ON THE STRUCTURE OF THE HALL–YAMADA SEMIGROUPS

By Dong Kie Kim

1. Introduction

An orthodox semigroup is defined as a regular semigroup in which the idempotents form a subsemigroup. The class of orthodox semigroups thus includes both the class of inverse semigroups and the class of bands. Fantham [6], Yamada [15] and Petrich [12] have studied the case where the semigroup is also a union of groups. Specializing in another direction, Yamada [16] have studied the case where the band of idempotents of the semigroup is normal. Recently, the structure of orthodox semigroups in general has been clarified by Yamada [17] and Hall [8] independently. More recently, Hall [9] has generalized the Munn semigroup further in the case of a general regular semigroup.

Let S be an orthodox semigroup with band B of idempotents. The Hall semigroup $\mathcal{H}(B)$ plays an important role in the structure theory to be discussed in this paper. Many of the idea involved are from Yamada’s paper [19].

Our main theorem in this paper is Theorem 3.3. This theorem asserts that the Hall–Yamada semigroup $S=\mathcal{H}(B, T, \phi)$ is an orthodox semigroup whose band of idempotents is isomorphic to B and that if γ is the minimum inverse semigroup congruence on S then $S/\gamma \cong T$. Conversely, if S is an orthodox semigroup whose band of idempotents is B then there is an idempotent-separating homomorphism $\theta : S/\gamma \to W_B/\gamma_1$ whose range contains all the idempotents of W_B/γ_1 and such that $S=\mathcal{H}(B, S/\gamma, \theta)$, where γ_1 is the minimum inverse semigroup congruence on the Hall semigroup W_B of B.

In section 2 we discuss basic properties of semigroups which are essential to understand our main theorem.

The notation and the terminology in this paper are standard. They are taken from [4]. Let ρ be a congruence on a semigroup S. Then S/ρ denotes the factor semigroup of S modulo ρ, and $\rho^A : S \to S/\rho$ denotes the natural homomorphism of S onto S/ρ. Let X be a set. Then $\mathcal{G}(X)$ means the semigroup of all transformations of X, and $\mathcal{G}(X)$ means the semigroup
of all partial transformations of X. The group of all permutations of X is denoted by $\mathcal{G}(X)$. By the (left–right) dual S^* of a semigroup S we mean the semigroup (S, \circ), the elements of which are the same as those of S, and in which the binary operation \circ is defined by $a \circ b = ba$ for all a, b in S.

2. Preliminaries

In this section we shall state several propositions which are useful in the next section. The proofs of propositions shall be omitted.

An element a of a semigroup S is called regular if $a \in aSa$. A semigroup S is called regular if every element of S is regular. Two elements a and b of a semigroup S are said to be inverses of each other if $aba = a$ and $bab = b$. By an inverse semigroup we mean a semigroup in which every element has a unique inverse. A band is a semigroup in which every element is idempotent.

Definition 2.1. For each element a of a semigroup S, let

$$V(a) = \{b \in S : b \text{ is an inverse of } a\}$$

It is easy to prove the following proposition.

Proposition 2.2 Let S be an orthodox semigroup. Then the relation γ on S defined by

$$\gamma = \{(x, y) \in S \times S : V(x) = V(y)\}$$

is a congruence on S.

Moreover, it is the smallest inverse semigroup congruence on S.

Definition 2.3. Let S be a semigroup. Define relations L and R on S by

$$L = \{(a, b) \in S \times S : a \cup Sa = b \cup Sb\},$$

$$R = \{(a, b) \in S \times S : a \cup aS = b \cup bS\}.$$

Then L and R are a right and left congruence, respectively.

The relations L and R commute and so the relation $\mathcal{D} = L \circ R = R \circ L$ is the smallest equivalence relation containing both L and R. Moreover, the relation $\mathcal{H} = L \cap R$ is an equivalence relation.

We denote the L-class, the R-class, the D-class and the H-class containing an element a by L_a, R_a, D_a and H_a, respectively.

It is known that a congruence ρ on a regular semigroup S is idempotent–separating if and only if $\rho \subseteq \mathcal{H}$. In particular, the congruence $\mathcal{K}^\#$, the largest congruence contained in \mathcal{K}, is the maximum idempotent–separating congruence on a regular semigroup S. Moreover, the following proposition holds.
PROPOSITION 2.4. Let S be an inverse semigroup with semilattice E of idempotents. Then the relation
$$\mu = \{(a, b) \in S \times S : a^{-1}ea = b^{-1}eb \text{ for all } e \in E\}$$
is the maximum idempotent-separating congruence on S.

Let S be an orthodox semigroup with semilattice B of idempotents. And let γ be the congruence on S defined in Proposition 2.2 and let
$$\varepsilon = \gamma \cup (B \times B).$$
Then ε is a congruence on B, and there exists a monomorphism
$$\eta : B/\varepsilon \to S/\gamma$$
which commutes the following diagram.

Therefore, the semilattice of idempotents of the maximum inverse semigroup homomorphic image of an orthodox semigroup S is isomorphic to the maximum semilattice homomorphic image of the band B of idempotents of S. Furthermore, the following holds.

PROPOSITION 2.5. Let S be an orthodox semigroup with band B of idempotents. If $\mu = \mathcal{H}$ is the maximum idempotent-separating congruence on S, then $(a, b) \in \mu$ if and only if there exist $a' \in \mathcal{V}(a)$ and $b' \in \mathcal{V}(b)$ such that
$$a'xa = b'xb \text{ and } axa' = bxb'.$$

By a representation of a semigroup S by partial transformations of a set X we mean a homomorphism $\varphi : S \to \mathcal{P}(X)$ of S into $\mathcal{P}(X)$, where $\mathcal{P}(X)$ is the semigroup of all partial transformations of X. It is known that a mapping $\varphi : S \to \mathcal{P}(S)$ which associates with each a of S an element δ_a defined by
$$\delta_a = \{(x, y) \in S \times S : y = xa \text{ and } (x, y) \in \mathcal{R}\}$$
is a representation of a semigroup S by partial transformations. But this representation is not in general faithful. In the case of a regular semigroup we can overcome this disadvantage by simultaneously considering the (left-right) dual of δ_a. Let $\mathcal{P}(S)^* S$ denote the dual semigroup of $\mathcal{P}(S)$. We have the following result.

PROPOSITION 2.6. Let S be a regular semigroup. For each a in S define
$$\delta_a = \{(x, y) \in S \times S : y = xa \text{ and } (x, y) \in \mathcal{R}\},$$
$$\gamma_a = \{(x, y) \in S \times S : y = ax \text{ and } (x, y) \in \mathcal{L}\}.$$Then the representation $\alpha : S \to \mathcal{P}(S) \times \mathcal{P}(S)^*$ defined by $a\alpha = (\delta_a, \gamma_a)$ is faithful.
Let S be an orthodox semigroup with band B of idempotents. Then we can define, for each a in S, a mapping $\rho_a : B/\mathcal{E} \to B/\mathcal{E}$ by

$$L_a\rho_a = L_{a'}xa,$$

where a' is an arbitrarily chosen inverse of a. In particular, if $e \in B$ then we have $L_a\rho_e = L_{xe}$.

Note that if S is an inverse semigroup (so that B is a semilattice) then $L_a = \{x\}$ and $L_{a'}xa = \{a^{-1}xa\}$. By dual arguments we can define, for each a in S, a mapping $\lambda_a : B/\mathcal{R} \to B/\mathcal{R}$ by

$$R_a\lambda_a = R_{axa'},$$

where a' is an arbitrarily chosen inverse of a.

Now we have the following result.

Proposition 2.7. Let S be an orthodox semigroup with band B of idempotents. Let $\xi : S \to \mathcal{E}(B/\mathcal{E}) \times \mathcal{E}^*(B/\mathcal{R})$ be a mapping defined by

$$a\xi = (\rho_a, \lambda_a),$$

where ρ_a and λ_a are given by

$$L_a\rho_a = L_{a'}xa, \quad R_a\lambda_a = R_{axa'} \quad (x \in B).$$

Then ξ is a homomorphism whose kernel is the maximum idempotent-separating congruence μ on S.

Let B be a band and E a semilattice of B. For each e in B define $Ee = \{x \in E : x \leq e\}$. Then it is easy to see that $eBe = Be$. We denote eBe by $\langle e \rangle$. Note that for all x, y in B

$$\langle x \rangle = \langle y \rangle \iff x = y.$$

We define

$$\mathcal{U} = \{(e, f) \in B \times B : \langle e \rangle \cong \langle f \rangle\}$$

and write $W_{e,f}$ for the set of all isomorphisms of $\langle e \rangle$ onto $\langle f \rangle$. Note that if $g \in \langle e \rangle$ and $\alpha \in W_{e,f}$ then

$$\langle g \rangle \alpha = \langle ga \rangle \quad \text{and} \quad ea = f.$$

If $(e, f) \in \mathcal{U}$ and $\alpha \in W_{e,f}$, we may define $\alpha_l \in \mathcal{E}(B/\mathcal{E})$ and $\alpha_r \in \mathcal{E}^*(B/\mathcal{R})$ by

$$L_a\alpha_l = L_{xa}, \quad R_a\alpha_r = R_{xa} \quad (x \in \langle e \rangle).$$

Now let S be an orthodox semigroup with band B of idempotents. Let $a \in S$ and $a' \in V(a)$. Denoting aa' by e and $a'a$ by f, we observe that the mapping $\rho_a \in \mathcal{E}(B/\mathcal{E})$ defined in Proposition 2.7 may be expressed as $\rho_e \theta_l$, where θ is an element of $W_{e,f}$ which is the mapping given by

$$x\theta = a'xa \quad (x \in \langle e \rangle).$$

Similarly, the mapping $\lambda_a \in \mathcal{E}(B/\mathcal{R})$ defined in Proposition 2.7 may be expressed as $\lambda_f \theta_r^{-1}$. The range of the mapping $\xi : S \to \mathcal{E}(B/\mathcal{E}) \times \mathcal{E}^*(B/\mathcal{R})$ defined by $a\xi = (\rho_a, \lambda_a)$ is thus contained in the subset
On the structure of the Hall–Yamada semigroups

\[W_B = \{ (e, f) \in W_{e,f} : (e, f) \in \mathcal{U} \} \]

of \(\mathcal{U}(B/\mathcal{L}) \times \mathcal{U}^*(B/\mathcal{R}) \). We say that \(W_B \) is the Hall semigroup of the band \(B \). Now we have the following result.

Proposition 2.8. Let \(B \) be a band and let
\[W_B = \{ (e, f) \in W_{e,f} : (e, f) \in \mathcal{U} \} . \]
Then
1. \(W_B \) is a subsemigroup of \(\mathcal{U}(B/\mathcal{L}) \times \mathcal{U}^*(B/\mathcal{R}) \).
2. \(W_B \) is orthodox, with band of idempotents \(B^* = \{ (e, f) : e \in B \} \) isomorphic to \(B \).
3. If \(B^* \) is identified with \(B \), then, in \(W_B \),
\[\mathcal{U} \cup (B \times B) = \mathcal{U} . \]

3. **Main Theorem**

Let \(S \) be an orthodox semigroup with band \(B \) of idempotents. Then, by Proposition 2.7, the mapping \(\xi : a \rightarrow (\rho_a, \lambda_a) \) of \(S \) onto \(W_B \) is not in general one-one. Indeed its kernel is \(\mu \). However, since we have
\[\gamma \cap \mu \subseteq \gamma \cap \mathcal{M} = I_S, \]
the homomorphism \(\eta : S \rightarrow W_B \) defined by
\[a\eta = (\rho_a, \lambda_a, \alpha) \] (1)
is one-one (see Proposition 2.2.),

If \(\gamma_1 \) is the minimum inverse semigroup congruence on \(W_B \), then \(\xi_{\gamma_1}^{-1} \) is a homomorphism of \(S \) into the inverse semigroup \(W_B / \gamma_1 \) which must factor through \(S / \gamma \) in accordance with the commutative diagram

\[\begin{array}{ccc}
S / \gamma & \longrightarrow & W_B / \gamma_1 \\
\downarrow \xi_{\gamma} & & \downarrow \xi_{\gamma_1}^{-1} \\
S & \longrightarrow & W_B \\
\end{array} \] (2)

The homomorphism \(\theta \) is uniquely determined, and we have the following lemma.

Lemma 3.1. The homomorphism \(\theta \) is idempotent-separating. The range of \(\theta \) contains all the idempotents of \(W_B / \gamma_1 \).

Proof. Let \(e\gamma \) and \(f \gamma \) be idempotents in \(S / \gamma \) (where \(e, f \in B \)) and suppose that \((e\gamma)\theta = (f \gamma) \theta \). Then \(e\xi_{\gamma_1} = f \xi_{\gamma_1} \), that is, \((e\xi, f \xi) \in \gamma_1 \cap (B^* \times B^*) \), where \(B^* \) is the band of idempotents of \(W_B \). It follows that the idempotents \(e\xi, f \xi \) in \(W_B \) are \(\mathcal{Q} \)-equivalent in \(B^* \). Since \(\xi | B \) is an isomorphism of \(B \) onto the band \(B^* \), it follows that \(e \) and \(f \) are \(\mathcal{Q} \)-equivalent in \(B \). Hence we have \(e\gamma = f \gamma \).
Any idempotent in \(W_B/\gamma_1 \) is expressible as \((\rho_a, \lambda_a)\gamma_1\), where \((\rho_a, \lambda_a)\) is an idempotent in \(W_B \). Thus it is expressible as \(e\xi \gamma_1 \) for some idempotent \(e \) in \(S \). The commutativity of diagram (2) then enables us to express our idempotent as \((e\gamma)\theta\). Hence every idempotent in \(W_B/\gamma_1 \) lies in the range of \(\theta \).

Any element \((\rho_a, \lambda_a, a\gamma)\) in the range of \(\gamma \) has the property that
\[
(\rho_a, \lambda_a)\gamma_1 = a\xi \gamma_1 = a\gamma \theta = (a\gamma)\theta.
\]

Conversely, we shall show that if \((x, a\gamma) \in W_B \times S/\gamma \) is an element such that \(x\gamma_1 = (a\gamma)\theta \) then \((x, a\gamma) = b\eta \) for some \(b \) in \(S \). In other words, we establish

Proposition 3.2. Let \(S \) be an orthodox semigroup with band \(B \) of idempotents. The mapping \(\gamma : S \rightarrow W_B \times S/\gamma \) defined by (1) is an isomorphism of \(S \) onto

\[
\{(x, a\gamma) \in W_B \times S/\gamma : x\gamma_1 = (a\gamma)\theta, \}
\]

the spined product of \(W_B \) and \(S/\gamma \) with respect to \(W_B/\gamma_1, \ r_1\xi \) and \(\theta \).

Proof. It remains to show that \(\gamma \) is onto. Let \((x, a\gamma) \in W_B \times S/\gamma \) such that \(x\gamma_1 = (a\gamma)\theta \). Then \(x\gamma_1 = (a\gamma)\theta = (\rho_a, \lambda_a)\gamma_1 \) so that \(V(x) = V(\rho_a, \lambda_a) \) in \(W_B \). Now for any inverse \(c \) of \(a \) in \(S \) it is easy to verify that \((\rho_c, \lambda_c) \in V(\rho_a, \lambda_a) \) in \(W_B \). Hence \((\rho_c, \lambda_c) \in V(x) \) and so both \((\rho_c, \lambda_c)x \) and \(x(\rho_c, \lambda_c) \) are idempotents in \(W_B \). Therefore, there exist \(e, f \) in \(B \) such that

\[
(\rho_c, \lambda_c)x = (\rho_c, \lambda_c), \quad x(\rho_c, \lambda_c) = (\rho_f, \lambda_f).
\]

As a consequence we have that

\[
(\rho_c, \lambda_c) \mathcal{R} (\rho_c, \lambda_c), \quad (\rho_c, \lambda_c) \mathcal{L} (\rho_f, \lambda_f)
\]

in \(W_B \). That is, \(e\xi \mathcal{R} c\xi \) and \(c\xi \mathcal{L} f\xi \) in \(W_B \). Examining the first of these, we deduce that \(e\xi \) and \(c\xi \) are \(\mathcal{R} \)-equivalent in \(S\xi \). Thus there exist \(u, v \) in \(S \) such that

\[
e\xi = (c\xi)(u\xi), \quad c\xi = (e\xi)(v\xi),
\]

that is, such that

\[
(e, cu) \in \xi \circ \xi^{-1}, \quad (c, ev) \in \xi \circ \xi^{-1}^{-1}
\]

Now \(\xi \circ \xi^{-1} = \mu \subseteq \mathcal{R} \subseteq \mathcal{K} \) and so there exist \(x \) and \(y \) in \(S \) such that

\[
e = cu x, \quad c = ev y.
\]

We conclude that \(e\mathcal{R}c \) in \(S \). Similarly, \(c\mathcal{L}e \) in \(S \).

Now it assures us that the \(\mathcal{K} \)-class \(L_e \cap R_e \) contains an inverse \(b \) of \(c \). It follows that in \(W_B \) the element \((\rho_b, \lambda_b)\) is an inverse of \((\rho_c, \lambda_c)\) and that it is \(\mathcal{L} \)-equivalent to \((\rho_c, \lambda_c)\) and \(\mathcal{K} \)-equivalent to \((\rho_f, \lambda_f)\). Since \(x \) also has these properties we conclude that \(x = (\rho_b, \lambda_b) \). Note that \(b\gamma \) and \(a\gamma \) are both inverses of \(e\gamma \) in the inverse semigroup \(S/\gamma \). Hence \(b\gamma = a\gamma \) and so

\[
(x, a\gamma) = ((\rho_b, \lambda_b), b\gamma) = b\eta.
\]
It is natural to make the following construction. Let \(B \) be a band and let \(T \) be an inverse semigroup whose semilattice of idempotents is isomorphic to \(B/\varepsilon \). Let \(\gamma_1 \) be the minimum inverse semigroup congruence on the Hall semigroup \(W_B \) of \(B \). Then \(W_B/\gamma_1 \) is an inverse semigroup whose semilattice of idempotents is isomorphic to \(B/\varepsilon \). Let \(\Psi : T \rightarrow W_B/\gamma_1 \) be an idempotent-separating homomorphism whose range contains all the idempotents of \(W_B/\gamma_1 \). Then we denote the spined product

\[
S = \{(x, t) \in W_B \times T : x\gamma_1 = t\Psi \}
\]

(3)
of \(W_B \) and \(T \) with respect to \(W_B/\gamma_1, \gamma_1^3 \) and \(\Psi \) by \(\mathcal{H}(B, T, \Psi) \). This semigroup \(\mathcal{H}(B, T, \Psi) \) is called the Hall-Yamada semigroup determined by the band \(B \), the inverse semigroup \(T \) and the idempotent-separating homomorphism \(\Psi \).

Theorem 3.3. Let \(B, T, \gamma_1 \) and \(\Psi \) be as above. Then the Hall-Yamada semigroup \(S = \mathcal{H}(B, T, \Psi) \) is an orthodox semigroup whose band of idempotents is isomorphic to \(B \). If \(\gamma \) is the minimum inverse semigroup congruence on \(S \), then \(S/\gamma \cong T \).

Conversely, if \(S \) is an orthodox semigroup whose band of idempotents is \(B \), then there exists an idempotent-separating homomorphism \(\theta : S/\gamma \rightarrow W_B/\gamma_1 \) whose range contains all the idempotents of \(W_B/\gamma_1 \) and such that \(S = \mathcal{H}(B, S/\gamma, \theta) \).

Proof. Note that the second half of this theorem is a restatement of Lemma 3.1 and Proposition 3.2.

To prove the first half we shall show that \(S = \mathcal{H}(B, T, \Psi) \) is regular. It is obvious that \(W_B \times T \) is regular; indeed we can say that the set of inverses of an element \((x, t)\) in \(W_B \times T \) is \(V(x) \times \{t^{-1}\} \). If the element \((x, t)\) is in \(S \), that is, if \(t\Psi = t_1 \), then for every \(x' \) in \(V(x) \) the elements \(x'\gamma_1 \) and \(t^{-1}\Psi \) are both inverses of the element \(x\gamma_1 = t\Psi \) of the inverse semigroup \(W_B/\gamma_1 \); hence \(x'\gamma_1 = t^{-1}\Psi \) and so \((x', t^{-1}) \in S \). Thus \(S \) is a regular subsemigroup of \(W_B \times T \), and we have shown moreover that the set of inverses of an element \((x, t)\) of \(S \) is \(V(x) \times \{t^{-1}\} \).

That \(S \) is orthodox follows immediately from the fact that \(W_B \) and \(T \) are orthodox and from the fact that an element \((x, t)\) of \(W_B \times T \) is idempotent if and only if \(x \) is an idempotent of \(W_B \) and \(t \) is an idempotent of \(T \).

Let \(\mathcal{B} \) be the band of idempotents of \(S \). We know that the idempotents of \(W_B \) form a band \(B^* \) isomorphic to \(B \); indeed the mapping \(\xi : B \rightarrow (\rho, \lambda) \) is an isomorphism of \(B \) onto \(B^\star \). Denoting the inverse of \(\xi \) by \(\kappa : B^\star \rightarrow B \), we define a mapping \(\zeta : \mathcal{B} \rightarrow B \) by

\[
(x, t)\zeta = x\kappa \quad ((x, t) \in \mathcal{B}).
\]
It is clear that ζ is a homomorphism. To see that it is onto, note that for any e in B the element $(\rho_e, \lambda_e)\gamma_1^h$ is an idempotent in W_B/γ_1, and so there is a unique idempotent g in T such that $g\mathcal{T} = (\rho_e, \lambda_e)\gamma_1^h$. Then $((\rho_e, \lambda_e)g) \in \overline{B}$ and has image e under ζ.

To show that ζ is one-one, suppose that the elements $(x, t), (y, u)$ in \overline{B} are such that $(x, t)\zeta = (y, u)\zeta$. Then $x\kappa = y\kappa$ and so $x = y$ since κ is an isomorphism. Hence $x\gamma_1^h = y\gamma_1^h$ and so $t\mathcal{T} = u\mathcal{T}$ by the definition formula (3) of S. But t and u are idempotents of T and so, since \mathcal{T} is idempotent-separating, $t = u$. Thus $(x, t) = (y, u)$, and we conclude that ζ is an isomorphism of \overline{B} onto B.

It is easy to see that $\pi : (x, t) \mapsto t$ is a homomorphism of S into the inverse semigroup T. In fact, π maps onto T, since γ_1^h maps W_B onto W_B/γ_1 and so for every t in T there is an element x in W_B such that $x\gamma_1^h = t\mathcal{T}$, that is, such that $(x, t) \in S$. If γ is the minimum inverse semigroup congruence on S, it follows that $\gamma \subseteq \pi \circ \pi^{-1}$ and that there is a homomorphism α of S/γ onto T such that

$$
\begin{array}{ccc}
W_B & \overset{\ell}{\leftarrow} & S \\
\downarrow & & \downarrow \alpha \\
S & \overset{\pi}{\rightarrow} & W_B/\gamma_1 \\
\downarrow & & \downarrow \gamma_1^h \\
S & \overset{\pi}{\rightarrow} & W_B
\end{array}
$$

(4)

commutes.

We know that the set of inverses of (x, t) in S is $V(x) \times \{t^{-1}\}$, where $V(x)$ is the set of inverses of the element x in W_B. Hence, using the characterization of γ by Proposition 2.2, we have that

$$
\gamma = \{(x, t), (y, u) : (x, t) \in S \times S : V(x) \times \{t^{-1}\} = V(y) \times \{u^{-1}\}\}
$$

$$
= \{(x, t), (y, u) : x = y \text{ and } \forall t \in S : V(x) = V(y)\}.
$$

On the other hand, $t = u$ implies $x\mathcal{T} = u\mathcal{T}$, which in turn implies $x\gamma_1^h = u\gamma_1^h$ since $(x, t), (y, u) \in S$. Thus, using the characterization of γ_1 by Proposition 2.2, we have that if $t = u$ then it follows that $V(x) = V(y)$. Therefore,

$$
\gamma = \{(x, t), (y, u) : (x, t) \in S \times S : t = u\}
$$

$$
= \pi \circ \pi^{-1}
$$

and so the mapping $\alpha : S/\gamma \rightarrow T$ in the diagram (4) is an isomorphism.

This completes the proof of Theorem.
On the structure of the Hall-Yamada semigroups

References

19. ———, *Note on a certain class of orthodox semigroups*, ibid. 6 (1973), 180–188.

Myongji University