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Abstract

The change in the design-basis refueling strategy caused by the unexpected nuclear
fuel failures may result in discharging intact fuel assemblies which were irradiated in
the .positions symmetric to the failed ones in addition to the failed ones in order to
maintain the symmetric power shape in the reactor core. In this work an attempt is
made to reuse the intact fuel assemblies which were discharged before reaching the
design burnup in the above-described situation so as to improve the fuel utilization.
The TDCORE code is used to estimate the flux and power distribution, and the RELOAD-
II code for searching the optimal loading pattern with the minimum assembly radial
power peaking factor. For the case of the Ko-ri unit 1, its third cycle burnup could be
extended to 11,648 MWD/MTU by reusing the four low-burned fuel assemblies removed
at the end of the first cycle, and then the loading pattern is searched to the equilibrium
cycle.
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the operation of the nuclear power plant

1. Introduction is the in-core fuel management, in which

the fuel loading with the minimum power

One of the most important aspects in peaking factor is often the primary consi-
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deration in view of safety.

Recent attempts have been made to opti-
mize the reactor fuel loadings, although
they are not always satisfactory from the
standpoint of minimizing the power peaking
factor. Various optimization techniques
have been used in these attempts, including
the linear programming, the non-linear
programming, the dynamic programming,
the variational methods, the heuristic lea-
rning techniques, and the direct-search
techniques. Most of these methods are not
used as a single method, but combination
of such methods in different approximations
for various scope of decisions. Until now,
by using the previously-described methods,
the design-basis refueling strategies have
been investigated under the assumption
that the reactor would be operated as
planned.

In this work, however, the refueling
strategy of a PWR with the operational
problems induced by the fuel failures is
studied and especially the reuse of the
low-burned fuel assemblies, presently stored
in the pool, is attempted to improve the
fuel utilization. It is to be emphasized that
the reuse of these stand-by fuel assemblies
is limited within the constraint of mainta-
ining the quarter-core symmetry of the
power distribution in the reactor core from
the viewpoint of the reactor safety.

The TDCOREY code,

Bérresen approximation? and the albedo-

which uses the

type boundary condition®, is adopted to
determine the power distribution in the
reactor core. The RELOAD-II code, which
is a modified version of the RELOAD
code?, is utilized as a search code of the
optimal loading pattern with the minimum
power peaking factor at the beginning of
the cycle. The Ko-ri unit 1 is chosen as a

reference power plant.
9. Optimization Approach

Since the nuclear ‘calculations associated
with any optimization procedure are repe-
ated, some sacrifice in the accuracy of the
model must be made to acquire the neces-
sary speed. Thus the Bérresen’s approxi-
mation? is applied to the two-group diffu-
sion equation. The two-group diffusion
equations in the x-y geometry are

—PDipdi+ (Za+2,+D.B.2) ¢

= Kl.,, (vZ g1 +vZ122) 1

—pF D+ (Za2+ DBy $s=2.¢, (2)
After integrating Eqgs. (1) and (2) over the

mesh volume and applying the Borresen’s
approximation? to the midpoint flux in a
node, the finite difference equations have
the following form:

— g +Qu9, =S5, ®)

While Eq. (3) is for interior nodes, the
revisions for the node at the core boundary
must be provided. When Egs. (1) and (2)
are modified, we obtain a revision of Eq.
(3) for the node at the core boundary.

4—nr
- Z} ¢‘iJ+Qlij¢gﬁ=Slﬁ (4)

Where i/ indicates the ‘mesh point ‘under
consideration, 7 denotes the mesh point
adjacent to i/, and #, is the number of the
faces surrounded by the reflector. The
physics of the core-state model is described
in details in the TDCORE code.?

The following assumptions are made to
make the minimized power peaking factor
be the main decision variable for an optimal
loading pattern:

1. The minimum radial assembly power
peaking factor at the beginning of the cycle
(ROC) results in the optimal loading pat-
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tern, since the 3-dimensional analyses or
the pin-by-pin 2-dimensional calculations
are insurmountable in view of computer
cost.

2. The quarter-core symmetry is main-
tained. Therefore the fuel assemblies being
reused to improve the fuel utilization must
be located within this constraint.

3. The reactor is divided into three dis-
tinct regions: the periphery region, the
intermediate region, and the interior region
which is subdivided into two position types
of the odd and the even parity. In the
even-parity position, the sum of the
index is even, while it is odd in the odd-
parity position. The fresh fuel assemblies
are always loaded in the periphery region
and are not shuffled in the optir\nization
search. The fuel assembly in the interme-
diate region may be shuffled with any
other fuel assembly excluding the one on
the periphery region. The fuel assembly
in the even-parity position is not permitted
to exchange with the fuel assembly in

the odd-parity position. To illustrate this
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Fig. 1. The Ko-ri Unit 1 One-quarter Core Con-
figuration with Position Designation

.
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arrangement, Fig.1. shows the visualization
of the Ko-ri unit 1 quarter-core.

4, The infinite multiplication factor of
each fuel assembly is calculated by using
the following formula®:

i ij if
Fo= 2?2 s ) l?.,f;f ) 241“2—]-2,“ (©)
This information on the infinite multipli-

cation factor is used to reduce the compu-
ting time by limiting the fuel assembly
exchange as follows:

“A fuel assembly of higher reactivity
(infinite multiplication factor) is never
exchanged with any having the lower
reactivity if the latter has the higher power
density of the two”.

The shuffling logic proceeds in three
distinct steps, which is described in details
in the RELOAD code.?

3. Results and Discussions

The input parameters of the two codes,
TDCORE and RELOAD-II, are the number
of the fuel assemblies, the number of the
fuel assemblies located at the core boundary,
the coefficient of the fifth-order polynomial
representing the group constants as a fun-
ction of the burnup of each fuel assembly,
the albedo value at the core boundary, and
the burnup of each fuel assembly. The
group constants for each fuel assembly
are calculated by using LEOPARD® /CITA-
TION® and fitted to the fifth-order polyn-
omial by adopting the least square method.

This study for reusing the stand-by fuel
assemblies stems from the fact that a few
assemblies had been removed at the end
of the first cycle of the Ko-ri unit 1 to
maintain the power symmetry due to the
fuel failures in the first cycle. The loading
pattern for the first cycle of the Ko-ri
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of the Second Cycle of the Ko-ri Unit 1 52.6 ppm in the 3rd cycle

unit 17 is shown in Fig.2. Only one fuel  Fig. 5. The Burnup Distribution for the End of
assembly with the lowest burnup among the Second Cycle of the Ko-ri Unit 1

the batch 1 fuel assemblies should remain  jp the core instead of those of the batch
in the second cycle on the design-basis 3. due to the failures of the fuel assem-
strategy but eight fuel assemblies of the  blies in the batch 3.® In Fig.3 the loading
batch 1, which were planned to be discha-  pattern is shown for the second cycle of
rged at the end of the first cycle, remained the Ko-ri unit 1 and the design burnup and
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the calculated burnup distribution in each
fuel assembly at its BOC is given in Fig.
4. The end of the second cycle burnup in
each assembly is expected as in Fig. 5,
where the end of the cycle (EOC) is taken
when the critical boron concentration is
nearly 50 ppm.

The optimization search for the third
cycle loading pattern is carried out and
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the results are demonstrated in Figs. 6
through 10. Only four fuel assemblies
among the eight fuel assemblies removed
in the second cycle are reused in the third
cycle within the constraint of preventing
the power tilt in the core. The location of
the reused fuel assemblies must be limited
according to the previously-described assu-

mption. 2. The case I in Fig. 6 is the
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Fig. 12. Ko-ri Unit 1 Cycle 3 EOC Burnup and
Power Distribution and Fuel Assembly
Movement Feature from the Third Cycle
to ‘the Fourth Cycle

checkerboard type loading and searched as
in Fig. 9. In Fig. 7 is chosen the case II
for lessening the power density in the
center region and the pattern does not
change through the search procedure. The
arbitrary loading pattern is shown in Fig.
8 and its results is given in Fig. 10. The
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Fig. 22. Ko-ri Unit 1 Cycle 8 EOC Burnup and
Power Distribution

of the reused stand-by fuel assemblies in
Fig. 6,7,8 and 11. The searched optimal
loading pattern is the case II shown in
Fig. 7, since it was assumed that the pat-
tern with the minimum power peaking
factor is optimal. The fuel assembly move-
ment based on the case II from the second
cycle to the third cycle is shown in Fig.
11, where the loading pattern and the
burnup for the third cycle are also given.
In from Fig. 12 to Fig. 22, the loading
pattern, the BOC and EOC burnup and
power distribution are provided from the
third cycle to the equilibrium cycle. And

the batch burnup and the cycle burnup are
represented in TABLE.

4. Conclusion

The in-core fuel management is directly

Table. 1. Cycle Burnup for the Batch and the Cycle, Respectively.

Batch Cycle ‘ Discharge
Number 1 ’ 2 ‘ 3 ‘ 4 5 ’ 6 ’ 7 1 8 r 9 | 10 Burnup
K
e | 18 WS % 26997
|| 0| s
] | )
s o | | e | e
6 ot | yms | o
: o | | ) s
s w) | um | e
9 ol ot | | ) e
. f | | | o
’ LI -
12 ) 32956
ycle | 14655 | 8991 | 11648 | 11010| 10625 | 10996 | 10932 | 10895 | 10895 | 10895

Note: The number in the parenthesis means the numer of the assemblies.
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connected with the power cost, in that it
provides the economic operational guide for
the nuclear power plant. Thus various me-
thods have been investigated to reduced
the power cost. There are numerous me-
thods,
method, the feed fuel enrichment change
method, the stretch-out operation using
the feedback effect of the moderator tem-
perature coefficient, and the method of
reusing the low-burned fuel assemblies

including the batch size change

discharged in the previous cycle, to improve
the fuel utilization.

The reuse method is applied to the low-
burned fuel assemblies discharged at the
end of the first cycle of the Ko-ri unit 1
and these assemblies (2x 8,506 MWD/MTU
(3A) and 2x11,352 MWD/MTU (3C)) are
reinserted on the quarter-core symmetry
axis in the third cycle. As a result the third
cycle burnup could be extended to 11,648
MWD/MTU (capacity factor: 80%). And
then the loading pattern is searched to the
equilibrium cycle.

The overall power and burnup calculation
is not considered in search procedure of
the optimal loading pattern. In other words,
the present model with the emphasis on
the minimum power peaking factor at BOC
could be improved, if it may include other
aspects such as thermohydraulic and neutro

economy features. Thus more intensive
studies in this field should performd.
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