivalued Combinational Circuits

Using the Boolean Difference Concept
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Abstract

Any logical stuck-at faults in multivalued combinational circuits are analyzed using the concept
of Boolean difference. The algebra employed is the implementation oriented algebra developed
by Allen and Givone. All the lines in the circuit are classified into five types according to their pro-
perties. For each type, the equation that represents the complete test set is derived and proved.

All the results in examples are confirmed to be correct by comparing the truth tables of the normal

and faulty circuits.

I. Introduction

Recently, fault analvsis in binary system has been
one of the principal research areas in digital systems.
For the multivalued logic, little work has been re-
ported in fault detection and location area, although a
number of multivalued algebras are developed.

One of the main advantages of multivalued logic
is that the required number of pins for an integrated
circuit chip to communicate with its outside world can
be decreased. In addition, one can often avoid the
cost of coding multivalued information into binary
form for processing and then decoding it back to the
multivalued signal after the manipulation is finished.
A computer which uses multivalued arithmatic can
be consideribly faster because it takes fewer digits
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to represent a decimal number in the multivalued
number system compared to the binary case. In
1958 the first full scale implementation of a ternary
A
computer emulation, TERNAC, was implemented
in 1973 at the State University of New York, Am-
herst, New York.

However, multivalued circuits are not in wide use

computer, SETUN, was completed in Russia.

because the cost of building such circuits is relatively
high while the reliability is not as high as might be
desired. Methods of ensuring reliability and proce
dure for testing the circuits must be developed.

R.J. Spillman and S. Y. H. Su developed a mo-
dified D-algorithm to detect logical stuck-at fault in

(11

multivalued logic circuits. The algebra employed

was the generalized ternary algebra developed by

Vranesic, Lee, and Smith, 2]

Their paper indicates
that the generalized ternary algebra simplifies fault
detection, however, it may complicate fault detection.

This paper is concerned with the analysis of

logical stuck-at faults in multivalued combinational
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circuits based on the Allen-Givone implementation.
The Boolean difference technique is used to construct
equations which represents the complete test set for
the circuit. Section II introduces the Allen-Givone
implementation oriented algebra and the minimiza-
tion methods of multivalued switching functions,
In section IIl, we examine the Boolean difference
concept and its extention for application in multi-
valued circuits. All the lines in the circuit are classi-
fied into five types and the equations of the com-

plete test set are derived for each type.

II. The Allen — Givone Implementation Oriented
Algebra

The fundamental principle underlying multiple-
valued logic systems is that they have n input variables
and t output variables such that there are at most m
values for each of the physical variables, where the
Furthermore,

physical values are vy, va, ... sV

m’
if vi<V,<..<Vm, the integer 0 can be assigned to

vy, 1 to vy, ..., m-1=p to Vi Then, each input and
output variable may assume at any instant one of
the set of m logic values from L, where L = {0,1,2,...
,p} and p=m-1.

It can easily be shown that Boolean algebras can-
not be used as adequate mathematical models for
multiple-valued logic systems, since cven for a simple
The

algebra here is an implementable multiple-valued

three-valued system, no Boolean algebras exist.
switching algebra. Two operations can now be de-
fined, 3! (+) and (*), by

x +y =max (X, y)

(l.a2)

X « y =min (X, y) (1.b)

where x, yeL = {0, 1, 2, ..,, p}. The unary operator
(a, b) on the variable x, called a literal and denoted
by ax is defined by

ab p, if a < logical value of x b
X =

) 2)
0, otherwise.
where a, beL and a <b.

ab ab
And the complement of x , denoted by ax , is defined
by

— 26 —
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ab o,ifas logical value of x < b
X

= 3)

p, otherwise.

By mapping the multivalued variable x to a binary
variable axb and introducing the definition of com-
plement of axb, a multivalued switching algebra has
been formed which satisfies all axioms and theorems
of Boolean algebra and can be used for minimization
of any partially specified multivalued switching
functions in a similar way as the minimization of

Boolean functions.

Minimization

Any multi-valued switching functions and their
complements can be minimized in terms of the num-
ber of literals or number of gates for a two-level
logic networks. For function f with a small number
of variables n (say, n<4) and small p (say, p<4), f
and f can be minimized either by hand calculation
using theorems of multivalued algebra or by map
method. [#€]

notations are uscd and computer algorithms for

For functions of larger n and p, cubid

minimizing any multivalued switching functions

are presented. Here, only the map minimization
method will be illustrated in Example 1.

Generally, for a given (p+l)-valued function

of n variables, we can express { as[sl
f= 1-f1+2-f2+...+p-fp+fdc 4)
p
- 'Ell. SRARET
where
9
f.= Z P 5)
i i=1 j

and P. is corresponding to the input n tuple for
i

which f = logic i, Pj is the product I1 alxbj . qj is the

number of input n tuples for which f = logic i.
q4

> 4,P 6
k=1 Kk

fclc =
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where Pk is a product term corresponding to the
input n tuple for which f = DON'T CARE. dj can
be assigned to any value in the set 0,1,2,...p and a4
is the number of input n tuples for which f = DON’T
CARE.

To minimize f we sequentially minimize fi starting

with i = p followed by i = p-1, p-2, ...., 1, taking the
DON'T CAREs into consideration. As far as f is
concerned, all input n tuples for which f = j (i.e.
product terms of fj) where j>i can be treated as
DON'T CAREs and they can be assigned to logic i
if it is advantageous to do 50.150  This idea will be
used in the following example.
Example 1; The map representation of a multiple-
valued switching function is essentially just a rearran-
gement of jts table of combinations. A map for a
two — variable three — valued switching function is
given in Fig. 1.

First, all rectangular groupings of cells containing
the value 2 are found. Next all rectangular groupings
containing a logic 1 or higher (not totally contained
in a larger grouping) are shown. Thus, there are
four prime implicants of this function, and it can
be seen that these prime imph’cantsMJ form a
minimal representation of f.

2
f = 2-(0)(01 . 0x02+2x21 . lxz)

Xa
X, 0 1 2

--.-—QJ._.._--A_.._.J

2| 2] 2

Fig. 1. A map for a two-variable three-valued swit-
ching function,

This is three — valued function and 2 is the maximum
value, so the number 2 before the first parentheses
may be omitted in the above expression. The circuit

realization of this function is shown in Fig. 2.

III, Fault Analysis

Fault Model

In this paper, a fault in any gates will be defined

as an input or an output line stuct — at a given logic
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value, ie., s-a-k. The circuit is assumed to be irre-
dundant and only a single fault can be present at
any time, Certain different gate level faults produce
the same output under all possible inputs. Such
faults can be detected as a group, but the individual
faults within each group cannot be distinguished.
These faults are called indistinguishable faults. Spe-
cifically, two faults, i and j, and indistinguishable if
for all possible inputs, the output with failure i is the
same as the output with failure j. The indistinguish-
able faults for the binary OR gate, for example, are
any input stuck — at -1 and any output stuck — at
-1. The indistinguishable faults for the multivalued
gates will be discussed on each case in the following
description of fault analysis.

Basci Concept

We use the concept of the Boolean Difference
to analyze any single stuck type faults in multivalued
combinational circuits.

The Boolean Difference of a binary function
f(xy, X3, o0 Xn) with respect to the variable X5 de-
noted by df(xy, X3, «o xn)/dXi is defined as

follows;”'sl

I}

dfi(x)
o £ (X1, X2y oXpy s X))

1
@ f (Xl, il’ aeey Xn)

&)

f (X1 .000s 0y oeey Xn)

@ £ (xp, 0l X))

In the binary circuits, it is well known that the ne-
cessary and sufficient conditions on the Boolean
variables X1, ..., Xp, that is, the primary inputs such
that the output of the circtit realizing f(xj, ..., Xp)
is dependent upon the logical value of line j, Xj,
is that

df (xy, -.ep X X))

=1 (€)]

de

To test for the specific fault Xj s-a-ak, ak € 0,1 ,we
must make the output of the circuit dependent

upon x;j, and drive line j to the logic value ak. These
conditions are met if and only ift®-1°]

<Ak af (X1s s X Xj)

. 1 [¢10)}
J de
where
x-zl" - Xj,if ap = 0
xj, ifag = 1

Now, consider the method of finding out the com- °
plete test set for single stuck type faults in multivalued
combinational logic circuits based on the implementa-
tion oriented algebra developed by Allen and Givone.

As mentioned above, in this algebra, the multi-
valued variables are mapped to the binary variables by
introducing axb gates, thus it is possible to analyze
faults by using the concept of Boolean difference.
But, there are some difficult problems. First, not
all the lines in the circuit have only the binary values
(o, p). The input lines of* )P gates and the output lines
of the last AND gates of each “Group” (for example,
gate K in Fig. 2.) can take on any intermediate logical
values between o and p. Here, the Group means the
circuit module which realizes a subfunction of f,
ie. i‘fi in Eq.(4) And k — Group means the circuit
module of k«fy. Another problem is that, when
minimizing fj, all input n tuples for which f = j where
j > i can be treated as DON'T CAREs. For_ these
reasons, the method of deriving tests for a particular
fault becomes more complicated in multivalued
circuits than in binary circuits.

Taking into account all these properties and
extenting the concept of equation (10), the set of
tests in multivalued case for the stuck — at — aj fault
on line i which has the binary value in k ~ Group
is represented by the following basic form of equa-
tion;

dFg -
Xj(ap - _d—X—i 111 fj =p an

where Fg is the representation of fy as a function
of faulty line Xj, and Xj(ay) is Xj or X; depending on
the value of aj, and dFy/dX; is defined by equation(8)

— 28 —
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except that logic 1 is mapped to logic p. In other
words, Xj(aj) = p is the condition that line i is driven
to the logic value @;, while dFy/dX;j = pjs the necessary
and sufficient condition that the output of k —
Group of the circuit is dependent upon the logical
value of line i, Xj. since the Boolean difference is
applied only to k — Group, the effect of the specific
fault in k — Group to the other Group as well as the
effect of DON'T CAREs should be considered in
deriving the complete test set for that fault. By
adding the last term, Ij]_fj = p, all these conditions
are met. Equation (11) is sometiomes modified and
completely determined depending upon the pro-
perties of faulty line. For the faults on the other
lines which have non — binary values, tests can be
derived by another equations. Boolean difference
cannot be applied to these lines, but the form of
these equations is similar to equation (11) except
the Boolean difference term.

Line classification

It is very important in fault analysis to classify
all the lines in the circuit by their properties. There
are five types of lines. b
Type 1: The input lines of X gates (for example,

1,2,3,4,5,6,7,in Fig. 2)
Type 2: The output line (24)
Type 3: The input lines of the last OR gate (22, 23)
Type 4: The enabling input lines of the last AND
gate of each Group. (21)
Type 5: The rest of lines (8, 9, ..., 20)

The lines of Type 1 and Type 2 are inputs and
output of the circuit respectively, so they can take
on any logical value over the range 0,1,...,p . Each
line of Type 3 can have only two logical values, for
example 0 and k if it is the output line from k —
Group, and cach line of Type 4 is fixed at one logical
value. The rest of lines have the binary values (o, p).

Test generation

With the result of the above classification the
equations that represent the complete test set will be
derived on each case.

1) Type 1 lines

Theorem 1

The complete test set for a specific fault on the
line of Type 1 is generated by analyzing the corres-
ponding fault on the line of Type 5, i.e. the output
. ab
line of "X gate.

Proof; when one of the input lines of axb gates is
sfuck at a;, this fault is indistinguishable from the
s-a-p fault on the output line of that axb gate if a<

2;<b, and it is indistinguishable from the s-a-0 fault
on thatlineif aj<a or a;>b. Input tests for two
indistinguishable faults are equal to each other.

Hence, the proof is evident.
2) Type 2 line

Theorem 2

The complete test set for the s-a-a; fanlt on
line i of Type 2 is given by

. fi = p (12.2)
b a1 !

where Tai a;=0 = fog = fy+fy+. -+ fp

Proof; Since the Type 2 line is the output line
ol the circuit, if this line is s-a-a;, the output is always
aj for all input combinations. Al input n tuples for
which f=j where j#ai are the complete test set for
this fault. fa;=p is the input combinations that don’t
drive the output line to aj. fa;=pis the input combina-
tions that drive the output to a;, but some of these
may also drive the output to j where j > a; if DON’T
CAREs are included.
binations must be added to the set of tests. The result

Therefore these input com-
is

— |4
faj+faj z fj =p

12.b
i (12.b)

It is well known from the Boolean algebra that for

any x and y
X +xy = x(1+y)+xy
= X+Xy+xy
= X+y. (13)

— 29—
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Hence, Eq.(12.b) can be simplified to Eq.(12.a).
The Type 2 line is the output line of the OR gate,

thus the s-a-p fault on this line is indistinguishable

from the s-a-p fault on the input lines of the OR gate

(for example, 22 and 23 in Fig. 2).

Example 2; The complete test set for the s-a-1 fault

on line 24 in Fig.2. is obtained from Theorem 2.

?1+f2=p
60 00 2212 006 _oiloo
(X1 X2+X1X9) + ( X1+ X1X3) =D

85 05 _
X1 X2 p

nxoloxu2 + 1le 1)‘12 +oxolox11 +
The input combinations which satisfy this equation
are { (0,0), (1,1, (1,2), (2,0), 2,1, 2,2} . The
corresponding decimal representation is {0,4,5,6,7,8 }

3) Type 3 lines

Theorem 3

The complete test set for the s-a-a; fault on line
i of Type 3 from k-Group is given by

p —
fy m f;=p,
el
p_ P
frn §+mf=p,
k+1 a;
p_
nfj = p,

3

if a; =0 (14

if 0 <a; <k (15

Proof; The ilne of Tye 3 from k-Group can have
the logical values 0 and k when it is normal. Consider
the following three cases.

Case1a;=0

We have to find out the input set for which
fy = p, that is line i should be made to have the
k. But input combinations
of this set may also drive the output line of the circuit
to j where j>k if DON'T CAREs are included. There-
fore these DON'T CAREs must be deleted from the
test set. Hence the complete test set is given by
Eq.(14). Case 2 0<a;<k.

We have to find out the input set for which fi = 0
or fx = p. The input combinations for which f = 0
may drive the output line of the circuit to any logical

value

logical some

_..30k

B it

=5

=V

FI8E B 1%

value. But only the output values a;, a + 1,...,pcan
appear at the output of the circuit because line i is
stuck at aj. Consequently, the input combinations for
which f = aj, aj+l, ..., p cannot detect the s-a-a; fault
on line i, and must be deleted from the test set. Next,
the DON'T CARE:s included in the input set for which
fx = p drive the output line to j where j>k, and
these also have to be deleted from the test set. Hence

the coniplete test set is represented by

P _ P_
frornfy +fx0fj=p
kAJ k+IJ

Using Eq.(13) this equation is simplified to Eq.(15).
case 3a; 2 k

When a; = k, we have to find out the input set
for which fx = 0.

drive the output line to any logical value. Only the

These input combinations may

output values k(= ay, k+1, ..., p can appear at the
output because of the s-a-a; fault on line i. Again,
the input combinations for which f = k, k+1, ..., p
must be deleted from the test set. Thus,

_ P? P _ P _
fynm f5=1f =1t =p

when ai>k, we have to find out the input set for
which fy = 0 or fy = p. Under the condition fi = 0,
the input combinations for which f = a; ag+l, .., p
must be deleted from the test set. Under the con-
dition fy = p, the BON'T CAREs for which f = aj,
aj+l, ..., p must be deleted from the test set. Thus,
the complete test set is given by

— p_ b _
fy-Ifj +fx- 1fj=p
8 3
- b _ P ..
(fg+fi) - fj = O f5=p
a: 3

1

Hence the theorem is proved.

Since the last gate of j-Group where j#p is the
partially enabled AND gate, the s-a- fault on the out-
put line of this AND gate is indistinguishable from
the s-a-r fault on the input line of this AND gate
where r2j.  And of course for the AND gate, any
input s-a-0 and any output s-a-0 are the indistinguish-
able faults. The last gate of p-Group is the OR gate,
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thus input s-a-p and output s-a-p are indistinguishable
faults.
Example 3; The complete test set for the s-a-0 fault
on line 22 in I'ig. 2. using kEq.(14) is

fy-f =p

K+ % %) - (W—O‘fm) =p
Thus we have
{€0,0), (0,1}, (0,2), (1,00} — {(0,0), (2,1), (2,2)}
{(0,1), (0,2), (1,0)}

4) Type 4 lines

Theorem 4

The complete test set for the s-a-a; fault on line i

of Tyep 4 in k - Group is given by

p _

fx = 0 fj=p, ifa<k amn
k+1
p s I

fx = 1l rj =p, ifa; >k (18)
g

Proof; this lineis normally fixed at the logical
In both
of the two cases, if the other input line of the AND

vlaue k. There are two cases to consider.

gate is driven to 0 the output of the circuit becomes
independent upoﬁ the fault on lJine i Therefore,
fx = p is the necessary condition to detect the fault
on line i.

Case 1 a; <k.

Under the condition fy = p, the DON'T CARE’s
for which f = k+1, k+2, ..., p should be deleted tfrom
the test sct. Hence the complete test set is given
by Eq.(17).

Case 2 3> k

The DON’T CAREs tor which f =

should be deleted from the test set.

a, a;vl, .., p
Hence the com-
plete test set is given by Eq.(18).

Example 4; The complete test set for the s-a-2 fauit
on line 21 in Fig. 2. can be derived from Eq.(18).

fl-f2=P

This result is the same as in Example 3, But the

output for the test set { (0,1), (0,2), (1,0)} is logic
2 in this cxample, while in Example 3 the output

is logic 0.

5) Type 5 lines

Most of the lines in the circuit belong to Type
S.

values O and p, the Boolean difference can now be

Since all the lines of Type 5 take on the binary
used to test faults on these lines.

Theorem 5

The complete test set for the s-a-a; fault on line i

of Type 5 in k-Group is given by

X dFy p 7
i — 1 Ti=p, ifa, =0 19
b odXj ey 1

il S f kK 2
— 11 F; (1 Tij+X;) = p, if O<aick  (20)
dxi k+1 J a; ] i i
_ dF P _ N

i~ 1 fi = p, if a;2k 21

dX; k+1 O !

Proof; There are three cases.
Cage 1 ;=0

We must apply input patterns to drive the value
of line i to p, while simultaneously making the output
of k-Group dependent upon Xj. Some of these input
combinations, DON'T CAREs, for which { = k+1,
k+2, ..., p should be deleted from the test set. These

conditions are met if and only if

drg P
i 1
dX; k+l

= fj =

P

Case 20 < a; < k

The input combinations for which Xj- dFy/dX; =
p may drive the output line of the circuit to any
logical value. But some input combinations for which
f=a, aj+1, ..., p cannot detect the sa-a fault on this
line because these values appear at the output inde-
pendent of the fault. The input set for which Xi-dFy/
dXj = p may include DON'T CAREs, which have to be
deleted from the test set. Thus we have
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— drg P dFy P _
X; _4Ilf}‘+X,‘wll fj:p
(22)
diy p . _ ko
== I fi (X; (i T, -
ax; kl+1 fj (Xle[l-[ f} + X)) =p

1

Using Eq.(13) this is simplified to Eq.(20).
Case 3 3;2k

We have to tind out the input set for which X;-dFy/
aX = p.
f=

set.

Again the input combinations for which
k+i, k+2, .., p must be deleted from the test
Thus [q.(21) represents the complete test set
for this tault.

When the logic fault a; Where a;Zk is made to pro-
pagate to the output of k-Group, it becomes k
after passing through the partially enabled (k-enabled)
AND gate. Therefore these faults are indistinguishable
faults.

[Example 5; The complete test set for the s-a-1 fault on

line 11 in Fig.2 can be derived from Eq.(20).

dF, 2 _
— (I f{+Xy) = p
dX“ 1 J 1
Subtituting
22
X = %
dab,
5 = (W Wyt pe W) (N X, 00
dXy;
=, (Tqu ),
we have

550 . o~ = 22
Wy (X)) (F - T+ X)) = p

The resultis {(1,1), (1,2), (2,1), (2,2)}

If there is a NOT gate in the path from the faulty
line to the output of k-Group, Theorem 5 should be
modified because the value of this stuck-at fault is
complemented by the NOT gate when it is sensitized
to the output. In the implemcntation oricnted al-

gebra, the complement of a constant ¢ is defined by

¢ = p-c. Therefore we have the following Lemma.
L
LEMMA

it B18E B 1k

If there exist odd numbers of NOT gatesalong the
path from the tfaulty line to the output, the complete
test set for the s-a-aj fault on this line i of Type 5

in k-Group is given by

_odl P
X{ —— I Ti=p,ifp-ai=0,ic a =
b ax k+]1J p, ifp-aj=0,ie.ay=p (23)
- dFy p _ dry P -
X, —— nm Xy — n fj=p,
dX; k+1 dX; p-aj
it 0<p - aj<k, i.e. p - k<aj<p (24)
dFx p = . <
Xy -== 11 Tj = p, ifp-a;2k,ie 050Sp-k
aXj k+l
(25)

Proot; The proot is similar to that of Theorem 5.
Replacing X; and a; in Eqs.(19)(20)(21) by X; and p-a;
respectively, we have the above equations.

For the NOT gate, input s-a-a; and output s-a-(p-a;)

are indistinguishable faults.

Fan Out

in Type 2, 3 and 4, there cannot ¢xist fan-out
lines. The test set for the fault on a fan-out line of
Type 5§ can be derived in the same way as the binary
case it this line fans out to the lines in its own Group.
The complete test set for this fault is thus represented
by one of the equations in Theorem 5. However, if
there is a NOT gate in the path to the output from

one of the lines to which the fanout line fans out,

the complete test set cannot be derived from Theorem
Fig. 3.

5. Consider where line i fans out to

’
(k+1)-Group

Schematic of multivalued logic circuit with

fan-out line i in k-Group.

Fig. 3.
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lines iy, iz, ..., ip in k-Group. If there are odd

numbers of the NOT gates in the path from
line i, tc june jp, the value of the fauit on line i is
complemented i it is sensitized along this path, but
not complemented if it is sensitized along other paths.
It is very difficult to predict what logical value will
appear at the output of k-Group because of the fault
on line i, and consequently difficult to know the
effect of this fault on other Groups’ output. In order
to simplity fault detection, it is preferable to avoid
the abeve situation when a circuit is designed. In fact,
in this algebra any function or subfunction can be
realized into a circuit m’thgut t_he NOT gate. Tor
example, a subfunction (Oxol ’x'z ) in ternary logic
o).

When a line fans out to the lines in other Groups

. 12 00
system is cqual to Xy {(x, +

respectively, the complete test set for the tault on that
line is obtained by summing the tests tor the same
fault on the lines to which that fanout line fams out

even if there exist the NOT gates,

Theorem 6

Let i be a line of Type 5 which fans out to lines
if, ..., ip in other Groups respectively, und let Tf‘i
denotes the complete test set for the s-a-a; fault on

linei, Then,
a; _ a; [ FE alat
Ti]_ Till+ [izl + +'11‘ (2())

Proof; If we apply an input combination of Tiai
to the circuit with the s-a-a; fault on line i, this fault
is sensitized to the output along the path from line
i via line ij to the output. And it is obvious that an
element of Tiai is also an element of a set among Tia‘i,
Téi s..‘,Ti;;l Hence the theorem is proved.

Example 6; The complete test set tor the fault of line
10 s-a-2 in Fig.2 can be obtained from Theorem 6.

Here, only the result is shown.
Th = T + T
= {45} + {12}
= {1,2,4,5}

There also exist fan-out lines in Type 1, for ex-

ample line 1 and 2 in Fig.2. However, these lines are

not direct input lines ofaxb gates, so they are assumed
to have no faults in this paper.
Example 7; One of the minimal test set for the circuit
of Fig. 2. is {0,1,3,4,6,7} , which can detect all
possible logic faults in this circuit wirthout testing it
with cvery possible input and examining the output.
All the results in Examples 1, 2, ..., 7 are con-
firmed to be correct by comparing the truth tables of

the normal and faulty circuits.

IV. Concluding Remark

In this paper we have used the Boolean difference
concept to derive the equations of complete fault
detection set. There exist network dependent in-
distinguishable faults which simplify fault detection
but hamper fault location. However, the Allen-
Givone implementation oriented algebra makes it
easier to locate fault than the generalized termary
algebra because each Group is realized into a separate
circuit module. The Boolean difference method gives
us concise description of the many concepts involved
in thest generation and these in turn provide valuable
insight into the underlying processes and relationships
One may use these concepts to develop other methods
of fault detection, such as D-algorithm. And it

remains univestizated to explore whether these
concepts can be generalized for use in multiple fault

situation.
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